JPS60169729A - Calibrating method of temperature sensitive element and temperature measuring method using temperature sensitive element - Google Patents
Calibrating method of temperature sensitive element and temperature measuring method using temperature sensitive elementInfo
- Publication number
- JPS60169729A JPS60169729A JP2537384A JP2537384A JPS60169729A JP S60169729 A JPS60169729 A JP S60169729A JP 2537384 A JP2537384 A JP 2537384A JP 2537384 A JP2537384 A JP 2537384A JP S60169729 A JPS60169729 A JP S60169729A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- data
- measuring
- measurement
- calibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/02—Means for indicating or recording specially adapted for thermometers
- G01K1/026—Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K15/00—Testing or calibrating of thermometers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明は温度測定菓子特に感占素子における校正方式お
よび感温素子による温度測定方式の改良に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to temperature-measuring confectionery, particularly to improvements in a calibration method for a temperature-sensing element and a temperature-measuring method using a temperature-sensing element.
(b) 技術の背景
従来よシ温度測定方法としては物体の熱膨張を利用する
原始的な水銀、アルコール温度計、容積内の圧力上昇を
圧力計として計る圧力式温度計、気体温度計、輝度と標
準光源と比較して計る光高温計から、・電気伝導度の温
度変化を利用する白金抵抗温度計、サーミスタ温度計ま
たは熱電対等広範囲に亘る〇
通常温度制御等産業用途における温度測定手段としては
後者の電気的な方法が用いられるが、それ等の内白金抵
抗温度計、熱電対は高精度の温度測定が実現出来るが高
価であったり、低感度の他使用に際して一定の低温点を
必要とする等操作上の弱点があり、これに対しサーミス
タ温度計は高感度、低コストの特徴を生かして広く利用
されている。(b) Background of the technology Conventional methods for measuring temperature include primitive mercury and alcohol thermometers that use the thermal expansion of objects, pressure thermometers that measure the rise in pressure within a volume as a pressure gauge, gas thermometers, and luminance. From optical pyrometers that measure temperature by comparing it with a standard light source, to platinum resistance thermometers that utilize temperature changes in electrical conductivity, thermistor thermometers, and thermocouples, etc. 〇Temperature measurement means for industrial applications such as normal temperature control etc. The latter electrical method is used, but platinum resistance thermometers and thermocouples can achieve highly accurate temperature measurement, but are expensive, have low sensitivity, and require a certain cold point for use. In contrast, thermistor thermometers are widely used due to their high sensitivity and low cost.
(c) 従来技術と間組点
従来よりサーミスタは感温素子の代表として広く利用さ
れているが、広義のサーミスタは半導体の電気抵抗が温
度に従って大きく変化する特性を利用しており、■負の
温度体l!ヲ持つ普通のサーミスタ、■正の温度係数を
持つ正特性サーミスタ、■狭い温度範囲で抵抗が急変す
るクリテジスタに分類される。以下こ\では0項の普通
のサーミスタを代表例に説明する0通常サーミスタはM
n。(c) Thermistor has been widely used as a typical temperature-sensitive element, but thermistor in a broad sense utilizes the characteristic that the electrical resistance of a semiconductor changes greatly depending on the temperature. Body! They are classified into ordinary thermistors with a positive temperature coefficient, ■positive characteristic thermistors with a positive temperature coefficient, and ■critesisters whose resistance changes suddenly over a narrow temperature range. Below, we will explain a typical thermistor with 0 term as a typical example.
n.
Co * Nl * Fe * Cu e VおよびW
等の遷移金JI14酸化物系による複合酸化物よりな勺
、抵抗率や温度Ba + Na等の酸化物が添加される
。Co * Nl * Fe * Cu e V and W
Oxides such as complex oxides based on transition gold JI14 oxides, resistivity and temperature Ba + Na, etc. are added.
サーミスタの温度と抵抗の関係は実用温度範囲において
真性半導体と同じくρ=I)oeχp(ΔE/2kT)
で与えられる。こ\でΔEは活性化エネルギである◎通
常サーミスタではB=ΔE/2kをサーミスタ定数と呼
び、抵抗の温度依存性は抵抗/温度算出式
%式%
で表わされる。こ\でRrefは室温付近におけるの値
としてはB=5020〜6140程度が与えられる。従
ってサーミスタによる感温素子の温度検出機能は他の白
金抵抗計や熱電対に比較して極めて大きい温度測定感度
を有する一方、前述の複雑な材料組成と焼成熱処理の影
響等に伴う結晶歪ならびに電極接触変化によりサーミス
タの抵抗における温度特性は0式の指数曲線となる他B
を含めた特性のバラツキが大きい欠点があり0式を用い
て補正を施してもサーミスタの筒片毎に特性が異なり、
極端な例では温度毎にBが異なる値を示す場合は充分な
補正が得られないので例えば±1℃より温度測定精度の
良いサーミスタの校正方式を実現するのは手数が煩わし
い問題があった0(d) 発明の目的
本発明の目的は上記の欠点や問題点を除去するため複数
q個のサーミスタについて精密な較正用基準温度環境と
標準測温体との組合せの下で得られる使用温度範囲の複
数p点に亘る校正温度点における被校正サーミスタの検
出値に\では抵抗値)に基いて前述の0式により各被校
正サーミスタに対応する請求める手段と更に0式にB(
1に代入して得られる算出温度匝と株準測温体による基
準温得値との差Δtを得る温度誤差補正式 Δt=a+
bx+cx” ・・・・・・nxIn ・・・・・・・
・・・・・■をめる手段をプロセッサの舵1デーク処理
機能の援護によって実行する温度校正装置tを構成し、
操作が容易で高n度の校正データが被校正サーミスタの
筒片毎に得られる校正方法を提供しようとするものであ
る。The relationship between the temperature and resistance of a thermistor is the same as that of an intrinsic semiconductor in the practical temperature range: ρ=I)oeχp(ΔE/2kT)
is given by Here, ΔE is activation energy. ◎In a normal thermistor, B=ΔE/2k is called the thermistor constant, and the temperature dependence of resistance is expressed by the resistance/temperature calculation formula % formula %. Here, Rref is given a value of B=5020 to 6140 around room temperature. Therefore, while the temperature detection function of a thermosensor using a thermistor has extremely high temperature measurement sensitivity compared to other platinum resistance meters and thermocouples, it is difficult to detect crystal distortion due to the aforementioned complicated material composition and the influence of firing heat treatment, etc. Due to contact changes, the temperature characteristics of the thermistor's resistance become an exponential curve of equation 0.B
The disadvantage is that there are large variations in characteristics including
