JPS60162701A - Production of sintered and forged parts - Google Patents
Production of sintered and forged partsInfo
- Publication number
- JPS60162701A JPS60162701A JP1757784A JP1757784A JPS60162701A JP S60162701 A JPS60162701 A JP S60162701A JP 1757784 A JP1757784 A JP 1757784A JP 1757784 A JP1757784 A JP 1757784A JP S60162701 A JPS60162701 A JP S60162701A
- Authority
- JP
- Japan
- Prior art keywords
- sintered
- compression molding
- compression molded
- sintering
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
[技術分野]
゛本発明は、焼結鍛造品の製造方法に関するもの゛であ
る。[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for manufacturing a sintered forged product.
省資源、省エネルギータイプの金属成形品の製造方法と
して、金属粉末を焼結した後、#l造する焼結鍛造法が
注目を浴びている。特に、近年においては、自動車部品
、事1s機械部品、農業機械部品等の金属部品等が焼結
鍛造法で製造されている。As a method for manufacturing resource-saving and energy-saving metal molded products, the sinter-forging method, in which #1 is formed after sintering metal powder, is attracting attention. In particular, in recent years, metal parts such as automobile parts, industrial machine parts, and agricultural machine parts have been manufactured by the sintering and forging method.
[従来技術]
1 従来の焼結鍛造品の製造方法は、焼結金属粉末原料
などを圧縮成形して圧縮成形体を得る工程、67られた
圧縮成形体を加熱して焼結する工程、加熱焼結された成
形体を高温下に鍛造して焼結゛鍛造 −品を得る工程を
含む方法でi造されている。[Prior art] 1. A conventional method for producing a sintered forged product includes a step of compression molding a sintered metal powder raw material to obtain a compression molded body, a step of heating and sintering the compressed molded body, and a heating process. It is manufactured by a method that includes the step of forging a sintered compact under high temperature to obtain a sintered product.
′この従来の焼結鍛造品の製造方法においては、圧縮成
形によって得られる圧縮成形体の密度が5゜5〜7.5
0/Crt13であり、極めてポーラスである。このた
め、非酸化性の加熱焼結炉から人気中に焼結された成形
体を取り出した場合に、成形体の気孔を通じて、表面か
らかなりの内部にまで空気が進入し、そのために表面部
が酸化されたり、脱炭される。また、表面部は鍛造型に
直接接触するため、加熱焼結で′ISmに加熱されてい
る焼結体の表面部は鍛造型で冷却される。この冷却され
た表面部は冷却されない内部に比較し、鍛造により圧密
化しにくく、このため表面部に残留空孔が残存しやす゛
い。これらの理由により、従来の焼結鍛造品のwJ造方
法においては、得られた成形品の表面部に酸化層や脱炭
層の介在する、空孔が多い等の欠陥が発生しやすい。こ
のため得られた焼結鍛造品は疲労強度、引張り強度等の
機械的特性が低い等の問題があった。'In this conventional manufacturing method of sintered forged products, the density of the compression molded body obtained by compression molding is 5°5 to 7.5.
0/Crt13 and is extremely porous. For this reason, when a sintered compact is taken out of a non-oxidizing heating sintering furnace, air enters from the surface to the inside through the pores of the compact, causing the surface area to deteriorate. oxidized or decarburized. Furthermore, since the surface portion is in direct contact with the forging die, the surface portion of the sintered body, which has been heated to 'ISm' by heating and sintering, is cooled by the forging die. This cooled surface portion is less likely to be consolidated by forging than the uncooled interior, and therefore residual pores are likely to remain in the surface portion. For these reasons, in the conventional wJ manufacturing method for sintered forged products, defects such as the presence of an oxidized layer or decarburized layer or a large number of pores are likely to occur on the surface of the obtained molded product. Therefore, the obtained sintered forged products had problems such as low mechanical properties such as fatigue strength and tensile strength.
[発明の目的]
本発明は、上記した問題点を克服するもので、表面部の
欠陥の少ない焼結鍛造品の製造方法を提供りることを目
的とする。[Object of the Invention] The present invention overcomes the above-mentioned problems, and aims to provide a method for manufacturing a sintered forged product with fewer defects on the surface.
