[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6016419A - Plasma cvd processing apparatus - Google Patents

Plasma cvd processing apparatus

Info

Publication number
JPS6016419A
JPS6016419A JP12494483A JP12494483A JPS6016419A JP S6016419 A JPS6016419 A JP S6016419A JP 12494483 A JP12494483 A JP 12494483A JP 12494483 A JP12494483 A JP 12494483A JP S6016419 A JPS6016419 A JP S6016419A
Authority
JP
Japan
Prior art keywords
reservoir
gas
cathode
airtight container
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12494483A
Other languages
Japanese (ja)
Inventor
Tadashi Matsuzawa
松沢 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDK Inc
Original Assignee
Nihon Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi Kogyo KK filed Critical Nihon Denshi Kogyo KK
Priority to JP12494483A priority Critical patent/JPS6016419A/en
Publication of JPS6016419A publication Critical patent/JPS6016419A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a film in the sufficient thickness within a short period of time by putting a material to be processed into a hermetically sealed reservoir and supplying a film forming gas, generating DC plasma between the cathode made of a material to be processed and the anode made of reservoir, providing a hot electron cathode between the reservoir and material at the time of generating the desired film on the surface of material and by applying an intermediate voltage thereto. CONSTITUTION:A multi-stage holder 4 is provided in a cylindrical sealed reservoir 1, many conductive material to be processed 5 are placed thereon, and a ring-shaped gas nozzle 7 is provided to the internal circumference of reservoir 1 while it is kept at the same potential as the reservoir 1. The reservoir 1 is vacuumed by an exhaust pipe 2 connected to a vacuum pump 3 and a raw gas for filming is sent thereto from a gas source 8. Thereafter, the negative terminal of external DC voltage source 6 is connected to the holder, namely to the material 5 and the positive terminal is connected to the reservoir 1 and is grounded. Moreover, a coiled hot electron cathode 15 is provided vertically between the nozzle 7 and material and an intermediate voltage sent from the AC heating power supply 17 through a boosting transformer 16 is applied to said cathode.

Description

【発明の詳細な説明】 本発明は直流グロー放電にまり金属のハロゲン化物や弗
化物をイオン化し、被処理U i31表面に金属若しく
は金属窒化物、炭化物等の被膜を化成りるプラズマCV
D処理装置に関、づる。
Detailed Description of the Invention The present invention is a plasma CV method that ionizes metal halides and fluorides by direct current glow discharge and forms a film of metal, metal nitride, carbide, etc. on the surface of U i31 to be treated.
About D processing equipment.

近時、真空魚石に比し、形成された膜の111貿が非常
に良いことからプラズマ中のイオンの照1=1を利用し
く金属化金物等の成膜を(jなう、所謂プラズマCVD
処理装置(プラズマ中化学気相成長装置)が注目され、
既に実用化の段階に入ろうとしている。
Recently, since the 111% of the film formed is much better than that of vacuum quartz, the 1=1 irradiation of ions in the plasma has been used to form films of metallized metals, etc. CVD
The processing equipment (chemical vapor deposition equipment in plasma) attracted attention,
It is already entering the stage of practical application.

直流グ[:l h’i電を利用JるプラズマCVl))
装置においてはグロー放電のイオンの持つ連動1ネルギ
ーによつC被処理材F31を加熱し、尋人カスである窒
素ガス、水素ガス及び全屈ハUゲン化合物若しく(未化
化物のカスをイオン化させることによって被処理材料表
面に所望化合物の薄膜を生′成するようしているが、金
属分子のイオン化を高めるために平均電子温度をできる
だ【プ高めることが必要である。この平均電子温度Te
は Te = q /k O,3fMm /Me :Ae 
E/Pで現わされる。ここで、qは電子の電荷、kはボ
ルツマン定数、lyjm 、 Meは夫々の気体分子及
び電子の質量、Aeは0℃、1’1’−orrにおける
電子の自由行程、[は電界強度、Pは圧力である。
Direct current plasma CVl)
In the device, the C-treated material F31 is heated by the interlocking energy of the ions of the glow discharge, and the nitrogen gas, hydrogen gas, and the dregs of the total halogen compound or (unformed) are removed. A thin film of the desired compound is generated on the surface of the material to be treated by ionization, but in order to increase the ionization of metal molecules, it is necessary to increase the average electron temperature as much as possible. Temperature Te
is Te = q /k O, 3fMm /Me :Ae
It is expressed as E/P. Here, q is the charge of the electron, k is the Boltzmann constant, lyjm, Me is the mass of each gas molecule and the electron, Ae is the free path of the electron at 0°C and 1'1'-orr, [ is the electric field strength, P is pressure.