In an extreme example, if B shows a different value for each temperature, sufficient correction cannot be obtained, so creating a thermistor calibration method that achieves temperature measurement accuracy better than ±1°C, for example, is a troublesome problem. (d) Purpose of the Invention The purpose of the present invention is to eliminate the above-mentioned drawbacks and problems by providing a working temperature range that can be obtained for a plurality of q thermistors by combining a precise reference temperature environment for calibration and a standard temperature measuring element. Based on the detected value of the thermistor to be calibrated at a plurality of calibration temperature points over a plurality of calibration temperature points (\ is the resistance value), a means for requesting corresponding to each thermistor to be calibrated by the above-mentioned formula 0, and further B (
Temperature error correction formula to obtain the difference Δt between the calculated temperature value obtained by substituting in 1 and the standard temperature value obtained by the standard thermometer Δt=a+
bx+cx” ・・・・・・nxIn ・・・・・・
. . . constitutes a temperature calibration device t that executes the means for determining
The present invention aims to provide a calibration method that is easy to operate and allows high n-degree calibration data to be obtained for each cylinder piece of a thermistor to be calibrated.
(e) 発明の構成
この目的は、複数の感温素子を基準温度環境の下に標準
測温体との比較を実行して該感温素子の出力または抵抗
に伴う温度指示直に対する校正データを得る感温素子の
温度校正システムにあって、該感温菓子の温度校正装置
は温度設定可能の恒温槽による基準温度環境手段、校正
基準とする標準mtl m体、該標準測温体ならびに被
校正体となるJ数の感温菓子についてその出刃または抵
抗を測定する手段、該環境手段忙おける測定対象の標準
側温体または被校正体を選択して測定手段に接続する切
替手段、上記測定手段による測定データならびに校正に
伴う各算出データを蓄積する記憶手段、測定データに従
って被測定体の特性定数ならびに該定at一温度算出弐
に代入して得る一久補正値と標準側温体による基準値と
の補正データを得る演算手段、測定手段の測定クロック
を送出するクロック発生手段および測定手段、記憶手段
等における各種データを表示/出力する手段を具備し、
恒圧装置の制御部は環境手段をして設定せしめる2個の
校正温度毎に該環境手段内に設置する標準側温体ならび
に被校正体の感温菓子を切替手段によシ選択して測定手
段に接続させ、測定手段をしてクロック発生手段のクロ
ック信号に従い該標準測温体/被校正体の出力または抵
抗値を測定せしめ。(e) Structure of the Invention This purpose is to compare a plurality of temperature sensing elements with a standard temperature measuring element in a reference temperature environment and obtain calibration data for temperature indications associated with the output or resistance of the temperature sensing elements. In the temperature calibration system for the temperature sensing element, the temperature calibration device for the temperature sensitive confectionery includes a reference temperature environment means using a constant temperature chamber whose temperature can be set, a standard MTL body as a calibration standard, the standard temperature measuring body and the subject to be calibrated. a means for measuring the edge or resistance of J number of temperature-sensitive sweets, a switching means for selecting a standard heating body or a calibration target to be measured in the environmental means and connecting it to the measuring means; storage means for accumulating measurement data and each calculation data associated with calibration, a characteristic constant of the object to be measured according to the measurement data, an permanent correction value obtained by substituting the constant at-temperature calculation 2, and a reference value by the standard side temperature body. comprising a calculation means for obtaining correction data for the measurement means, a clock generation means for sending out a measurement clock for the measurement means, and a means for displaying/outputting various data in the measurement means, storage means, etc.,
The control unit of the constant pressure device uses the switching means to select and measure the standard heating body installed in the environmental means and the temperature-sensitive candy as the object to be calibrated for each of the two calibration temperatures set by the environmental means. and the measuring means measures the output or resistance value of the standard temperature measuring object/calibration object according to the clock signal of the clock generating means.
その測定データを演算手段に入力して被測定体の特性定
数ならびに補正データを算出すると共に測定データtf
cは/および算出データを記憶手段に蓄積せしめて必l
)Kよシ訳測定または/および算出データを表示/出力
手段をして出力せしめることを特徴とする感温素子の校
正方式を提供することによって達成することが出来る。The measured data is input to the calculation means to calculate the characteristic constants and correction data of the object to be measured, and the measured data tf
c is necessary by accumulating the calculated data in the storage means.
) This can be achieved by providing a temperature-sensing element calibration method characterized by outputting measured and/or calculated data using a display/output means.
げ)発明の実施例
以下図面を参照しつ\本発明の一実施例について説明す
る。第1図は本発明の一実施例における感温素子の校正
方式による温度校正装置のブロック図、第2図は本発明
の一実施例における感温素子の校正方式による処理手順
を示すフローチャート、第3図は他の実施例における感
温素子による温度測定方式による詠度測定装置のブロッ
ク図および錦4図は他の実施例における感温素子による
温度測定方式の処理手順を示すフローチャートを示す。G) Embodiment of the Invention An embodiment of the invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a temperature calibration device using a temperature-sensing element calibration method according to an embodiment of the present invention, FIG. FIG. 3 is a block diagram of a chant measuring device using a temperature measurement method using a temperature sensing element in another embodiment, and FIG. 4 is a flowchart showing the processing procedure of the temperature measurement method using a temperature sensing element in another embodiment.
