[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60168803A - Long wavelength type floating wave dissipating levee - Google Patents

Long wavelength type floating wave dissipating levee

Info

Publication number
JPS60168803A
JPS60168803A JP59024725A JP2472584A JPS60168803A JP S60168803 A JPS60168803 A JP S60168803A JP 59024725 A JP59024725 A JP 59024725A JP 2472584 A JP2472584 A JP 2472584A JP S60168803 A JPS60168803 A JP S60168803A
Authority
JP
Japan
Prior art keywords
wave
floating
waves
levee
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59024725A
Other languages
Japanese (ja)
Other versions
JPH0410524B2 (en
Inventor
Masanori Kobayashi
正典 小林
Hiroyuki Nakagawa
寛之 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59024725A priority Critical patent/JPS60168803A/en
Publication of JPS60168803A publication Critical patent/JPS60168803A/en
Publication of JPH0410524B2 publication Critical patent/JPH0410524B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • E02B3/062Constructions floating in operational condition, e.g. breakwaters or wave dissipating walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)

Abstract

PURPOSE:To dissipate especially waves having long wavelength, by a method wherein a staged part, serving to dissipate the energy of waves, is formed on the incident wave side of a floating levee, and a vertical surface to the surface of the water is provided on the transmissing wave side. CONSTITUTION:A staged part 3 is formed on the incident wave side of a floating wave disspating levee 1, a vertical surface 5 is formed on the transmissing wave side, and an uneven wave dissipating surface 4 is formed thereon. Thus, a portion in the vicinity of the surface of the water is increased in drainage discharge thanks to the staged part 3. A portion in the vicinity of the surface of the water, where movement of waer particle of incident wave is violentmost, is increased in frictional resistance and is decreased in energy thanks to the wave dissipating surface 4. Additionally, production of waves on the transmitting side is prevented thanks to the vertical surface 5.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は浮力を有し水面に係留されて波を消す浮消波堤
の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the structure of a floating wave bank that has buoyancy and is moored to the water surface to eliminate waves.

〔発明の背景〕[Background of the invention]

従来、港湾等に進入する波を消す等の波浪制御には、重
力式防波施設、即ち通常の防波堤が用いられてきた。し
かし、水深が深い場合や防波堤の内と外の海水交流を阻
害したくない場合には、例えば第1図に示すような浮消
波堤1を設置することが考えられている。特にはまち等
の養殖場2を沖合いに移転拡張する必要が生じた場合に
、(1)波浪による養殖施設の損傷を防止し、(2)波
浪に対する養殖操業の安全性を確保し、(6)新鮮な海
水が供給されな4ことを原因とするはまち岬の摂餌量の
低下を防止する必要がある。浮消波堤はこれらの要求を
満足する有効な施設でおる。
Conventionally, gravity type breakwater facilities, that is, normal breakwaters, have been used for wave control such as extinguishing waves entering ports and harbors. However, when the water depth is deep or when it is desired not to obstruct the exchange of seawater between the inside and outside of the breakwater, it is considered to install a floating breakwater 1 as shown in FIG. 1, for example. In particular, when it becomes necessary to relocate and expand the aquaculture farm 2 offshore, such as in a town, (1) prevent damage to the aquaculture facility due to waves, (2) ensure the safety of aquaculture operations against waves, and (6) It is necessary to prevent the decline in food intake at Cape Hamachi due to the lack of fresh seawater. Floating breakwaters are an effective facility that satisfies these requirements.

〔背景、技術の問題点〕[Background, technical issues]

