[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS601536A - Combusion-pressure detecting method for internal combustion engine - Google Patents

Combusion-pressure detecting method for internal combustion engine

Info

Publication number
JPS601536A
JPS601536A JP58109919A JP10991983A JPS601536A JP S601536 A JPS601536 A JP S601536A JP 58109919 A JP58109919 A JP 58109919A JP 10991983 A JP10991983 A JP 10991983A JP S601536 A JPS601536 A JP S601536A
Authority
JP
Japan
Prior art keywords
data
pressure
sensor
temperature
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58109919A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takimoto
滝本 敏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58109919A priority Critical patent/JPS601536A/en
Publication of JPS601536A publication Critical patent/JPS601536A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • G01L9/085Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor with temperature compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
    • G01L23/221Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
    • G01L23/225Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines circuit arrangements therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Testing Of Engines (AREA)

Abstract

PURPOSE:To detect pressure accurately, by correcting combustion pressure data by a correcting coefficient corresponding to the temperature data detected by a temperature sensor provided in a pressure sensor. CONSTITUTION:Combustion pressure data detected by a pressure sensor 4 and temperature data detected by a temperature sensor 6 provided in the sensor 4 are inputted in a processing device. A correcting coefficient corresponding to the temperature data detected by the sensor 6 is retrieved from tables wherein piezoelectric-element temperatures and correcting coefficients are written in advance in a memory device 11. The combustion pressure data of the sensor 4 is corrected by the correcting coefficient.

Description

【発明の詳細な説明】 [技術分野1 本発明は、圧電素子を使用した圧力センザを用いC内燃
機関の燃焼圧力を検出づる燃焼圧力検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field 1] The present invention relates to a combustion pressure detection method for detecting the combustion pressure of a C internal combustion engine using a pressure sensor using a piezoelectric element.

[従来技術] 電子制御式の燃料噴射制御や点火時期制御等を行なう内
燃機関において、燃料噴剣笛や最適点火時期等の演算の
ために機関データとして燃焼圧力が検出される場合があ
る。燃焼室内の圧力である燃焼圧力は圧電素子を使用し
た圧力レンリを内燃機関の燃焼室の壁部に取付けること
により検出されるが、圧電素子の圧電定数、すなわち圧
ffi素子に発生する電気的偏極(出力電圧)と加えら
れた歪み力(圧力)との比は素子の温度により人さく変
化づ−る性質があるにも係らず、従来、検出された燃焼
圧力データの湿度補正が行なわれていな6s。
[Prior Art] In an internal combustion engine that performs electronically controlled fuel injection control, ignition timing control, etc., combustion pressure may be detected as engine data for calculating a fuel injection whistle, optimum ignition timing, etc. Combustion pressure, which is the pressure inside the combustion chamber, is detected by attaching a pressure relief using a piezoelectric element to the wall of the combustion chamber of an internal combustion engine. Conventionally, humidity correction has not been performed on detected combustion pressure data, although the ratio between the output voltage and the applied strain force (pressure) varies considerably depending on the temperature of the element. Tena 6s.

したがって、冷間始動時以後、運転状態に応じて圧力セ
ンサの圧電素子湿度が変化し、その圧電定数が変化覆る
ため正確な燃焼圧力が検出できないと言う問題があった
Therefore, after a cold start, the humidity of the piezoelectric element of the pressure sensor changes depending on the operating state, and the piezoelectric constant changes, making it impossible to accurately detect combustion pressure.

[発明の目的] そこで、本発明は上記の点に着目し、圧電素子を使用し
た圧力センサとその検出データを演算処理する処理装置
を用いて内燃機関の燃焼圧力を正確に検出し得る内燃機
関の燃焼圧力検出方法を提供づることを目的とづる。
[Object of the Invention] Therefore, the present invention focuses on the above points, and provides an internal combustion engine that can accurately detect the combustion pressure of the internal combustion engine using a pressure sensor using a piezoelectric element and a processing device that performs arithmetic processing on the detected data. The purpose of this paper is to provide a combustion pressure detection method.