[発明の要約]
本発明の焼結鍛造品の製造方法は、圧縮成形体を得る工
程の後でかつ焼結工程の前に、圧縮成形体の表面に固体
粒子を衝突させ、圧縮成形体の表面部を圧密化する圧密
化工程を付加したことに特色を右する。[Summary of the Invention] The method for producing a sintered forged product of the present invention includes colliding solid particles onto the surface of the compression molded product after the step of obtaining the compression molded product and before the sintering step, thereby reducing the temperature of the compression molded product. The special feature lies in the addition of a consolidation process to consolidate the surface area.
本発明の焼結鍛造品の製造方法においては、焼結する工
程で用いられる圧縮成形体の表面が圧密化され、成形体
表面部の気孔が塞がれている。このために、焼結工程で
得られる加熱焼結された成形体もその表面部の気孔が閉
じている。したがって、焼結工程より焼結鍛造工程に移
行づる際に、′E3J温にある焼結された成形体が空気
にさらされた場合においても、空気が焼結された成形体
の内部にまで浸透する可能性が少なくなる。このために
焼結された成形体表面部に酸化物あるいは脱炭層ができ
にくくなる。また、鍛造時においても表面部が圧密化さ
れているため、鍛造型で表面部が冷却されたとしても表
面部の鍛造にょる圧密化度は内部と同程度の圧密化度の
ものが得られる。このだめに疲労強度特性、引張り強度
特性の優れた焼結鍛造品が製造できる。In the method for producing a sintered forged product of the present invention, the surface of the compression molded body used in the sintering step is consolidated, and the pores on the surface of the molded body are closed. For this reason, the heated and sintered compact obtained in the sintering process also has closed pores on its surface. Therefore, even if a sintered compact at a temperature of less likely to. This makes it difficult to form oxides or a decarburized layer on the surface of the sintered compact. In addition, the surface area is consolidated during forging, so even if the surface area is cooled in the forging die, the degree of consolidation of the surface area by forging is comparable to that of the inside. . As a result, sintered forged products with excellent fatigue strength and tensile strength properties can be manufactured.
本発明の焼結鍛造品の製造り法は、圧縮成形体を得る工
程、圧縮成形体の表面部を圧密化する工程、圧縮成形体
を焼結する工程、焼結された成形体を高温下に鍛造する
工程を含む。The method for producing a sintered forged product of the present invention includes a step of obtaining a compression molded product, a step of consolidating the surface of the compression molded product, a step of sintering the compression molded product, and a step of heating the sintered molded product at a high temperature. Including the process of forging.
圧縮成形体を得る工程は、焼結金属粉末原料を圧縮成形
型内で加圧し、加圧力により圧密化して一定の形状を有
する圧縮成形体を得る工程である。The process of obtaining a compression molded body is a process of compressing the sintered metal powder raw material in a compression mold and compacting it by applying pressure to obtain a compression molded body having a certain shape.
焼結金属粉末原料としては、特に限定されるものでなく
通常の焼結鍛造品に使用される従来の焼結金属粉末原料
を使用することができる。特に鉄系の焼結金属粉末原料
が本発明の製造方法には適している。より具体的には鉄
粉、銅粉、黒鉛粉末よりなる混合粉末が焼結金属粉末原
料として多く使用されている。銅粉の配合割合は、重量
%(以下%はmm%を意味する。〉で1.0〜71.0
%、黒鉛粉の配合mは同じく0.2〜1.0%、残部鉄
粉とするのが一般的である。これに潤滑剤であるステア
リン酸亜鉛が0.5〜1.0%添加、混粉される。The sintered metal powder raw material is not particularly limited, and conventional sintered metal powder raw materials used for ordinary sintered forged products can be used. In particular, iron-based sintered metal powder raw materials are suitable for the production method of the present invention. More specifically, a mixed powder consisting of iron powder, copper powder, and graphite powder is often used as a raw material for sintered metal powder. The blending ratio of copper powder is 1.0 to 71.0% by weight (hereinafter % means mm%).
%, and the blend m of graphite powder is generally 0.2 to 1.0%, with the balance being iron powder. To this, 0.5 to 1.0% of zinc stearate, which is a lubricant, is added and mixed.