従来の浮消波堤の消波効果は、浮消波堤の大きさに比べ
小さな波、即ち波長の小さな波に対しては十分なものが
あったが(第2図)、大きな波、即ち長波長の波に対し
ては浮消波堤全体が波の動きに合わせて上下動してしま
い(第3図)、十分なものは得られなかった。
The wave-dissipating effect of conventional floating breakwaters was sufficient for waves smaller than the size of the floating breakwater, that is, waves with small wavelengths (Figure 2), but for large waves, i.e. For waves with long wavelengths, the entire floating wave bank moved up and down with the movement of the waves (Fig. 3), making it impossible to obtain sufficient results.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題点に鑑みてなされたものであシ、よ
υ消波効果の高い浮消波堤、即ちよシ長波長の波を消波
できる長波長型浮消波堤を提供することを目的とする・ 〔発明の概要〕 本発明の長波長型浮消波堤は、まず入射波側において水
面付近の排水量を増大させるための、水面にtlは平行
な段差部分を形成する。段差部分は、棚状のもののみな
らず、とれと上下が逆の庇状のものを含む。これによシ
入射波の水粒子の運動が′最も激しい水面付近において
摩擦抵抗を高め、波のエネルギーを減少させるものであ
る。また、透過波側において水面に対し垂直面を形成す
る。これによシ浮消波堤自体の上下動によって後方に液
を発生させないようにするものである0〔発明の理論〕 一般に浮消波堤の後方に透過する波ζ、はζ、=+Cテ
 + ξ、−cv のように表わされる0即ち、透過する波ζ、は三つの要
素からなる。即ち浮消波堤を完全に固定した場合の透過
波C,に対し、浮消波堤が上下動することによシ浮消波
堤の後方即ち透過波側に発散する鉦ξ、 (radia
tion wave )を加え、粘性の影響即ち非線型
影響CVを引いたものから成る。今、入射波が大きくな
シ、即ち長波長の波になった場合は、ξ、の影響が消波
効果にプラスに影響することはあまシ期待し難い。かえ
って、透過波を大きくしてしまう場合もある。従って、
本発明の長波長型浮消波堤においては透過波側において
は水面に対し垂直面を形成し波を起さないようにするも
のである。次に、Cvの影響を大きくして、消波効果を
高めるようにするために、本発明の長波長型浮消波堤は
入射波側において水面付近の排水量を増大させる段差部
分を形成するものである。一般に、波が生じている場合
の水粒子は各々円運動を行なっているものである。そし
て、水面近くに存在する水の粒子はど大きな円運動を行
なっている。このため、粘性影響Cvを大きくするため
には水面付近において摩擦抵抗を与えるのが得策である
0なお、この粘性影響Cvを大きくするために、前記段
差部分に凹凸状の消波面を形成するとよシ大きな効果が
得られるものと期待される◎〔発明の実施例〕 本発明の一実施例を第4図および第5図において説明す
る。本実施例の長波長型浮消波堤はその幅り、の半分は
どの長さり、にわたって段差部分6が形成されている。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a floating wave bank with a high wave-dissipating effect, that is, a long-wavelength type floating wave bank that can dissipate waves with a long wavelength. [Summary of the Invention] The long-wavelength floating wavebank of the present invention first forms a stepped portion parallel to the water surface in order to increase the amount of drainage near the water surface on the incident wave side. The stepped part includes not only a shelf-like part but also an eave-like part whose top and bottom are reversed. This increases the frictional resistance near the water surface, where the movement of water particles in the incident wave is most intense, and reduces the wave energy. Furthermore, a surface perpendicular to the water surface is formed on the transmitted wave side. This prevents liquid from being generated behind the floating wavebank due to its vertical movement.0 [Theory of the invention] In general, the waves ζ, which pass through the rear of the floating wavebank, are ζ,=+Cte 0, that is, the transmitted wave ζ, expressed as +ξ, -cv consists of three elements. That is, with respect to the transmitted wave C when the floating wave dyke is completely fixed, the angle ξ, (radia
tion wave) and minus the viscous or nonlinear effect CV. Now, if the incident wave becomes a large wave, that is, a wave with a long wavelength, it is difficult to expect that the influence of ξ will have a positive effect on the wave extinction effect. On the contrary, the transmitted wave may become larger. Therefore,
In the long-wavelength type floating wavebank of the present invention, a surface perpendicular to the water surface is formed on the transmitted wave side to prevent waves from being generated. Next, in order to increase the influence of Cv and increase the wave dissipation effect, the long-wavelength type floating wavebank of the present invention forms a stepped portion on the incident wave side that increases the amount of drainage near the water surface. It is. Generally, when waves are generated, each water particle is moving in a circular motion. The water particles near the water surface are moving in a large circular motion. Therefore, in order to increase the viscous influence Cv, it is a good idea to apply frictional resistance near the water surface.In order to increase this viscous influence Cv, it is recommended to form an uneven wave-dissipating surface on the stepped portion. It is expected that great effects will be obtained. ◎ [Embodiment of the Invention] An embodiment of the present invention will be explained with reference to FIGS. 4 and 5. In the long-wavelength type floating wavebank of this embodiment, a step portion 6 is formed over half of its width and its length.

従って、透過波側の深さH。Therefore, the depth H on the transmitted wave side.

に比べ、進入波側の深さH!は浅くなっている。そして
段差部分3及び段差部分の設けられていない部分の各上
面には凹凸状の消波面4が形成されて、いる。また、透
過波側は垂直面5が形成されている。
Compared to , depth H on the incoming wave side! is shallow. An uneven wave-absorbing surface 4 is formed on the upper surface of the stepped portion 3 and the portion where the stepped portion is not provided. Further, a vertical surface 5 is formed on the transmitted wave side.

〔模型による比較実験例〕[Example of comparative experiment using model]

本実施例の模型と従来型浮消波堤模型との比較実験結果
を第6図乃至第10図において説明する。
The results of a comparative experiment between the model of this example and a conventional floating waveform model will be explained with reference to FIGS. 6 to 10.