[発明の構成] かかる目的を達成するための本発明の構成は、第1図の
70−チ17−トに示J如く、圧電素子を使用した圧力
センサとその検出データを演紳処理する処理装置を用い
て内燃機関の燃焼圧力を検出Jる方法であって、 (P+、Pz)圧力センサによって検出された燃焼圧力
データと圧力レンザ内に設けた湿度レノ1ノからの検出
温度データを処理装置内に取り込み(P3)記憶装置に
予め書き込んだ圧電素子温度と補正係数のテーブルから
温度データに対応した補正係数を検索し、 (P a )当該補正係数によって前記燃焼圧力データ
を補正でることを特徴とづる内燃機関の燃焼圧力検出方
法 を要旨としている。
[Configuration of the Invention] The configuration of the present invention to achieve the above object is as shown in chart 70-17-J of FIG. A method of detecting combustion pressure of an internal combustion engine using a device, the method processing combustion pressure data detected by a (P+, Pz) pressure sensor and detected temperature data from a humidity sensor installed in a pressure sensor. Load into the device (P3) Search for a correction coefficient corresponding to the temperature data from a table of piezoelectric element temperatures and correction coefficients written in advance in the storage device, and (P a ) confirm that the combustion pressure data can be corrected by the correction coefficient. The gist of this book is the combustion pressure detection method for internal combustion engines, which is characterized by its characteristics.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

第2図は火花点火式内燃機関の主要部断面を示し、気筒
1の燃焼室2を包囲する。シリンダヘッド3には、圧電
素子を使用した圧力センザ4が燃焼圧力検出可能に取付
けられている。圧力センサ゛4は、その先端に受圧板を
備え、受圧板で受けた圧力が伝達される位置に正電極板
と負電極板で分離された圧電素子5を設けて構成され、
圧電素子5は受圧板から伝達される圧ツノを受けて分極
し、電ローを誘起する。圧電素子5には、例えばジルー
]ン醸チタン塩(P Z T )が使用され、その圧電
定数変化率は第3図に承りように素子湿度に応じて変化
づる性質をもつ。したがって、圧電素子5を使用したj
Jカセンサ4の検出データはその素子温度に応じて補正
する必要がある。6は圧力しンザ4に内蔵された圧電素
子溝1度検出用の温度センサで、例えばザーミスタにに
り構成され、素子1In1度に応じたアナログ電圧を出
力Jる。7はシリンダヘッド3に取付けられた点火プラ
グ、8は排気弁である。
FIG. 2 shows a cross section of a main part of a spark-ignition internal combustion engine, which surrounds a combustion chamber 2 of a cylinder 1. A pressure sensor 4 using a piezoelectric element is attached to the cylinder head 3 so as to be able to detect combustion pressure. The pressure sensor 4 includes a pressure receiving plate at its tip, and a piezoelectric element 5 separated by a positive electrode plate and a negative electrode plate at a position where the pressure received by the pressure receiving plate is transmitted.
The piezoelectric element 5 receives the pressure horn transmitted from the pressure receiving plate, polarizes it, and induces an electric low. The piezoelectric element 5 is made of, for example, Jirun-bred titanium salt (PZT), and its rate of change in piezoelectric constant varies depending on the humidity of the element, as shown in FIG. Therefore, j using the piezoelectric element 5
The detection data of the J sensor 4 needs to be corrected according to the element temperature. Reference numeral 6 denotes a temperature sensor for detecting the temperature of the piezoelectric element groove 1 degree built into the pressure sensor 4, which is constituted by, for example, a thermistor, and outputs an analog voltage corresponding to 1 degree of the element 1In. 7 is a spark plug attached to the cylinder head 3, and 8 is an exhaust valve.

第4図は電子制御式エンジン制御装置のブロック図を示
し、この制御I装置におけるマイクロコンビコータ部分
は燃焼圧力を検出する際、圧ノコデータの補正処理を行
なう処11装置となる。
FIG. 4 shows a block diagram of an electronically controlled engine control device, and the micro combicoater portion in this control I device is a device 11 that performs correction processing of pressure saw data when detecting combustion pressure.

10は予め決められたプログラムに従い、検出した機関
データに基づいて燃ゎ1噴則制罪や、点火時期制御等を
行なうcPUで、圧力センサ4により検出した燃焼圧力
の補正処理も実行りる。11は制御プログラムや演惇に
必要な各梯定数やテーブルデータを格納Jる読出し専用
メモリのROMで、第5図に示すように、圧ノ]1ンサ
4の素子温度に対応した補正係数がテーブル式に格納さ
れる。
Reference numeral 10 denotes a cPU that performs fuel injection control, ignition timing control, etc. based on detected engine data according to a predetermined program, and also performs correction processing for the combustion pressure detected by the pressure sensor 4. Reference numeral 11 denotes a ROM, which is a read-only memory that stores the control program and ladder constants and table data necessary for the performance.As shown in Fig. 5, the correction coefficient corresponding to the element temperature of the pressure sensor 4 is Stored in a table format.