ここで、銅粉、黒鉛粉は焼結工程において鉄粉中に固溶
し、得られた鍛造品の剛性、強度等を向上゛gる役割を
果たす。 ′
圧縮成形体を得る工程で得られる圧縮成形体の!度を5
.0〜7.50/cm3程度に圧密化するのが好ましい
。圧縮成形体の密度が5.0g/CrTl’3未満の場
合には、次の工程のショットプラス1〜やエアブラスト
を施す時に、圧縮成形体の強度が十分でないために表面
部が剥離したり、角、隅部が欠けたりする問題が生じゃ
すい。また、逆に圧縮成形体の密度を7.5(J/Cm
3を越えるようなものとする場合には、圧縮成形時の圧
縮力が極めて大きなものを必要とする。このために極め
て高密度の圧縮成形体を得るのが困難どなる。Here, the copper powder and graphite powder are dissolved in the iron powder during the sintering process, and play the role of improving the rigidity, strength, etc. of the obtained forged product. ' Of the compression molded product obtained in the process of obtaining the compression molded product! degree 5
.. It is preferable to compact it to about 0 to 7.50/cm3. If the density of the compression molded product is less than 5.0 g/CrTl'3, the strength of the compression molded product may not be sufficient and the surface portion may peel off when performing Shot Plus 1 or air blasting in the next process. , corners and corners are often chipped. Conversely, the density of the compression molded body was set to 7.5 (J/Cm
If it exceeds 3, an extremely large compression force is required during compression molding. This makes it difficult to obtain compression molded products with extremely high density.
実用上は圧縮成形体の密度が7.50g/am3以下で
十分である。For practical purposes, it is sufficient that the compression molded body has a density of 7.50 g/am3 or less.
圧縮成形体の表面部を圧密化する工程は、圧縮成形体を
得る工程で得られた圧縮成形体の表面に固体粒子を衝突
させ、少なくとも圧縮成形体の表面部を圧密化する工程
である。固体粒子を衝突させる方法としては、ショツト
ブラスト、エアブラストを使用することがで、きる。な
お、ショツトブラストにははショットピーニング法も含
める。ショツト粒の材質ム鋼、ガラス、アルミナ等いず
れでもよく材質は特に選ばない。また、粉末冶金用の鉄
粉でもよい。ショツト粒の粒径は発明者等の試験では直
径Q、5mm以下、より好ましくは0゜2mm以下が良
いことが明らかになった。圧密化の程度は圧縮成型によ
る圧縮成形体の密度に加えて密度が0.5〜1.5(1
−/C1高くなる程度のものが好ましい。また、圧密化
される表面部の厚さとし°Cは50〜500μ程度が好
ましい。The step of consolidating the surface portion of the compression molded article is a step of colliding solid particles against the surface of the compression molded article obtained in the step of obtaining the compression molded article, thereby consolidating at least the surface portion of the compression molded article. As a method of colliding solid particles, shot blasting and air blasting can be used. Note that shot blasting also includes shot peening. The material of the shot grains may be steel, glass, alumina, etc., and the material is not particularly selected. Alternatively, iron powder for powder metallurgy may be used. Tests conducted by the inventors have revealed that the particle size of the shot grains is preferably a diameter Q of 5 mm or less, more preferably 0.2 mm or less. The degree of compaction is determined by the density of the compression molded product obtained by compression molding and the density of 0.5 to 1.5 (1
-/C1 is preferably as high as possible. Further, the thickness of the surface portion to be consolidated is preferably about 50 to 500 .mu.C.
焼結する工程は、表面部が圧密化された圧縮成形体を非
酸化性雰囲気下で加熱し、原料粉末粒子どうしを焼結固
溶体化して一体化する工程である。The sintering step is a step of heating the compression molded body whose surface portion has been consolidated in a non-oxidizing atmosphere to turn the raw material powder particles into a sintered solid solution and integrate them.
焼結温度、焼結雰囲気等の条件については使用される焼
結金属粉末原料の種類により任意に選択することができ
る。粉末原料が鉄系粉末原料である場合には雰囲気ガス
としては通称RXガスとして知られている吸熱型のガス
が好ましい。焼結温度は1150度程度1焼結時間は2
0分程度がよい。Conditions such as sintering temperature and sintering atmosphere can be arbitrarily selected depending on the type of sintered metal powder raw material used. When the powder raw material is an iron-based powder raw material, the atmospheric gas is preferably an endothermic gas commonly known as RX gas. Sintering temperature is about 1150 degrees 1 sintering time is 2
About 0 minutes is good.
焼結金属粉末原料が鉄、銅、黒鉛粉末でできている場合
に、この焼結により鉄粉どうしが焼結し、銅および黒鉛
が焼結された鉄金属中に拡散して固溶化する。When the sintered metal powder raw materials are made of iron, copper, and graphite powder, the iron powders are sintered together by this sintering, and the copper and graphite are diffused into the sintered iron metal to form a solid solution.