上式より、平均電子温度TeはE/Pのパラメータに支
配されているが、[を大きくするには限界があり、従来
よりTeを大ぎくするために圧力Pを小さくJることが
実行されている。
From the above equation, the average electron temperature Te is controlled by the parameter E/P, but there is a limit to increasing [. ing.

しかし、この様にしても直流グロー放電によるイオン化
率は低く、高々数%に過ぎないので薄膜の(=j Wシ
ー1〜は非常に低い。プラズマCVDの場合、導入ガス
聞はイオン化率若しくはプラズマ電力に依存しているた
め、付着レートを増大しまうとしてガス圧を高め、過剰
ガスを導入Jると未反応物が析出し、被膜どしでは形成
困テ)1になる。従って、ガス圧を低くすることは小牧
t<要イ′1であるが、ガスJ1が低いと負グl]−幅
が広<’Jつ、被処理材料コーナ一部の付きまわりが悪
くなると言う不具合が生ずる。
However, even with this method, the ionization rate due to DC glow discharge is low, only a few percent at most, so the ionization rate of the thin film (=j Since it depends on electric power, if the gas pressure is increased and excess gas is introduced because it increases the deposition rate, unreacted substances will precipitate, making it difficult to form a film. Therefore, lowering the gas pressure is necessary for Komaki t<'1, but if the gas J1 is low, the negative gl]-width is wide<'J, and the coverage of some corners of the material to be processed becomes poor. The following problem occurs.

本弁明は上記従来の欠点を解消し、プラズマCVD処理
の被膜付着の迅速化を図り、短時間で均一にして充分な
厚さの被膜層を形成しIB7るプラズマCVD処理装置
を提供することを目的と覆るものである。
The purpose of this defense is to provide a plasma CVD processing apparatus that eliminates the above-mentioned conventional drawbacks, speeds up coating deposition in plasma CVD processing, and forms a uniform coating layer of sufficient thickness in a short time. It covers the purpose.

本発明の構成上の特徴は気密容器ど、該気密容器内を所
望の雰囲気にする手段と、該気密容器内に配設され!、
:被処彼処斜と、該彼処]!I!祠わ1を陰極に気密容
器を陽i私にして高電圧を印加しiij流プラズマを発
生さける直流高圧電源ど、前記被処理H料の表面に生成
°リベき膜の成分を有りるガスを前記気密容器内に尋人
する手段とを1帽!1えIC装置r1“にa3いて、前
記気密容器と被処理月利との間に熱電子陰極を設()、
該熱電子陰極に気密容器と被処理月利との中間のミルを
印加するiia流電源を具備したプラズマCVD装置に
存づる。
The structural features of the present invention include an airtight container, a means for creating a desired atmosphere inside the airtight container, and a device disposed within the airtight container. ,
: Where the subject is, where he is, and where he is! I! A high voltage is applied to the airtight container with the shrine 1 as the cathode, and a direct current high voltage power source is used to avoid generating plasma, and a gas containing the components of the releasable film formed on the surface of the material to be treated is applied. A means to store the person in the airtight container! 1. In the IC device r1, a thermionic cathode is installed between the airtight container and the monthly charge to be processed (),
There exists a plasma CVD apparatus equipped with an IIA power source that applies a voltage to the thermionic cathode that is intermediate between the airtight container and the monthly rate to be processed.