第6図は模型の係留方法である。模型6はX面に対し2
0’の角度θをもって張られたアンカー7によって係留
される。このアンカー7の途中にはバネ8が設けられ、
模型6は一定の弾力性をもって係留され実物の場合と同
様の係留状態にされている。第7図は従来型の浮消波堤
の模型を示す。
Figure 6 shows the method of mooring the model. Model 6 is 2 for the X plane.
It is moored by an anchor 7 stretched at an angle θ of 0'. A spring 8 is provided in the middle of this anchor 7,
The model 6 is moored with a certain elasticity and is in a moored state similar to that of the real model. Figure 7 shows a model of a conventional floating wave dyke.

第8図は本実施例の模型を示す。第7図および第8図の
各部分の寸法等の主要目を以下の表において表わす。
FIG. 8 shows a model of this embodiment. The main dimensions of each part in FIGS. 7 and 8 are shown in the table below.

表 なお、第9図は第8図の模型に設けられた凹凸状の消波
面4を表わす。凸部の幅B1は5111E、凸部の高さ
h8は2,5111凹部の幅B、は10輯であるO これらの模型によって行なった実験の結果を第10図の
グラフにおいて表わす。このグ:177の横軸は入射波
の周期T、をとる。この周期Twが大きいほど入射波の
波長は長くなシ、大きな波となる。縦軸Wは透過波の波
高HWTを入射波の波高H1工で割った値C!とする。
Note that FIG. 9 shows the uneven wave-absorbing surface 4 provided in the model of FIG. 8. The width B1 of the convex portion is 5111E, the height h8 of the convex portion is 25111, and the width B of the concave portion is 10 degrees.The results of experiments conducted using these models are shown in the graph of FIG. The horizontal axis of this graph 177 takes the period T of the incident wave. The larger the period Tw is, the longer the wavelength of the incident wave becomes, and the larger the wave becomes. The vertical axis W is the value C, which is the wave height HWT of the transmitted wave divided by the wave height H1 of the incident wave! shall be.

このグラフかられかるように、入射波の周期Twが0.
7 (sec )となる付近において有意差があられれ
ておシ、本実施例の浮消波堤が効果のあることを表わし
ている。ここで、模型実験において考慮されるべきフル
ード数Frを考慮すると■ 但しV:波の速度 g::ii力加速度 L:代表寸法 例えば実物の寸法が模型の寸法の100倍になればこの
周期TVの0,7は0,7×J100の値となる。
As can be seen from this graph, the period Tw of the incident wave is 0.
There was a significant difference in the vicinity of 7 (sec), which indicates that the floating wavebank of this example is effective. Here, considering the Froude number Fr that should be taken into account in the model experiment, ■ However, V: Wave velocity g: :ii Force acceleration L: Representative dimension For example, if the dimensions of the actual object are 100 times the dimensions of the model, this period TV 0,7 becomes the value of 0,7×J100.

従って十分に大きな長波長の波にも本実施例の長波長型
浮消波堤は有効であることがわかる。
Therefore, it can be seen that the long-wavelength type floating wavebank of this embodiment is effective even for sufficiently large long-wavelength waves.

〔他の実施例〕[Other Examples]

以上の実施例においては段差部分6は上向きの棚状を有
するものであったが、他の実施例においては下向きの形
状を有する庇状のものであってもよい。なお、第10図
における効果は段差部分6の存在によって主に生ずるも
のと考えられるため、凹凸状の消波面は必ずしも必要で
ないと考える。
In the embodiments described above, the stepped portion 6 has an upwardly facing shelf shape, but in other embodiments, it may have an eave shape having a downwardly facing shape. Note that since the effect shown in FIG. 10 is considered to be mainly caused by the presence of the stepped portion 6, it is considered that the uneven wave-dissipating surface is not necessarily necessary.