高温下に鍛造して焼結鍛造品を得る工程は焼結工程で得
られた高温下にある焼結晶を鍛造型に入れ、鍛造型で熱
間鍛造を行なう工程である。この工程も基本的には従来
の焼結鍛造工程と同一のもので、粉末原料どして鉄系の
ものを使用した場合には鍛造型としては合金工具鋼製の
型を、鍛造時の加圧力としては8000kQ/cm2程
麿の加圧力で行なう。The process of obtaining a sintered forged product by forging at high temperatures is a process in which the sintered crystals obtained in the sintering process are placed in a forging die, and hot forging is performed in the forging die. This process is basically the same as the conventional sinter forging process, and when iron-based materials such as powder raw materials are used, a die made of alloy tool steel is used as the forging die. The pressure is approximately 8000 kQ/cm2.
この本発明の製造方法で骨られた焼結鍛造品は、表面部
で気孔率1.0%程度のものが得られる。The sintered forged product manufactured by the manufacturing method of the present invention has a porosity of about 1.0% in the surface portion.
粉末原料として鉄系金属を用いた場合には密度780
g / c m 3程度のものが得られる。なお、焼結
鍛造工程の後で得られた鍛造品を必要により熱処理や機
械加工することができる。When iron-based metal is used as the powder raw material, the density is 780.
g/cm3 can be obtained. Note that the forged product obtained after the sintering and forging process can be subjected to heat treatment or mechanical processing if necessary.
(発明の効果〕
本発明の焼結鍛造品の製造方法においては、焼結工程で
加熱焼結される圧縮成形体の表面部が圧密化され表面の
気孔がつぶされている。このために加熱焼結工程の後で
高温下にある焼結成形体を人気中に取出した場合にiJ
3いても、空気が表rM部の気孔を通じて内部に浸透し
にくい。したがって、成形体内部に酸化物層あるいは脱
炭層が生じにくい。また、表面部が内部に比べて圧密化
されているために鍛造時に焼結成形体の表面部が鍛造型
により冷却され圧密化されにくい状態になった場合にお
いても表面部の圧密化度は比較的高くなる。(Effects of the Invention) In the method for producing a sintered forged product of the present invention, the surface of the compression molded body that is heated and sintered in the sintering process is consolidated and the pores on the surface are crushed. If the sintered compact is removed from the high temperature after the sintering process, the iJ
3, it is difficult for air to penetrate inside through the pores in the surface rM section. Therefore, an oxide layer or a decarburized layer is less likely to form inside the molded body. In addition, even if the surface part of the sintered compact is cooled by the forging die during forging and becomes difficult to consolidate because the surface part is more consolidated than the inside, the degree of consolidation of the surface part is relatively small. It gets expensive.
このために疲労強度、引張り強さの高い焼結$lIl造
品がVノられる。For this reason, sintered products with high fatigue strength and tensile strength are produced.
粒程約80ミクロンの純鉄粉100重量部に対し、粒径
約20ミクロンの銅粉211mM、粒径約10ミクロン
黒鉛粉0.6重量部、さらに潤滑剤であるステアリン酸
亜鉛0.8重量部を配合し、V型混合機で十分混合した
。次に板厚5IIIIll、平行部の長さが20mg+
の板曲げ試験ハ用の圧縮成形体を製作した。圧縮成形時
の圧力は5000 kg/ Cm2である。得られた圧
縮成形体の密度は約6.8g/C講3であった。For 100 parts by weight of pure iron powder with a particle size of approximately 80 microns, 211 mM of copper powder with a particle size of approximately 20 microns, 0.6 part by weight of graphite powder with a particle size of approximately 10 microns, and 0.8 parts by weight of zinc stearate, which is a lubricant. parts were blended and thoroughly mixed using a V-type mixer. Next, the plate thickness is 5IIIll, and the length of the parallel part is 20mg+
A compression molded body for the plate bending test was manufactured. The pressure during compression molding is 5000 kg/Cm2. The density of the compression molded product obtained was approximately 6.8 g/C-3.