以下図面に閃づさ本発明を詳説する。The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の一実施例の構成略図、第2図は第1図
のA−A断面図であり、1は気密容器を示している。該
気密容器は排気管2を介して真空ポンプ3に接続してお
り、内部が高真空に排気可能である。前記気密容器は第
2図から解るように筒状をなしており、その中心部に電
気導電性の被処理材料ホルダー4が設置されている。こ
のホルダーには多数の被処理材F15が積載されている
FIG. 1 is a schematic diagram of the configuration of an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line AA in FIG. 1, where 1 indicates an airtight container. The airtight container is connected to a vacuum pump 3 via an exhaust pipe 2, and the inside can be evacuated to a high vacuum. As can be seen from FIG. 2, the airtight container has a cylindrical shape, and an electrically conductive material holder 4 is installed in the center thereof. A large number of materials to be processed F15 are loaded on this holder.

前記ホルダー4は電気絶縁物を介して気密容器1に取付
りられており、直流高圧電源6の負端子に接続され°C
いる。該高圧電源の正端子は気密容器1に接続され、ア
ースされている。前記気密容器の内面に接して環状のガ
スノズル7が同電位で設各ノられ、容器外のガス導入源
8より導入されたプラズマCVDに必要なガスが多数の
微細穴より容器の中心に向番プで噴射される。前記ガス
導入源の尺体的構成を第3図に示しである。同図中、9
a。
The holder 4 is attached to the airtight container 1 via an electrical insulator, and is connected to the negative terminal of a DC high voltage power source 6 at °C.
There is. The positive terminal of the high voltage power supply is connected to the airtight container 1 and grounded. Annular gas nozzles 7 are installed at the same potential in contact with the inner surface of the airtight container, and the gas necessary for plasma CVD introduced from the gas introduction source 8 outside the container is directed toward the center of the container through a large number of fine holes. It is sprayed with a tap. The dimensional configuration of the gas introduction source is shown in FIG. 3. In the same figure, 9
a.

9bはカスタンクであり、9aには窒素ガスが、又9b
には水素ガスが1]人しである。、該両刀スタンクから
の配管の途中には流量調整器10a。
9b is a gas tank, 9a is filled with nitrogen gas, and 9b is filled with nitrogen gas.
Hydrogen gas is 1] human. , there is a flow rate regulator 10a in the middle of the piping from the double sword tank.

10bが設りCあり、両ガスの睨合比率を調整できる。10b and C are provided, and the ratio of the two gases to each other can be adjusted.

両調整器を出たガスは混合され流量調整器11を介して
気密容器11\向りで供給される。−ノ)、窒素ガスの
タンク9aからは流量調整器12を介してバブリング容
器13内に窒素ガスが導入され、該容器内の液体合金1
4、例えば王iclが該ガスにより気化され、前記窒素
と水素の混合ガスと混合されて気密容器1内のガスノズ
ル7に尋人される。尚、バブリングの仕Iノは上記に限
定されるものではなく、加熱をv1用しlこり、加熱を
主体にりるようなものでも良い。
The gases exiting both regulators are mixed and supplied to the airtight container 11\ via the flow regulator 11. -) Nitrogen gas is introduced into the bubbling container 13 from the nitrogen gas tank 9a via the flow rate regulator 12, and the liquid alloy 1 in the container is introduced into the bubbling container 13.
4. For example, ICl is vaporized by the gas, mixed with the nitrogen-hydrogen mixture gas, and introduced into the gas nozzle 7 in the airtight container 1. Note that the bubbling method is not limited to the above, and may be one that mainly uses heating, with some heating being used for V1.