図において10は制御部% 11は記憶部、12は演算
部% 13はクロック発生部、14は表示/出力部、2
1は温度環境部、22は標準測温体、23a−qは被校
正体となる感温素子、24は切換部および25は測定部
である0制御部10は中央処理装置(CPU)またはマ
イクロプロセッサ(MPU)によシ構成され、記憶部1
1または図示省略したが別途自己内蔵する記憶手段に蓄
積する制御プログラムおよび制御データに従って温度校
正装置の他の構成各部を制御して被校正体23a−qの
校正モードを実行するO記憶部11は校正動作に伴って
発生する測定データや演算データ等を蓄積する記憶機能
であり、通常半導体によるダイミツクランダムアクセス
メモリ(D−RAM)、スタテックランダムアクセスメ
モリ(S−RAlvl)または必要があれば制御プログ
ラムおよび制御データ等のために固定メモIJ (RO
M)更にはデータバッファファイル図の外部記憶手段と
してフロッピディスク装置または磁気ディスク装置等に
より構成されるものとするQ演算部12は測定データを
受信し該測定データを対応する制御部lOよりの測定制
御の入力データと対応せしめて測定データテーブルとし
て記憶部11に蓄積せしめる他、指定される後述の温度
環境部21における温度値Trefに対応する測定デー
タを測定データ/温度算出式である前出の0式に代入し
て谷mix子の温度換算定数こ\では各M/4温素子2
3a〜qにおけるサーミスタ定数Ba−q/Trefe
算出する機能を有する0この定数Ba〜q、を0式に代
入し、更に標準測温体によるTrgf点以外の温度点T
+−Pにおける被校正体の各測定データを挿入すると測
定データに内応する一次補正の算出温度1直t I−P
が得られるがTref点を除き、このIiLは先の測定
テータ命テーブルにおける標1$測温体22による〜T
1〜Tpの基準温度値と異なり感温素子23mは誤差Δ
t1’ ” ’f’ r tea 、Δtea =Tt
−tta ”””Δt p、=’l’p tptを有す
るのでΔL1a〜Δtpqの一定データよシ温度誤差補
正式前出■式の誤走補正式に相幽する感温素子23aの
一差補正式
A ta=Ikm+klix+caX” −−−n6x
” −・= 2x式tX出せしめる・他の感@素子23
b〜qについても同様にΔtb、、の胱出補正式を算出
して先のBa〜q/Trofと共に補正データとして記
憶fillに11槓せしめる。また補正データか記憶部
11に得られた仮演算部12は対応する補正データにア
クセスして感熱素子の測定データに補正を施して惰正咎
側定データを出力する演算機能を有する。クロック発生
部13は例えば制御部lOのシステムクロククをカウン
トダウンして測定条件を一定に保つため測定の対象とな
る標準測温体22あるいは被校正体23mへその測定の
ため印加する電圧/IIE流を一定時間に制御するため
の測定クロックを送出する機能を有する。表示/出力部
は測定データ、補正データまたは補正済補正データ等温
度校正/測定動作における諸データの表示/出力手段で
あり、例えばCRTによるディスプレイ、プリンタある
いはX−Yプロッタ等により構成され必要によりキーボ
ード等の入力操作手段を有している0直度環境部21は
例えば超精密恒温槽で構成されその槽内を制御部100
指定に従う設定値による一定温度値に保持するための加
熱、冷却および槽内流体の環流攪拌機能を備えている・
温度環境[21は必要により水Gtno)の3重点ある
いはH2Oの沸点等を使用してもよい。標準測温・体2
2は例えd白金測温抵抗体を用いて温度校正における基
準器とする@また温度環境部21の温度検出にも共用す
ることが出来る。被校正体23&〜qとなる感温素子は
未校正の白金側温抵抗体。In the figure, 10 is a control section, 11 is a storage section, 12 is a calculation section, 13 is a clock generation section, 14 is a display/output section, and 2
1 is a temperature environment section, 22 is a standard thermometer, 23a-q are temperature sensing elements to be calibrated, 24 is a switching section, and 25 is a measurement section.0 Control section 10 is a central processing unit (CPU) or a microcontroller. It is composed of a processor (MPU) and has a storage unit 1.
Although not shown, the O storage section 11 controls the other components of the temperature calibration device in accordance with the control program and control data stored in a separately built-in storage means to execute the calibration mode of the objects to be calibrated 23a-q. This is a memory function that stores measurement data, calculation data, etc. generated in conjunction with calibration operations, and is usually stored in semiconductor-based Daimic random access memory (D-RAM), static random access memory (S-RAlvl), or if necessary. Fixed memo IJ (RO
M) Furthermore, the external storage means for the data buffer file diagram shall be constituted by a floppy disk device, a magnetic disk device, etc. The Q calculation section 12 receives measurement data and stores the measurement data from the corresponding control section IO. In addition to storing the measurement data in the storage unit 11 as a measurement data table in correspondence with control input data, measurement data corresponding to a specified temperature value Tref in the temperature environment unit 21 (described later) is stored in the measurement data/temperature calculation formula described above. By substituting into the equation 0, the temperature conversion constant of the valley mixer is calculated.