次に直径Q、 2mm以下の粉末冶金用の鉄粉を用いて
、圧縮成形体の表面にエアブラストを実施した。その後
、エアープラストをかけた圧縮成形体を吸熱型ガス中で
1150度に20分間加熱焼結し、その後炉より取出し
大気下にある鍛造型に移し、ただちに8000kg/a
1の加圧力で熱間鍛造した。そして、大気中で放冷した
。なお、焼結炉より取出し、鍛造型で加圧を行なうまで
の時間は約10秒であった。Next, air blasting was performed on the surface of the compression molded body using iron powder for powder metallurgy with a diameter Q of 2 mm or less. After that, the air-plast compression molded body was heated and sintered at 1150 degrees for 20 minutes in an endothermic gas, and then taken out of the furnace and transferred to a forging mold in the atmosphere, and immediately produced with a weight of 8000 kg/a.
Hot forging was carried out at a pressure of 1. Then, it was left to cool in the atmosphere. It should be noted that it took about 10 seconds from the time the product was taken out of the sintering furnace to the time it was pressurized with the forge die.
得られた焼結鍛造品の特性をみるために鍛造品を切断し
、最大酸化物層の深さ、表面層の空孔率、脱炭深さを測
定した。また、内部のビッカース硬度を測定した。さら
に得られたtJl造品の状態で引張り強さ107回疲労
強度を測定した。結果を表に示ず。In order to examine the characteristics of the obtained sintered forged product, the forged product was cut and the maximum oxide layer depth, surface layer porosity, and decarburization depth were measured. In addition, the internal Vickers hardness was measured. Furthermore, the tensile strength and fatigue strength of the obtained tJl product were measured 107 times. Results not shown in table.
なお、比較例のために、上記しl〔実施例の製造方法で
、エアーブラストによる圧縮成形体の表面圧密化工程を
除きその他の工程は実施例の二[程と全く同一にして焼
結鍛造品を行た。そして得られた鍛造品の特性を実施例
の場合と同様に測定した。As a comparative example, the manufacturing method described above was carried out in the same manner as in Example 2, except for the surface consolidation step of the compression molded body by air blasting, and the other steps were the same as those in Example 2. I did a good job. The properties of the obtained forged product were measured in the same manner as in the examples.
結果を合わせて表に示す。The results are also shown in the table.
表より明らかな様に、最大酸化物層深さが従来法が95
μであるのに対して本発明法では40μm112炭深さ
が従来法では0.231111に対して本発明法では0
.12+11111.最表面層の空隙率が従来法では3
.2%に対して本発明法では1.0%と表面層の欠陥が
少ないのが分る。尚、内部の硬麿は本発明法、従来法と
もにl−1V240〜260で差異はなかった。引張強
さは従来法が74.6kg/mm2に対して本発明法で
は75 、3 kg/l111、疲労強度が従来法が2
3 、2 ko/mm2に対して本発明法が27 、8
kl/l111と高くなっているのが確認された。As is clear from the table, the maximum oxide layer depth was 95% in the conventional method.
μ, whereas in the method of the present invention, the depth of 112 coals is 40 μm.In the method of the present invention, the depth of coal is 0.231111, whereas in the method of the present invention, the depth is 0.231111.
.. 12+11111. The porosity of the outermost layer is 3 in the conventional method.
.. It can be seen that the number of defects in the surface layer is 1.0% compared to 2% in the method of the present invention. Incidentally, the internal hard grain was 1-1V 240 to 260 for both the method of the present invention and the conventional method, with no difference. The tensile strength of the conventional method was 74.6 kg/mm2, whereas the method of the present invention had a tensile strength of 75.3 kg/l111, and the fatigue strength of the conventional method was 2.
3,2 ko/mm2, whereas the method of the present invention has 27,8 ko/mm2.
It was confirmed that the kl/l was as high as 111.
特許出願人 トヨタ自動車株式会社 代理人 弁理士 大川 宏 同 弁理士 藤谷 修 同 弁理士 丸山明夫Patent applicant: Toyota Motor Corporation Agent: Patent Attorney Hiroshi Okawa Patent attorney Osamu Fujitani Same patent attorney Akio Maruyama
Claims (4)
る工程、 得られた圧縮成形体を加熱して焼結する工程、加熱焼結
された成形体を高温下に鍛造して焼結鍛造品を(qる工
程、 を含む焼結鍛造品の製造方法において、4qられた上記
圧縮成形体の表面に固体粒子を衝突させ該圧縮成形体の
表面部を圧密化する工程を加え、その後上記焼結する工
程を実施すること側特徴とJる焼結鍛造品の製造方法。(1) A step of compression molding a sintered metal powder raw material to obtain a compression molded body, a step of heating and sintering the obtained compression molded body, a process of forging the heated and sintered molded body at a high temperature and sintering it. In the method for manufacturing a sintered forged product, the method includes a step of colliding solid particles against the surface of the compression molded product to compact the surface part of the compression molded product, The method for manufacturing a sintered forged product is characterized in that the above-mentioned sintering step is then carried out.