〔発明の効果〕〔Effect of the invention〕

本発明の長波長型浮消波堤によれば波長の長い大きな波
に対しても十分な消波効果を有する長波長型浮消波堤を
提供することができる。
According to the long wavelength type floating wave dyke of the present invention, it is possible to provide a long wavelength type floating wave dyke that has a sufficient wave-dissipating effect even for large waves with long wavelengths.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は浮消波堤の実際の使用状態を示す斜視図、第2
図および第6図は従来の浮消波堤を示す横断面図、第4
図および第5図は本発明の一実施例に係る長波長型浮消
波堤を示す横断面図、第6図は模型実験において使用さ
れた係留装置の概略図、第7図は第2図の模型を表わす
横断面図、第8図は第4図の模型を表わす横断面図、第
9図は第8図において形成される消波面の縦断面図、第
10図は実験結果を表わすグラフである。 1・・・浮消波堤、 2°°゛養殖場〜3・・・段差部
分、 4・・・消波面、5・・・垂直面、 6・・・模
型、 7・・・アンカー、 8・・・バネ。 第2図 第5図 97m6図 第10図 7W(sec)
Figure 1 is a perspective view showing the actual usage condition of the floating breakwater, Figure 2
Figures 4 and 6 are cross-sectional views showing conventional floating wave banks.
5 and 5 are cross-sectional views showing a long-wavelength floating wavebank according to an embodiment of the present invention, FIG. 6 is a schematic diagram of the mooring device used in the model experiment, and FIG. FIG. 8 is a cross-sectional view showing the model of FIG. 4, FIG. 9 is a vertical cross-sectional view of the wave-dissipating surface formed in FIG. 8, and FIG. 10 is a graph showing the experimental results. It is. 1... Floating wave bank, 2°°゛ farm~3... Step part, 4... Wave dissipating surface, 5... Vertical surface, 6... Model, 7... Anchor, 8 ···Spring. Figure 2 Figure 5 97m6 Figure 10 Figure 7W (sec)

Claims (1)

【特許請求の範囲】 (11浮力を有し水面に係留されて透過する波を消す浮
消波堤であって、入射波側において波エネルギを散逸さ
せるだめの段差部分を形成し、透過波側において水面に
対し垂直面を形成することを特徴とする長波長型浮消波
堤。 (2、特許請求の範囲第1項において、段差部分に凹凸
状の消波面が形成されている長波長型浮消波堤。
[Claims] (11) A floating wave bank that has buoyancy and is moored on the water surface to extinguish transmitted waves, which forms a stepped portion to dissipate wave energy on the incident wave side and on the transmitted wave side. A long-wavelength type floating wave bank characterized by forming a surface perpendicular to the water surface. Floating wave bank.
JP59024725A 1984-02-13 1984-02-13 Long wavelength type floating wave dissipating levee Granted JPS60168803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59024725A JPS60168803A (en) 1984-02-13 1984-02-13 Long wavelength type floating wave dissipating levee

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024725A JPS60168803A (en) 1984-02-13 1984-02-13 Long wavelength type floating wave dissipating levee

Publications (2)

Publication Number Publication Date
JPS60168803A true JPS60168803A (en) 1985-09-02
JPH0410524B2 JPH0410524B2 (en) 1992-02-25

Family

ID=12146129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024725A Granted JPS60168803A (en) 1984-02-13 1984-02-13 Long wavelength type floating wave dissipating levee

Country Status (1)

Country Link
JP (1) JPS60168803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619316B2 (en) * 2018-10-29 2020-04-14 Jiangsu University Of Science And Technology Multipurpose combined flexible floating breakwater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4717575U (en) * 1971-03-27 1972-10-28
JPS5633324U (en) * 1979-08-20 1981-04-01

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101688A (en) * 1976-02-23 1977-08-25 Toshiba Corp Ozonizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4717575U (en) * 1971-03-27 1972-10-28
JPS5633324U (en) * 1979-08-20 1981-04-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619316B2 (en) * 2018-10-29 2020-04-14 Jiangsu University Of Science And Technology Multipurpose combined flexible floating breakwater

Also Published As

Publication number Publication date
JPH0410524B2 (en) 1992-02-25

Similar Documents

Publication Publication Date Title
WO2022252410A1 (en) Multigrid belt structure-based anti-scour system and method for offshore wind turbine foundation
JPS60168803A (en) Long wavelength type floating wave dissipating levee
US2972233A (en) Wave breaking device
JPS584011A (en) Breakwater dam body
US2184462A (en) Bulkhead, sea wall, and similar structures
KR102144054B1 (en) Easily expandable wave dissipating block with artificial reef function
CN107503321B (en) Plate type mountain-type breakwater
US9151008B1 (en) Wave break device
JPS61211409A (en) Float wave dissipating device
JP2768268B2 (en) Wave-dissipating structure
JPH10266158A (en) Floating wave-absorbing dyke
JPS5996313A (en) Sand protecting and breakwater dam
JPS5935618Y2 (en) Device to prevent floating structures from moving onto land due to tsunamis and storm surges
JPS6221916A (en) Breakwater device
JP3294028B2 (en) Low reflection type floating breakwater
JP2948555B2 (en) Large-scale floating body with wave-damping mechanism
JPS62276114A (en) Wave breaking block
JPS6172118A (en) Floating weir as breakwater
JPH0529212Y2 (en)
Teigen Motion response of a spread moored barge over a sloping bottom
JPS62156411A (en) Floating breakwater
JPS63107604A (en) Breakwater structure
JPS61122317A (en) Long wavelength type floating wave dissipating weir
JPS5935617Y2 (en) Device to prevent floating structures from moving onto land due to tsunamis and storm surges
JPH01125407A (en) Movable plate-type wave-breaking submerged levee