12はデ〜りの読み出し読み込みが自在な一時メモリの
RAMで、エンジンキースイッチをAノした後もr(A
M12内に必要なデータを残しておくために、常時バッ
テリーから直接、電源供給を受ける不揮発生メモリとす
ることもできる。13はアナログ信号を出力する各セン
サがらの検出信号を順次大ノノツる入出カポ−1へで、
アナログのマルチプレフタ14とA/D変換器15が接
続される。
12 is a temporary memory RAM that can be read and read freely, and even after the engine key switch is turned to A,
In order to retain necessary data in the M12, it can also be a non-volatile memory that is constantly supplied with power directly from a battery. 13 is an input/output capo-1 which sequentially outputs the detection signals from each sensor outputting an analog signal;
An analog multiplexer 14 and an A/D converter 15 are connected.

マルチプレクサ14には圧力センサ4、温度センサ6、
エアフロメータ16、水温セン1)17が接続され、入
出力ポート13がら送られる読み込み許可信号により、
圧力センυ4や温度センリー6等から送られるアナログ
検出信号がマルチプレクサ14によって選1尺入力され
、A/D変換器15に送られてデジタル信号に変換され
、入出力ポート13から入カヂVンネル番号を付されて
順次CPU10に読み込まれる。18はデジタル信号用
の入ツノボートで、回転数センサ′19等が接続され、
20は出ツノボートで、機関データがら界出した最適燃
料噴則量や点火時期に応じた制御駆動信号がここから燃
料噴射弁21、イグナイタ22等へ出力される。
The multiplexer 14 includes a pressure sensor 4, a temperature sensor 6,
The air flow meter 16 and water temperature sensor 1) 17 are connected, and the reading permission signal sent from the input/output port 13 allows
Analog detection signals sent from pressure sensor υ4, temperature sensor 6, etc. are selectively inputted by multiplexer 14, sent to A/D converter 15, converted to digital signals, and output from input/output port 13 to the input card V channel number. are attached and sequentially read into the CPU 10. 18 is a horn boat for digital signals, to which rotation speed sensor '19 etc. is connected.
Reference numeral 20 denotes an output boat from which a control drive signal corresponding to the optimum fuel injection amount and ignition timing determined from the engine data is outputted to the fuel injection valve 21, igniter 22, etc.

第6図は、圧力センサ4がら送られた燃焼圧力データを
上記処理装置により補正する処理ルーチンのフローヂャ
ートを示し、これに基づいて燃焼圧力の検出方法を説明
する。この処理ルーチンに入ると、先ず、ステップ10
1を実行し、入出力ポート13がらの信号によりマルチ
プレクサ14の各アナログ信号入力をひとつ選択し、各
センυ群から送られ1=アナログ検出信号のひとつがA
/D変換器15に入力され、デジタル信号に変換される
。次に、ステップ102にて、各検出信号毎に付りられ
る入力チャンネル番号とその検出データが入出カポ−]
−13からCPUl0に読み込まれ、ステップ103に
進み、上記で読み込んだ検出データが温度レノ1ノロか
らの圧電素子温度を示すデータか否かをその入力チャン
ネルM号から判定Jる。ここでステップ102にて読み
込んだ検出データが圧力セン1ノー4の圧電素子5の温
度データであれば、次にステップ104を実行し、RO
M11に格納された第5図に示すデータテーブルから、
圧電素子の温度に対応した補正係数をめ、そして、ステ
ップ105でこの補正係数をRA M12に格納した後
、再びステップ101へ復帰する。
FIG. 6 shows a flowchart of a processing routine for correcting combustion pressure data sent from the pressure sensor 4 by the processing device, and a method for detecting combustion pressure will be explained based on this. When entering this processing routine, first, step 10
1 is executed, one of each analog signal input of the multiplexer 14 is selected by the signal from the input/output port 13, and one of the analog detection signals sent from each sensor υ group is A.
The signal is input to the /D converter 15 and converted into a digital signal. Next, in step 102, the input channel number assigned to each detection signal and its detection data are input and output.
-13 is read into the CPU10, and the process proceeds to step 103, where it is determined from the input channel number M whether the detected data read above is data indicating the piezoelectric element temperature from the temperature record 1 or not. Here, if the detection data read in step 102 is the temperature data of the piezoelectric element 5 of pressure sensor 1 no 4, then step 104 is executed and the RO
From the data table shown in FIG. 5 stored in M11,
After determining a correction coefficient corresponding to the temperature of the piezoelectric element and storing this correction coefficient in the RAM 12 in step 105, the process returns to step 101.