Thermistor constant Ba-q/Trefe in 3a-q
Substituting the constants Ba~q, which have the function of calculating
When each measurement data of the object to be calibrated at +-P is inserted, the calculated temperature of the primary correction corresponding to the measurement data is calculated 1 shift t I-P
is obtained, but except for the Tref point, this IiL is determined by the standard 1$ thermometer 22 in the previous measurement data life table ~T
Unlike the reference temperature values of 1 to Tp, the temperature sensing element 23m has an error Δ
t1' ” 'f' r tea , Δtea = Tt
-tta """ Δt p,='l'p tpt, so constant data of ΔL1a to Δtpq is required. Temperature error correction formula One-difference correction of temperature sensing element 23a, which conflicts with the error correction formula of equation (2) above. Formula A ta=Ikm+klix+caX” ---n6x
” −・= 2x formula tX output / Other sense @ element 23
Similarly, for b to q, the bladder output correction formula of Δtb, . Further, the provisional calculation unit 12 that has obtained the correction data in the storage unit 11 has a calculation function that accesses the corresponding correction data, corrects the measurement data of the heat-sensitive element, and outputs the correction data. For example, the clock generator 13 counts down the system clock of the control unit 1O to keep the measurement conditions constant by generating the voltage/IIE current applied to the standard temperature measuring element 22 or the calibrated object 23m to be measured. It has the function of sending out a measurement clock to control the time at a certain time. The display/output section is a means for displaying/outputting various data in temperature calibration/measurement operations, such as measurement data, correction data, or corrected correction data, and is composed of, for example, a CRT display, printer, or X-Y plotter, and a keyboard if necessary. The 0-degree environment unit 21, which has input operation means such as
Equipped with heating, cooling, and reflux stirring functions for the fluid in the tank to maintain a constant temperature value according to the specified set value.
The triple point of the temperature environment [21 is water Gtno if necessary] or the boiling point of H2O may be used. Standard temperature measurement/body 2
2 is used as a reference device in temperature calibration using, for example, a platinum resistance thermometer; it can also be used for temperature detection of the temperature environment section 21. The temperature sensing element serving as the object to be calibrated 23&~q is an uncalibrated platinum side temperature resistor.
サーミスタ素子または熱電対等であり前2者の温度測定
データは抵抗値によシ、後者は出力電圧値による・尚後
者は温度環境部21内に温熱点を設置する場合冷熱点は
他の一定温度に保持する必要がある0切換部24は制御
部LOの制御に従い測定対象となる標準測温体22また
は被測定体23a−qの何れか1個を測定部25に選択
接続する多大力1出力選択のマルチプレクサ(MPX)
機能である。測定部25は測定対象の標準測温体23こ
\では白金側温抵抗体または被校正体23a−q −こ
\ではサーミスタの抵抗値をクロック発生部13の測定
クロックに従つて測定する検出機能であり抵抗測定値は
内蔵するA/D変換機能によりディジタルデータに変換
して演算部12に送出する@本実施例では以上のように
構成されているので、制御部10は校正モードの実行に
際しては第2図のフローチャートによる手HA a l
=a l Oに従9て校正モードを制御する◎手順&l
では温度環境部21を初期値のT=1例えば使用温度範
囲の最低温度値に設定し、手順a4では切換部24をし
て被校正体23&〜qの例えば初期値=1即ち被校正体
23&を測定部25へ接続する。手順a5では測定部2
5は温度環境部21の設定温度T、における被校正体2
3&の測定データこ\では抵抗値rtaをディジタルデ
ータに変換して演算s12へ送出し、演算部12は制御
データと対応せしめて記憶部11へ蓄積する。以下手順
a4+a5に従い温度環境部21の設定温度T、におい
て感温素子23&−qの各個片すべてに実行し1手順a
6でq個の測定が終了すれば、再び温度環境部21の設
定温度を他の温度T、として手順al−a6を繰返し、
手J[a7で全設定温度T!〜TPについて感温素子2
3a=(lの測定データが得られる。この時記憶部11
には第1表のような測定データテーブルが蓄積される。Thermistor element or thermocouple, etc., and the temperature measurement data of the former two depends on the resistance value, and the latter depends on the output voltage value.In addition, in the latter case, when the hot spot is installed in the temperature environment section 21, the cold spot is at another constant temperature. The 0 switching unit 24, which must be maintained at Multiplexer of Choice (MPX)
It is a function. The measuring unit 25 has a detection function that measures the resistance value of the platinum-side temperature resistance element in the standard temperature measuring body 23 to be measured or the thermistor in the calibration target 23a-q- in accordance with the measurement clock of the clock generating unit 13. The resistance measurement value is converted into digital data by the built-in A/D conversion function and sent to the calculation unit 12.@Since this embodiment is configured as described above, the control unit 10 is the procedure according to the flowchart in Figure 2.
=a l Control the calibration mode according to 9 ◎Procedure & l
Then, the temperature environment section 21 is set to the initial value T=1, for example, the lowest temperature value in the operating temperature range, and in step a4, the switching section 24 is set to the initial value of the object to be calibrated 23&~q, for example, the initial value=1, that is, the object to be calibrated 23& is connected to the measuring section 25. In step a5, measurement section 2
5 is the object 2 to be calibrated at the set temperature T of the temperature environment section 21.
In the measurement data 3&, the resistance value rta is converted into digital data and sent to the calculation s12, and the calculation section 12 stores it in the storage section 11 in correspondence with the control data. Following steps a4+a5, perform step 1 for each individual piece of temperature sensing element 23 & -q at the set temperature T of temperature environment section 21.
When q measurements are completed in step 6, the set temperature of the temperature environment section 21 is set to another temperature T, and step al-a6 is repeated.
Hand J [all set temperatures T with a7! ~About TP Temperature sensing element 2
3a=(l measurement data is obtained. At this time, the storage unit 11
A measurement data table as shown in Table 1 is stored in .
第り表 測定データテーブル例
次に演算部【2に手I@&8により制御部10よシ指定
される温度点例えば中間温度点TP/2を照合温度点T
refとして抵抗/温度算出式■により特性定数こ\
ではサーミスタ定数Bを感温素子23a−qに対応して
それぞれBa−q(i)算出する。Table 1 Measurement data table example Next, the calculation unit [2] Checks the temperature point specified by the control unit 10 by the hand I@&8, for example, the intermediate temperature point TP/2, and the temperature point T
As ref, the characteristic constant is calculated by the resistance/temperature calculation formula.