の圧縮成形体を得る特許請求の範囲第1項記載の製造方
法。(2) Density is 5.0-7.5g/cm3 due to compression molding
The manufacturing method according to claim 1, for obtaining a compression molded product.
スト等で行なう特許請求の範囲第1項記載のllI造方
法。(3) The IllI manufacturing method according to claim 1, wherein the step of compacting is performed by shot blasting, air blasting, etc.
どで栴成されている特許請求の範囲第1項記載の製造方
法。(4) The manufacturing method according to claim 1, wherein the sintered metal powder raw material is made of iron powder, copper powder, graphite powder, or the like.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1757784A JPS60162701A (en) | 1984-02-01 | 1984-02-01 | Production of sintered and forged parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1757784A JPS60162701A (en) | 1984-02-01 | 1984-02-01 | Production of sintered and forged parts |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60162701A true JPS60162701A (en) | 1985-08-24 |
Family
ID=11947761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1757784A Pending JPS60162701A (en) | 1984-02-01 | 1984-02-01 | Production of sintered and forged parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60162701A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0826448A1 (en) * | 1996-08-30 | 1998-03-04 | Borg-Warner Automotive, Inc. | Method of forming powdered metal forged parts after cold working |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5034484A (en) * | 1973-06-26 | 1975-04-02 | ||
JPS5471706A (en) * | 1977-11-19 | 1979-06-08 | Sumitomo Electric Ind Ltd | Manufacture of high-density molded product from powder by hot forging of powder |
JPS5575839A (en) * | 1978-12-05 | 1980-06-07 | Sumitomo Electric Ind Ltd | Production of powder hot forged part |
-
1984
- 1984-02-01 JP JP1757784A patent/JPS60162701A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5034484A (en) * | 1973-06-26 | 1975-04-02 | ||
JPS5471706A (en) * | 1977-11-19 | 1979-06-08 | Sumitomo Electric Ind Ltd | Manufacture of high-density molded product from powder by hot forging of powder |
JPS5575839A (en) * | 1978-12-05 | 1980-06-07 | Sumitomo Electric Ind Ltd | Production of powder hot forged part |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0826448A1 (en) * | 1996-08-30 | 1998-03-04 | Borg-Warner Automotive, Inc. | Method of forming powdered metal forged parts after cold working |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04231404A (en) | Method for powder metallurgy by means of optimized two-times press-two-times sintering | |
US4681629A (en) | Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles | |
US4090874A (en) | Method for improving the sinterability of cryogenically-produced iron powder | |
JP2004528482A (en) | High-density stainless steel product and method for producing the same | |
US3811878A (en) | Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder | |
JPS6345306A (en) | Production of sintered member | |
JPS60162701A (en) | Production of sintered and forged parts | |
US6967001B2 (en) | Method for sintering a carbon steel part using a hydrocolloid binder as carbon source | |
KR20070112875A (en) | Fe-based sintered alloy | |
US5951737A (en) | Lubricated aluminum powder compositions | |
JPH0222121B2 (en) | ||
JPH032335A (en) | Manufacture of titanium powder or titanium alloy powder sintered product | |
JPH0643628B2 (en) | Method for manufacturing aluminum alloy member | |
RU2090309C1 (en) | Method for producing constructional powder steel | |
JPS6134102A (en) | Production of sintered and forged material | |
JPS61117203A (en) | Production of sinter forged parts | |
JPS61264105A (en) | Production of high-strength sintered member | |
JPH03290906A (en) | Warm-worked magnet and its manufacture | |
EP1246950B1 (en) | Compacting and sintering steel powder | |
JP2945115B2 (en) | Method for producing large sintered body made of iron-based metal powder | |
SU1616785A1 (en) | Method of producing sintered articles from iron-glass materials | |
JPS61264101A (en) | Production of high-strength sintered member | |
JPS6156203A (en) | Improvement of strength of sinter-forged member | |
CA1067255A (en) | Sintered shape | |
JPS60234903A (en) | Shot peening treatment of sintered and forged member |