一方、ステップ103で、ステップ102にて読み込ん
だ検出データが圧電素子温度でないと判定した時、次に
、ステップ106に進み、この検出データが圧力センリ
−4から送られた燃焼圧力データであるか否かをその入
力チャンネル番号から判定づる。ここで、読み込/υだ
検出データが燃焼圧力でもない時、つまりエアフロメー
タ16から検出された吸気量データや水湿ヒン”j−1
7から検出された水温データである場合には、次にステ
ップ109へ進み、この検出データをRAM12へその
まま格納する。しかし、読み込んだデータが燃焼圧力で
ある時、次に、ステップ107を実行し、この燃焼圧力
データに、」−記ステップ104.105で算出しRA
M12に格納していた補正係数を乗じ、燃焼圧力データ
を圧電素子温度に応じて補正する。そして、ステップ1
08にて補正後の燃焼圧力データをRAM12に格納し
、この回の処理ルーチンを終了する。以後、ステップ1
01に復帰して同様な処理が繰り返し実行され、その回
毎に補正された正確な燃焼圧力データがRAM’12に
格納され、別のルーチンで実行される燃料噴!l)J 
m制御や点火時期制御ルーチンにおいて、この正確な燃
焼圧力データがエンジン回転数データやスロットル開度
データ等と共にエンジン状態を示1機関データのひとつ
として使用され、適正な燃料噴剣邑制御や点火時期制御
が行なわれる。
On the other hand, when it is determined in step 103 that the detection data read in step 102 is not the piezoelectric element temperature, the process proceeds to step 106 and checks whether this detection data is the combustion pressure data sent from the pressure sensor 4. Whether or not it is determined is determined from the input channel number. Here, when the read/υ detected data is not the combustion pressure, that is, the intake air amount data detected from the air flow meter 16 or the water humidity
If it is the water temperature data detected from step 7, then the process advances to step 109, and this detected data is stored in the RAM 12 as it is. However, when the read data is combustion pressure, step 107 is executed next, and this combustion pressure data is calculated in steps 104 and 105.
M12 is multiplied by the stored correction coefficient to correct the combustion pressure data according to the piezoelectric element temperature. And step 1
At step 08, the corrected combustion pressure data is stored in the RAM 12, and this processing routine ends. After that, step 1
01, the same process is repeated, and accurate combustion pressure data corrected each time is stored in the RAM'12, and the fuel injection is executed in another routine! l)J
In m control and ignition timing control routines, this accurate combustion pressure data is used as one of the engine data to indicate the engine status, along with engine speed data, throttle opening data, etc., and is used to determine appropriate fuel injection control and ignition timing. Control takes place.

なお、上記実施例は火花点火式内燃機関に適用したが、
圧縮点火式内燃(欠間に使用される燃焼圧力データから
検出される圧力データの補正処理にも適用できる。
Note that although the above embodiment was applied to a spark ignition internal combustion engine,
It can also be applied to correction processing of pressure data detected from compression ignition internal combustion (combustion pressure data used intermittently).

[発明の効果] 以上、説明したにうに、本発明の燃焼圧力検出方法にお
いては、圧電素子の圧力センサーによって検出した燃焼
圧力データと共に、圧力レンサ内に設けた温度センサか
らの検出温度データを処理装置内に取り込み、記憶し置
に予め出き込んだ圧電素子温度と補正係数のテーブルか
ら検出温度データに対応した補正係数を検索し、この補
正係数により燃焼圧力データを補正するJ:うにしてい
る。
[Effects of the Invention] As explained above, in the combustion pressure detection method of the present invention, the combustion pressure data detected by the pressure sensor of the piezoelectric element as well as the detected temperature data from the temperature sensor provided in the pressure sensor are processed. A correction coefficient corresponding to the detected temperature data is retrieved from a table of piezoelectric element temperatures and correction coefficients that has been imported into the device and stored in advance, and the combustion pressure data is corrected using this correction coefficient. There is.