Then, the thermistor constants B are calculated as Ba-q(i) corresponding to the temperature sensing elements 23a-q, respectively.
このTrefは最低温度点T1でも、最高温度点Tpで
も他の任意の設定温度でも良い。This Tref may be the lowest temperature point T1, the highest temperature point Tp, or any other set temperature.
第2表 サーミスタ定数Ba−qテーブル何次に手順a
9によシ演算部12は各感温素子23a〜q毎に第2表
のB a 〜(l第1表のrla−pm 、 rib
−pb ”・・・・rIq−9Qt−(1)式に代入す
れば定数Ba−ql各感温素子23a−qにおいて一定
としたときの一次の算出温度値が第3表のように得られ
る〇第3表 算出温度値テーブル例
この算出温度値はTrefでFi1差零となる他は通常
設定温度値T、〜pにおいて僅かな誤差を有し、ΔLi
a=Ts〜tta、Δtme =T* 〜tea ・−
・・・・Δtpq=補正式の補正音感温素子23&〜q
毎に作成する0即ちΔta =am + t)a X+
1!aX’ −−n、!” ・−・’2 a式以下2b
〜2q式を得て記憶部11に蓄積する0必要により制御
部10は上記測定データ、各テーブルあるいは誤差補正
式2a”qを記憶部11よシ表示/出力部14t−して
出力表示または印字/描画して出力させる・尚第1図の
温度校正装置の構成各部間におけるデータ伝送路(バス
)は測定系では通常GPIBでおる◎但し他のインタフ
ェースによっても同様に実現出来ることはいう迄もない
・以上のようにすれに感温素子23a−qは高精度の校
正を容易に実行することが出来る0次に他の実施例につ
いて図面を参照しつ\説明する。第3図は本発明の他の
実施例における感温素子による温度測定方式の温度測定
装置を示すブロック図および第4図はその測定子+[−
示すフロチャートである。図において10は制御部、1
1は記憶部、12は演算部% 13はクロック発生部。Table 2 Thermistor constant Ba-q table Next step a
9, the calculation unit 12 calculates B a to (l rla-pm, rib in Table 1) of Table 2 for each temperature sensing element 23a to 23q.
-pb ”...rIq-9Qt- By substituting into equation (1), the primary calculated temperature value when constant Ba-ql is constant for each temperature sensing element 23a-q can be obtained as shown in Table 3. 〇Table 3 Calculated temperature value table example This calculated temperature value has a slight error in the normal setting temperature values T and ~p, except that Fi1 difference is zero at Tref, and ΔLi
a=Ts~tta, Δtme=T*~tea・−
...Δtpq = correction type correction sound temperature sensing element 23&~q
0, that is, Δta = am + t) a X+
1! aX' --n,! ” ・-・'2 a formula below 2b
~ 2q formula is obtained and stored in the storage unit 11. If necessary, the control unit 10 outputs the measurement data, each table, or error correction formula 2a"q from the storage unit 11 and displays/outputs the output unit 14t. /Draw and output・The data transmission path (bus) between each component of the temperature calibration device shown in Figure 1 is usually GPIB in the measurement system.However, it goes without saying that it can be similarly realized using other interfaces. As described above, the temperature sensing elements 23a-q can easily perform highly accurate calibration.Next, another embodiment will be described with reference to the drawings.FIG. 3 shows the present invention. A block diagram showing a temperature measuring device using a temperature sensing element in another embodiment of the present invention and FIG.
It is a flowchart showing. In the figure, 10 is a control unit;
1 is a storage section, 12 is a calculation section, and 13 is a clock generation section.
14は表示/出力部、21は温度環境部、22は標準測
温体%23a−qは被校正体の感温素子、23a −q
は校正績の感温素子%24は切替部および25は測定部
である。図の温度測定装置を構成する部材で前出の3M
1図と共通の符号を有する部材は前出の一実施例におけ
るそれと共通の機能と特性を有する。制御部10の機能
は従来の制御部10に測定時間間m t t tt+l
J御が付加された点が異なる。14 is a display/output section, 21 is a temperature environment section, 22 is a standard thermometer, 23a-q is a temperature sensing element of the object to be calibrated, 23a-q
24 is a switching section and 25 is a measuring section. The above-mentioned 3M is a component of the temperature measuring device shown in the figure.
Components having the same reference numerals as in FIG. 1 have functions and characteristics common to those in the previous embodiment. The function of the control unit 10 is the same as that of the conventional control unit 10.
The difference is that J is added.
従ってこ\に示す他の実施例の温度測定方式における制
御部10による校正モードの処理手順は前述の温度校正
方式における第2図に示す処理手順a1〜alOにすべ
て共通である。Therefore, the processing procedure of the calibration mode by the control unit 10 in the temperature measurement system of the other embodiment shown here is common to all the processing procedures a1 to alO shown in FIG. 2 in the temperature calibration system described above.
測定モードにおいては手順btに従い校正モードにおい
て校正データが得られた被校正体の感温素子23&〜(
L’(l:温度環境部21より取出し実用測温体23’
a−qとして温度測定対象に取付ける・この作業は手操
作となる@被校正体と実用測温体にする◎手順b2によ
り制御部100制御データに例えば表示/出力部14に
付加されたキーボードより測定時間間隔tit−設定す
る0測定点数q個の設定は従来に共通である。手順b3
により制御titoは11を例えば内蔵タイマにより検
出して実用測温体23a−qの倒れか例えば初期値はq
=1として切替部24t−して実用測温体23′aを選
択せしめて測定部25に接続し、クロック発生部L 3
t−して測定クロックを送出せしめ手順b4により測定
データを演算部12に送出せしめる。In the measurement mode, according to procedure bt, the temperature sensing element 23 &~(
L' (l: Practical temperature measuring element 23' taken out from the temperature environment section 21
Attach to the temperature measuring object as a-q ・This work is a manual operation @ Attach to the calibrated object and the practical temperature measuring device The setting of measurement time interval tit--zero measurement points q to be set is common to the prior art. Step b3
11, for example, by a built-in timer, and determines whether the practical temperature measuring elements 23a-q have fallen.For example, the initial value is q.