15は前記彼処を材料5とガスノズル7との門に配設さ
れた数個の熱電子陰極t′−あり、例えばタングステン
のコイルで形成され(いる。該熱電子陰極は電気絶縁物
を介し゛℃容器外に取出され、着圧トランス16を介し
て交流加熱電源17に接続されている。前記胃圧l〜ラ
ンスの2次側中性jiaは直流電源18の負端子に接続
され、気密容器及びガスノズルに対して負の電位に保持
される。第4図はガスノズル7、熱電子陰極15、彼処
]!I!拐料5のポテンシャルを示してあり、熱電子陰
極は一120Vに、被処理材料5は一520Vに保持さ
れている。
Reference numeral 15 denotes several thermionic cathodes t' arranged at the gate between the material 5 and the gas nozzle 7, which are formed, for example, from tungsten coils. ℃, and is connected to an AC heating power source 17 via a pressure transformer 16.The secondary side neutral jia of the gastric pressure l~lance is connected to the negative terminal of the DC power source 18, and the gastric pressure transformer 16 is connected to an AC heating power source 17. Figure 4 shows the potential of the gas nozzle 7, the thermionic cathode 15, and the !I! Material 5 is held at -520V.

上記構成の装置の動作を次ぎに説明する。The operation of the apparatus having the above configuration will now be described.

気密容器1内のボルダ−4上に被処理材料5を積載し、
該気密容器内を真空ポンプ3により排気覆る。その後、
第3図に示すガス導入源8の各流量調整器10a、10
b、11.12を調整して窒素ガス、水素ガス及び液体
金属のガスの混合比を調整して気密容器1内に導入する
。この様にして容器内を所望の圧力(10,−1〜20
 TOrr)のガス雰囲気に覆る。この状態で直流高圧
電源6により容器1と被処理材料5との間に200V〜
数K Vの電圧を印加し、容器内に直流グロー放電(主
グロー放電)を発生させる。同時に熱電予電1ffil
!:+に電源17より加熱電流を供給して熱電子の発生
が可能な程度の温度に加熱すると共に、直流電源18よ
り電子加速電圧を印加づると該熱電子陰極からの電子は
該陰極J:リプラス電位のカスノズル7に向りて飛翔゛
する(熱電(ヘゲ1」−放電と言う)。前記熱電子陰極
15と気密容器1どの間の電圧は第4図に示すように例
えば120V程度であり、被処理材料5と容器1どの間
の主グ目−放電発生電圧、例えば520Vに比べ充分に
低い電圧となし−(ある。
The material to be treated 5 is loaded on the boulder 4 in the airtight container 1,
The inside of the airtight container is evacuated and covered by a vacuum pump 3. after that,
Each flow rate regulator 10a, 10 of the gas introduction source 8 shown in FIG.
b, 11.12 are adjusted to adjust the mixing ratio of nitrogen gas, hydrogen gas, and liquid metal gas, and the mixture is introduced into the airtight container 1. In this way, the desired pressure (10,-1 to 20
TOrr) gas atmosphere. In this state, the DC high-voltage power supply 6 connects the container 1 and the material to be processed 5 with 200 V~
A voltage of several KV is applied to generate a DC glow discharge (main glow discharge) within the container. At the same time, 1ffil thermoelectric preelectricity
! :+ is supplied with a heating current from the power source 17 to heat it to a temperature that allows the generation of thermionic electrons, and at the same time, an electron accelerating voltage is applied from the DC power source 18, the electrons from the thermionic cathode J: The electrons fly toward the gas nozzle 7 at a re-plus potential (referred to as thermoelectric discharge).The voltage between the thermionic cathode 15 and the airtight container 1 is, for example, about 120 V, as shown in FIG. Yes, the voltage between the material to be treated 5 and the container 1 is sufficiently lower than the discharge generation voltage, for example 520V.

前記主グロー放電により発生しIこイオンは容器1と被
処理材料5どの間の電界にJ、り加速され、該材料に衝
突し該材料を加熱Jる。そし−C1主グロー放電中に発
生した金属イオンは被処理+A判に引き付りられ、その
まま付着又は池のイオンと反応して金属化合物としてイ
」看りる。この様な主グI」−放電にJ、る薄膜何名の
レートは前jホの如く非常に低いねり(゛あるが、本発
明では主グ1」−放電とは別に熱電子陰極15を使用し
た熱陰極グロー放電を光りしているので、前記主グロー
放電にj、るイオンの発生に加えて熱電子陰極とカスノ
ズルとの間で多量のイオンが発生し、該イオンが被処理
材料に引イ」【プられる。前記熱陰極グロー放電は被処
理材料温度に直接関与しないので、あまり制限されるこ
となく放電電力を高めることが可能である。そのため、
主グロー放電のみの場合より気密容器内の金属ガスのイ
オン化が総体的に増大し、その分ガス圧を高めることが
でき、金属イオン数が増大し、薄膜イリ着レートを著し
く増大することができる。
The ions generated by the main glow discharge are accelerated by the electric field between the container 1 and the material to be processed 5, collide with the material, and heat the material. The metal ions generated during the -C1 main glow discharge are attracted to the +A size to be treated and remain attached or react with the ions in the pond, forming a metal compound. The rate of such a thin film in the discharge is very low as mentioned above, but in the present invention, the thermionic cathode 15 is used separately from the main discharge. Since the hot cathode glow discharge used is emitting light, in addition to the ions generated in the main glow discharge, a large amount of ions are generated between the thermionic cathode and the gas nozzle, and these ions are applied to the material to be treated. Since the hot cathode glow discharge does not directly affect the temperature of the material to be treated, it is possible to increase the discharge power without much restriction.Therefore,
The ionization of the metal gas inside the airtight container increases overall compared to the case of main glow discharge only, and the gas pressure can be increased accordingly, the number of metal ions increases, and the thin film iris rate can be significantly increased. .

次に実験例について説明する。Next, an experimental example will be explained.

(11従来の装置による実験例 ガス混合比 N2=30%、 t−h =60%。(11 Experimental examples using conventional equipment Gas mixture ratio N2 = 30%, t-h = 60%.

Tic14=10% 処理温度 600 ℃ 処理ガス圧 I Torr 主グロー電圧 600 V イjMレー1− 120 人/m1n O処理ガス圧をこれ以上高りダると未反応物が析出し、
被膜を形成することができなくなる。
Tic14=10% Processing temperature 600°C Processing gas pressure I Torr Main glow voltage 600 V IjMre 1-120 people/m1n If the O processing gas pressure is increased further, unreacted substances will precipitate.
It becomes impossible to form a film.

【21 本発明装置による実験例 ガス混合比 N2−’−30%、 H2= (i(1%
[21 Experimental example using the device of the present invention Gas mixture ratio N2-'-30%, H2= (i(1%
.

Tic14=10% 処理渇瓜 600 ″C 処理ガス月 4 ”1orr 主グロー電H−520V 熱電子陰極温1α 2200’C 熱陰極グl]−電圧 120 V f」着し−1〜 300 人7 m : ++以上の両
実験例から解るJ、うに、本発明によればガスJ上を高
めることが可能ぐあり、その結果(=J着レートを従来
の約3侶に増大りることができ、金属化合物被膜の迅速
な生成がiiJ能となる。
Tic14=10% Processing temperature 600"C Processing gas month 4"1orr Main glow voltage H-520V Thermionic cathode temperature 1α 2200'C Hot cathode temperature - Voltage 120 V f" Arrival -1~300 people 7 m According to the present invention, it is possible to increase the gas J, and as a result (= J arrival rate can be increased to about 3 times higher than that of the conventional method, The rapid formation of a metal compound film is an advantage of iiJ.