=1, the switching section 24t- selects the practical temperature measuring element 23'a and connects it to the measuring section 25, and the clock generating section L3
t-, the measurement clock is sent out, and the measurement data is sent out to the arithmetic unit 12 in step b4.
手1[b5により演算部12は記憶部11にアクセスし
て実用測温体23a即ち校正モードで得られた被校正体
23&に対応する定数テーブルのB&および誤差補正等
の補正データにアクセスし測定データを補正済測定デー
タ(温度fi) IC変換・演算して表示/出力[14
より出力させる。手順6によシ他の実用測温体23b−
qについても同様に実行して補正済測定データが得られ
る。更にtiが経過すれば制御部【Oは手順bt−ba
’i繰返して測定モードt−災行する0以上のようにす
れば感温素子による温度測定において感温素子の校正/
測定モードの切換えに取付場所の変更に際して手操作を
伴うがその他は制御部10が校正/測定モードを予め設
定された手順に従い実行して精度の高い温度測定結果を
容易な操作により表示/出力することが出来る。尚以上
は校正/測定モードにおける測定データの補正を誤差補
正式により実行したがT、〜pにおけるpが充分大きく
て@度ピッはその補間によっても補正済測定データが得
られることはいう値もない。In step 1 [b5, the calculation unit 12 accesses the storage unit 11 and accesses correction data such as B& of the constant table and error correction corresponding to the practical temperature measuring object 23a, that is, the object to be calibrated 23& obtained in the calibration mode, and performs measurement. Corrected measurement data (temperature fi) IC conversion/calculation and display/output [14
Make more output. According to step 6, other practical thermometer 23b-
Corrected measurement data can be obtained by performing the same procedure for q. If ti has further elapsed, the control unit [O is step bt-ba
'i Repeat measurement mode t - Disaster If you set it to 0 or more, you can calibrate the temperature sensing element in temperature measurement using the temperature sensing element.
Changing the measurement mode requires manual operation when changing the mounting location, but otherwise the control unit 10 executes the calibration/measurement mode according to preset procedures and displays/outputs highly accurate temperature measurement results with easy operation. I can do it. In the above, the measurement data in the calibration/measurement mode was corrected using the error correction formula, but if p in T and ~p is sufficiently large, corrected measurement data can also be obtained by interpolation. do not have.
億) 発明の詳細
な説明したように本発明によれば従来高感度、′低コス
トの特徴を有しながら測定精度の低かった感温素子特に
サーミスタによつても容易に高精度の校正および測定結
果の得られる感温素子の校正方式および感温素子による
温度測定式が得られるので有用である。また本方式は他
の温度測定用センサに同様に適用出来ることはいう迄も
ない◎As described in detail, according to the present invention, it is possible to easily calibrate and measure with high accuracy even when using a temperature sensing element, particularly a thermistor, which conventionally has characteristics of high sensitivity and low cost but low measurement accuracy. This method is useful because it provides a calibration method for the thermosensor and a temperature measurement formula using the thermosensor that yield results. It goes without saying that this method can be similarly applied to other temperature measurement sensors.
第1図は本発明の一実施例における感温素子の測定方式
による校正装置のブロック図、第2図はその校正処理手
順を示すフローチャート、第3図は本発明の他の実施例
における感温素子による温度測定方式の温度測定装置を
示すブロック図および第4図はその測定モードにおける
処理手順を示すタイムチャートである。図においてto
、 t。
は制御部% 11は記憶部、t2は演算部、13はクロ
ック発生部、14は表示/出力部、21は温度環境部、
22は標準測温体、23a−qは被校正体の感温素子%
23a−qは実用測温体の感温素子、24は切替部およ
び25は測定部である。FIG. 1 is a block diagram of a calibration device using a temperature sensing element measurement method according to an embodiment of the present invention, FIG. 2 is a flowchart showing the calibration process procedure, and FIG. FIG. 4 is a block diagram showing a temperature measuring device using an element-based temperature measuring method, and a time chart showing a processing procedure in the measurement mode. In the figure to
, t. is a control section % 11 is a storage section, t2 is a calculation section, 13 is a clock generation section, 14 is a display/output section, 21 is a temperature environment section,
22 is the standard temperature measuring object, 23a-q are the temperature sensing elements% of the object to be calibrated.
23a-q are temperature sensing elements of the practical thermometer, 24 is a switching section, and 25 is a measuring section.