尚、上記は本発明の一実施例であり実用に当っては種々
な変更が可能である。例えば、熱電極(J第1図、第2
図に示′りような48込に限られず、有効な熱陰極グI
」−放電がjiJ能であればどの様なものでも良く、第
5図の様な輪状の11z極を複数個用いても良い。又、
実験例に使用しICカスや金属ガスの種類、各種の値等
はこれに限定されるもの(゛はない。
Note that the above is one embodiment of the present invention, and various changes can be made in practical use. For example, the thermal electrode (J Fig. 1, 2
Not limited to 48 as shown in the figure, effective hot cathode group I
''-Any type of discharge may be used as long as it has a jiJ capacity, and a plurality of ring-shaped 11z poles as shown in FIG. 5 may be used. or,
The types of IC scraps and metal gases used in the experimental examples, various values, etc. are not limited to these.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す溝成略図、第2図は第
1図装置fiのA−A線断面図、第3図は第1図装置の
一部具体例を示1図、第4図は第1図装置の主要部の電
位勾配を示J図、第5図は第1図装置の一部の他の例を
示づ図支゛ある。 1・・・気密容器 3・・・真空ポンプ 4・・・小ルター 5・・・被処理材料 (3・・・直流i!% J、’i電源 7・・・ガスノズル 8・・・ガス導入源 15・・・熱雷了陰極 16・・・昇圧I〜ランス 17・・・+IIJ熱電源 18・・・直流電i≦; − 窮2図 第3図 ′S /夕 んゝ 第4図 第5図
FIG. 1 is a schematic diagram of a groove structure showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A of the device fi in FIG. 1, and FIG. , FIG. 4 shows a potential gradient of the main part of the device shown in FIG. 1, and FIG. 5 shows another example of a part of the device shown in FIG. 1. 1...Airtight container 3...Vacuum pump 4...Small router 5...Material to be treated (3...DC i!% J, 'i Power source 7...Gas nozzle 8...Gas introduction Source 15...Thermal lightning cathode 16...Boost I~Lance 17...+IIJ Thermal power source 18...DC current i≦; figure

Claims (4)

【特許請求の範囲】[Claims] (1)気密容器と、該気密容器内を所望の雰囲気にり゛
る手段と、該気密容器内に配設された被処理材1’!+
と、該被処理材料を陰極に気密容器を陽極にして高電圧
を印加し直流プラズマを発生させる直流高圧電源と、前
記被処理材料の表面に生成ずべぎ膜の成分を有りるガス
を前記気密容器内に導入りる手段とを備えた装置におい
て、前記気密容器と被処理材料との間に熱電子陰極を設
け、該熱電子陰極に気密容器と被処理材料との中間の電
圧を印加Jる直流電源を具備Jることを特徴とづるプラ
ズマCVD装置。
(1) An airtight container, a means for creating a desired atmosphere inside the airtight container, and a material to be treated 1' placed in the airtight container! +
, a DC high-voltage power supply that applies a high voltage to generate DC plasma by using the material to be treated as a cathode and the airtight container as an anode; In the apparatus, a thermionic cathode is provided between the airtight container and the material to be processed, and a voltage intermediate between that of the airtight container and the material to be processed is applied to the thermionic cathode. A plasma CVD apparatus characterized in that it is equipped with a DC power supply.
(2)前記気密容器の内面に沿ってガス噴射ノズルを形
成し、該ノズルと彼処3If!U料どの間に前記熱電子
陰極を段り、該ノズルに向りて熱電子放電を行なう特許
請求の範囲第1項記載のプラズマCVD処理装置。
(2) A gas injection nozzle is formed along the inner surface of the airtight container, and the nozzle and the area 3If! 2. The plasma CVD processing apparatus according to claim 1, wherein the thermionic cathode is arranged between the U material and thermionic discharge is performed toward the nozzle.
(3)前記ノズルは環状であり、所望カスと被膜成分と
を含む混合ガスをnji射りる↑、14 ii’l 請
求の範囲第2項記載のプラズマCV l)処理装嵌。
(3) The nozzle is annular and injects a mixed gas containing desired residue and coating components.
(4)前記熱電子陰極は複数個配置され(いる1セ■許
請求の範囲第1項乃至は第33!1の1iiJれかに記
載のプラズマCVD処理装置。
(4) The plasma CVD processing apparatus according to any one of Claims 1 to 33!1.1iiJ, in which a plurality of thermionic cathodes are arranged.
JP12494483A 1983-07-08 1983-07-08 Plasma cvd processing apparatus Pending JPS6016419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12494483A JPS6016419A (en) 1983-07-08 1983-07-08 Plasma cvd processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12494483A JPS6016419A (en) 1983-07-08 1983-07-08 Plasma cvd processing apparatus