Claims (1)
体との比較を実行して該感温素子の出力または抵抗に伴
う温度指示値に対する校正データを得る感温素子の温度
校正システムにあって、該感温素子の温度校正装置は温
度設定可能の恒温槽による基準温度環境手段、校正基準
とする標準測温体。 該標準測温体ならびに被校正体となる複数の感温素子に
ついてその出力または抵抗を測定する手段、該環境手段
における測定対象の標準測温体または被校正体を選択し
て測定手段に接続する切替手段、上記測定手段による測
定データならびに校正に伴う各算出データを蓄積する記
憶手段、測定データに従って被測定体の特性定数ならび
に該定数t一温度算出式に代入して得る一次補正値と標
準測温体による基準値との補正データを得る演算手段、
測定手段の測定クロックを送出するクロック発生手段お
よび測定手段、記憶手段等における各種データを表示/
出力する手段を具備し5校正装置の制御部は環境手段を
して設定せしめるP(laの校正温度毎に該環境手段内
に設置する標準測温体ならびに被校正体の感温素子を切
替手段により選択して組定手段に接続させ、測定手段を
してクロック発生手段のクロック信号に従い該標準測温
体/被校正体の出力または抵抗値を測定せしめ、その測
定データを演算手段に入力して被測定体の特性定数なら
びに補正データを算出すると共に測定データまたは/お
よび補正データを記憶手段に蓄積せしめて必1!妃より
該測定データまたは/および補正データを表示/出力手
段をして出力せしめることt−特徴とする感温素子の校
正方式。 (2)複数の感温素子を基準は度環境の下に標準測温体
との比1et−笑行して該感温素子の出力または抵抗に
伴う温度抵抗値に対する校正データを得る感温素子の温
度校正手段を備えた温度測定システムにあって、該感温
素子の温度測定装置は温度設定可能の恒温槽における基
準温度環境手段、校正基準とする標準測温体、該標準測
温体ならびに被校正/実用測温体となる複数の感温素子
についてその出力または抵抗を測定する手段、該環境手
段における測定対象の標準測温体または被校正体を、− 選択して測定手段に接続する切替手段、上記測定手段に
よる測定データならびに校正に伴う各算出データを蓄積
する記憶手段、測定データに従って被測定体の特性定数
ならびに該定数全温度算出式に代入して得る一次補正値
と標準測温体による基準値との補正データならびに測定
データに対応する記憶部の補正データにアクセスして補
正済測定データを得る演算手段、測定手段の測定クロッ
ク発生手段および測定手段、記憶手段等における各種デ
ータを表示/出力する手段を具備し、温度測定装置の制
御部は校正モードにおいて、環境手段をして設定せしめ
る2個の校正温度毎忙該環境手段内に設置する標準測温
体ならびに被校正/実用測温体の感温素子を切替手段に
より選択して測定手段に接続させ、測定手段をしてクロ
ック発生手段のクロック信号に従い該標準測温体ならび
に被校正/実用測温体の出力または抵抗値を測定せしめ
。 その測定データを演算手段に入力して被測定体の特性定
数ならびに補正データを算出すると共に測定データまた
は/および補正データを記憶手段に蓄積せしめると共に
、測定モードにおいて測定対象物に移設し次該被校正/
実用測温体の感温素子を切替手段により選択して測定手
段に接続させ、測定手段をしてクロック発生手段のクロ
ック信号に従い被校正/実用側温体の出力または抵抗値
を測定せしめ、その測定データを演算手段に入力する一
方演算手段をして該測定データに対応する記憶手段に蓄
積する補正データにアクセスせしめて該測定データの補
正演算を実行せしめ1表示/出力手段をして演算手段に
よる補正済測定データを出力せしめること1に特徴とす
る感温素子による温度測定方式。[Claims] (1) Calibration data for the temperature indication value associated with the output or resistance of the thermosensor is obtained by comparing the thermosensor with a standard thermometer in a reference temperature environment. In the temperature calibration system for the temperature-sensing element, the temperature-calibration device for the temperature-sensing element includes a reference temperature environment means using a constant temperature chamber whose temperature can be set, and a standard temperature measuring body as a calibration reference.The standard temperature measuring body and the subject to be calibrated. a means for measuring the output or resistance of a plurality of temperature sensing elements serving as a body, a switching means for selecting a standard temperature measuring object or a calibrated object to be measured in the environmental means and connecting it to the measuring means, and measurement by the above measuring means. Storage means for accumulating data and each calculation data associated with calibration, correction of the characteristic constant of the object to be measured according to the measurement data, the primary correction value obtained by substituting the constant t into the temperature calculation formula, and the reference value by the standard temperature measuring object. calculation means for obtaining data;
Displays/displays various data in the clock generation means that sends the measurement clock of the measurement means, the measurement means, the storage means, etc.
The control section of the calibration device is equipped with a means for outputting the standard temperature measuring element installed in the environmental means and a temperature sensing element of the object to be calibrated for each calibration temperature P(la) set by the environmental means. Select and connect to the assembling means, have the measuring means measure the output or resistance value of the standard temperature measuring element/object to be calibrated according to the clock signal of the clock generating means, and input the measured data to the calculating means. It is necessary to calculate the characteristic constants and correction data of the object to be measured and to store the measurement data and/or correction data in a storage means. (2) Calibration method for temperature-sensing elements characterized by: (2) Calibration method for temperature-sensing elements characterized by measuring the output of the temperature-sensing elements or In a temperature measurement system equipped with a temperature calibration means for a temperature sensing element that obtains calibration data for a temperature resistance value associated with a resistance, the temperature measurement device for the temperature sensing element is equipped with a reference temperature environment means in a constant temperature chamber whose temperature can be set, and a temperature measurement system for calibration. A standard temperature measuring device as a reference, a means for measuring the output or resistance of a plurality of temperature sensing elements serving as the standard temperature measuring device and the calibrated/practical temperature measuring device, a standard temperature measuring device to be measured in the environmental means, or A switching means for selecting and connecting the object to be calibrated to the measuring means, a storage means for storing measurement data by the measuring means and various calculated data associated with calibration, and a characteristic constant of the object to be measured and the constant total temperature according to the measurement data. Measurement by calculating means and measuring means to obtain corrected measurement data by accessing the correction data of the primary correction value obtained by substituting it into the calculation formula and the reference value by the standard thermometer, and the correction data in the storage unit corresponding to the measurement data. It is equipped with means for displaying/outputting various data in clock generation means, measurement means, storage means, etc., and in the calibration mode, the control section of the temperature measuring device is configured to set two calibration temperatures using the environment means. The standard temperature measuring element installed in the means and the temperature sensing element of the calibrated/practical temperature measuring element are selected by the switching means and connected to the measuring means, and the measuring means measures the standard temperature according to the clock signal of the clock generating means. Measures the output or resistance value of the object to be measured and the temperature measuring object to be calibrated/practical.The measured data is input to the calculation means to calculate the characteristic constants and correction data of the object to be measured, and the measured data and/or correction data are stored. At the same time, it is transferred to the object to be measured in the measurement mode and the next
The temperature sensing element of the practical thermometer is selected by the switching means and connected to the measuring means, and the measuring means measures the output or resistance value of the temperature body to be calibrated/practical side according to the clock signal of the clock generating means. Inputting the measured data to the calculation means, while causing the calculation means to access the correction data stored in the storage means corresponding to the measurement data to execute a correction calculation for the measurement data; A temperature measurement method using a thermosensor, characterized in that (1) it outputs corrected measurement data according to the method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2537384A JPS60169729A (en) | 1984-02-14 | 1984-02-14 | Calibrating method of temperature sensitive element and temperature measuring method using temperature sensitive element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2537384A JPS60169729A (en) | 1984-02-14 | 1984-02-14 | Calibrating method of temperature sensitive element and temperature measuring method using temperature sensitive element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60169729A true JPS60169729A (en) | 1985-09-03 |
Family
ID=12164033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2537384A Pending JPS60169729A (en) | 1984-02-14 | 1984-02-14 | Calibrating method of temperature sensitive element and temperature measuring method using temperature sensitive element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60169729A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0309664A2 (en) * | 1987-09-28 | 1989-04-05 | Ranco Incorporated Of Delaware | Temperature sensing apparatus and method of making same |
JPH0370001A (en) * | 1989-08-08 | 1991-03-26 | Kubota Corp | Control mechanism for working device |
JPH0655601A (en) * | 1992-08-11 | 1994-03-01 | Nissei Plastics Ind Co | Method and device for correcting temperature for injection molding machine |
JPH10160597A (en) * | 1996-11-28 | 1998-06-19 | Fenwall Controls Of Japan Ltd | Temperature detecting device, and its calibrating device |
JP2010175343A (en) * | 2009-01-28 | 2010-08-12 | Nippon Spindle Mfg Co Ltd | Temperature calibration device |
CN103575414A (en) * | 2013-11-25 | 2014-02-12 | 张金木 | Method for compensating temperature measuring error of thermocouple |
CN103604525A (en) * | 2013-12-09 | 2014-02-26 | 张金木 | Thermal resistor temperature measuring instrument based on verification data |
CN103604523A (en) * | 2013-11-25 | 2014-02-26 | 张金木 | Thermocouple temperature displayer |
CN103630270A (en) * | 2013-12-13 | 2014-03-12 | 张金木 | Thermocouple temperature measuring instrument and debugging device thereof |
-
1984
- 1984-02-14 JP JP2537384A patent/JPS60169729A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0309664A2 (en) * | 1987-09-28 | 1989-04-05 | Ranco Incorporated Of Delaware | Temperature sensing apparatus and method of making same |
JPH0370001A (en) * | 1989-08-08 | 1991-03-26 | Kubota Corp | Control mechanism for working device |
JPH0655601A (en) * | 1992-08-11 | 1994-03-01 | Nissei Plastics Ind Co | Method and device for correcting temperature for injection molding machine |
JPH10160597A (en) * | 1996-11-28 | 1998-06-19 | Fenwall Controls Of Japan Ltd | Temperature detecting device, and its calibrating device |
JP2010175343A (en) * | 2009-01-28 | 2010-08-12 | Nippon Spindle Mfg Co Ltd | Temperature calibration device |
CN103575414A (en) * | 2013-11-25 | 2014-02-12 | 张金木 | Method for compensating temperature measuring error of thermocouple |
CN103604523A (en) * | 2013-11-25 | 2014-02-26 | 张金木 | Thermocouple temperature displayer |
CN103575414B (en) * | 2013-11-25 | 2016-03-30 | 张金木 | A kind of electric thermo-couple temperature measurement Error Compensation method |
CN103604525A (en) * | 2013-12-09 | 2014-02-26 | 张金木 | Thermal resistor temperature measuring instrument based on verification data |
CN103630270A (en) * | 2013-12-13 | 2014-03-12 | 张金木 | Thermocouple temperature measuring instrument and debugging device thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5857777A (en) | Smart temperature sensing device | |
JP4214124B2 (en) | Ear thermometer | |
KR101742188B1 (en) | Thermocouple electromotive force voltage to temperature converter with integrated cold-junction compensation and linearization | |
KR101704222B1 (en) | Method for temperature drift compensation of temperature measurement device using thermocouple | |
JP2001116630A (en) | Calibrated thermostatic device for thermocouple thermometer | |
US7497615B2 (en) | Digital temperature sensor, and system and method for measuring temperature | |
JPS60169729A (en) | Calibrating method of temperature sensitive element and temperature measuring method using temperature sensitive element | |
JP3873528B2 (en) | Radiation thermometer | |
US20090067474A1 (en) | Adjusting method and system thereof for a temperature sensing element | |
JPH0333213B2 (en) | ||
CA1177277A (en) | Electronic thermometer | |
Alsnaie et al. | Study and Design of a Multi-range Programmable Sensor for Temperature Measurement | |
RU2727564C1 (en) | Self-calibrating temperature sensor | |
CN113237561A (en) | Nonlinear correction method for high-precision thermal silicon stack infrared temperature measurement sensor | |
JP2707765B2 (en) | thermometer | |
Engin et al. | Compensation of thermocouple nonlinearities with embedded system | |
RU2647504C1 (en) | Method of dynamic grading of thermometers of resistance | |
SU1023211A1 (en) | Digital thermometer | |
CN116007775A (en) | Food temperature measurement method and device, storage medium and electronic equipment | |
JPS6122764B2 (en) | ||
Hocenski et al. | Comparison of methods for nonlinearity correction of platinum resistance thermometer | |
US20230042321A1 (en) | Thermometer having a diagnostic function | |
CN115077745A (en) | Thermal resistance thermometer calibration method based on thermometer | |
KR100202694B1 (en) | Temperature measuring apparatus | |
JPH0331729A (en) | Infrared video device |