Publications (1)

Publication Number Publication Date
JPS6016419A true JPS6016419A (en) 1985-01-28

Family

ID=14898056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12494483A Pending JPS6016419A (en) 1983-07-08 1983-07-08 Plasma cvd processing apparatus

Country Status (1)

Country Link
JP (1) JPS6016419A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239917A (en) * 1988-03-22 1989-09-25 Semiconductor Energy Lab Co Ltd Plasma treatment
KR100443908B1 (en) * 2001-10-25 2004-08-09 삼성전자주식회사 Plasma enhanced chemical vapor deposition apparatus and method for forming nitride layer usig it
US20070235890A1 (en) * 2006-04-05 2007-10-11 Pryce Lewis Hilton G Coated molds and related methods and components
KR101016573B1 (en) * 2008-08-05 2011-02-22 한국표준과학연구원 Plasma generation apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649521A (en) * 1979-09-28 1981-05-06 Yasutoshi Kajiwara Formation of thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649521A (en) * 1979-09-28 1981-05-06 Yasutoshi Kajiwara Formation of thin film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239917A (en) * 1988-03-22 1989-09-25 Semiconductor Energy Lab Co Ltd Plasma treatment
KR100443908B1 (en) * 2001-10-25 2004-08-09 삼성전자주식회사 Plasma enhanced chemical vapor deposition apparatus and method for forming nitride layer usig it
US20070235890A1 (en) * 2006-04-05 2007-10-11 Pryce Lewis Hilton G Coated molds and related methods and components
US8916001B2 (en) * 2006-04-05 2014-12-23 Gvd Corporation Coated molds and related methods and components
US9211658B2 (en) 2006-04-05 2015-12-15 Gvd Corporation Coated molds and related methods and components
KR101016573B1 (en) * 2008-08-05 2011-02-22 한국표준과학연구원 Plasma generation apparatus

Similar Documents

Publication Publication Date Title
US3961103A (en) Film deposition
US5369336A (en) Plasma generating device
US5330935A (en) Low temperature plasma oxidation process
US3793179A (en) Apparatus for metal evaporation coating
US4894256A (en) Process for glow-discharge-activated reactive deposition of metal from a gas phase
JPH0635323B2 (en) Surface treatment method
JPH0791654B2 (en) Thin film formation method
US6082294A (en) Method and apparatus for depositing diamond film
JPH02281734A (en) Treating method of surface by plasma
JPS6016419A (en) Plasma cvd processing apparatus
US5952061A (en) Fabrication and method of producing silicon films
JP3989507B2 (en) Gas atom inclusion fullerene production apparatus and method, and gas atom inclusion fullerene
JPS61194180A (en) Hollow electric discharge vapor deposition device
JPS6293834A (en) Ion source
JPS5947728A (en) Method and apparatus for plasma coating
JP2641956B2 (en) Ozone generator, ozone generation method, and semiconductor manufacturing apparatus
JPH03260073A (en) Formation of thin film
JPS61136678A (en) Formation of high-hardness carbon film
JPS6141764A (en) Method and apparatus for vapor deposition under vacuum arc reaction
RU2797472C1 (en) Low-pressure plasma-chemical reactor providing high-density plasma for carrying out an etching and deposition process
JP3007579B2 (en) Manufacturing method of silicon thin film
JPH1022279A (en) Inductive coupled plasma cvd device
JPS5957423A (en) Formation of metal conductor layer
JPS62159419A (en) Apparatus for forming amorphous semiconductor thin film
JP2017141159A (en) Ozone generating apparatus and ozone generation method