この為、本発明によれば圧力センυの素子温度変動によ
る圧電定数の変化を補正することができ、エンジン状態
に応じて圧力セン勺の温度が変化しても常に正確な燃焼
圧力を得ることができ、燃焼圧力を機関データのひとつ
として使用づ°る燃料囁(Fl m tli’J 11
1 ’d)、点火R期flNI Ill’ * ト(7
)l’iL1度ヲ向上サセるこすができる。
Therefore, according to the present invention, it is possible to correct changes in the piezoelectric constant due to element temperature fluctuations of the pressure sensor υ, and it is possible to always obtain accurate combustion pressure even if the temperature of the pressure sensor υ changes depending on the engine condition. is possible, and the combustion pressure is used as one of the engine data.
1'd), ignition R period flNI Ill'*t(7
) It is possible to improve l'iL by 1 degree.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を表ねりフローチト一ト、第2図
ないし第6図は本発明の実施例を表わし、第2図は内燃
機関の主要部断面図、第3図は第2図にお【ノる圧電索
子5の圧電素子温度に対重る圧電定数変化率を表わす線
図、第4図は制御処理装置のブロック図、第5図は第4
図におりるROM11に格納されたテーブルデータを表
わす説明図、第6図は補正演算処理ルーチンを表わ勺フ
[1−ヂャートである。 4・・・圧力センサ 5・・・圧電素子 6・・・温度センサ 10・・・CPU 11・・・ROM 12・・・RAM 13・・・入出カポ−1− 14・・・マルチプレクザ 15・・・A/D変換器 代理人 弁理士 定立 勉 他1名 第1図
FIG. 1 shows the configuration of the present invention, and FIGS. 2 to 6 show embodiments of the invention, FIG. 2 is a sectional view of the main parts of the internal combustion engine, and FIG. Figure 4 is a block diagram of the control processing device;
FIG. 6 is an explanatory diagram showing table data stored in the ROM 11, and FIG. 6 shows a correction calculation processing routine. 4... Pressure sensor 5... Piezoelectric element 6... Temperature sensor 10... CPU 11... ROM 12... RAM 13... Input/output capo-1- 14... Multiplexer 15...・A/D converter agent: Patent attorney Tsutomu Setatetsu and 1 other person Figure 1

Claims (1)

【特許請求の範囲】 り型素子を使用し1=圧力センザとその検出データを演
算処理する処理装置を用いて内燃機関の燃焼圧力を検出
づる方法であって、前記圧力セン→ノーによって検出さ
れた燃焼圧力データと該圧力セン4ノ内に設【プた温度
セン→ノーからの検出温度データを前記処理装置内に取
り込み、記憶装嵌に予めmぎ込lυだ圧電素子温度と補
正係数のテーブルから検出温度データに対応した補正係
数を検索し、当該補正係数ににって前記燃焼圧力データ
を補正することを特徴とする内燃機関の燃焼圧力検出方
法。
[Claims] A method for detecting the combustion pressure of an internal combustion engine using a pressure sensor and a processing device that performs arithmetic processing on the detected data using a pressure sensor, wherein the pressure sensor is detected by the pressure sensor→No. The combustion pressure data set in the pressure sensor 4 and the detected temperature data from the temperature sensor set in the pressure sensor 4 are taken into the processing device, and the piezoelectric element temperature and correction coefficient are stored in the memory device in advance. A combustion pressure detection method for an internal combustion engine, characterized in that a correction coefficient corresponding to detected temperature data is retrieved from a table, and the combustion pressure data is corrected based on the correction coefficient.
JP58109919A 1983-06-17 1983-06-17 Combusion-pressure detecting method for internal combustion engine Pending JPS601536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58109919A JPS601536A (en) 1983-06-17 1983-06-17 Combusion-pressure detecting method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58109919A JPS601536A (en) 1983-06-17 1983-06-17 Combusion-pressure detecting method for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS601536A true JPS601536A (en) 1985-01-07

Family

ID=14522452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58109919A Pending JPS601536A (en) 1983-06-17 1983-06-17 Combusion-pressure detecting method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS601536A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218813A (en) * 1986-03-20 1987-09-26 Hokoku Kikai Kk Pressure detector
JPS63171335A (en) * 1987-01-09 1988-07-15 Daiwa Shinku Kogyosho:Kk Temperature compensating system for piezoelectric type pressure gage
JPH03123865A (en) * 1989-10-09 1991-05-27 Matsushita Electric Ind Co Ltd Detector for angular velocity
JPH03194469A (en) * 1989-12-22 1991-08-26 Matsushita Electric Ind Co Ltd On-vehicle angular speed detecting device
FR2933137A1 (en) * 2008-06-30 2010-01-01 Renault Sas SYSTEM AND METHOD FOR CORRECTING THE MEASUREMENT OF A TURBINE FRONT PRESSURE SENSOR
JP2010243272A (en) * 2009-04-03 2010-10-28 Denso Corp Pressure detection device and fuel injection system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790107A (en) * 1980-11-26 1982-06-04 Toyoda Mach Works Ltd Method for compensating temperature in semiconductor converter
JPS585628A (en) * 1981-07-02 1983-01-13 Nissan Motor Co Ltd Device for measuring stability of internal combustin engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790107A (en) * 1980-11-26 1982-06-04 Toyoda Mach Works Ltd Method for compensating temperature in semiconductor converter
JPS585628A (en) * 1981-07-02 1983-01-13 Nissan Motor Co Ltd Device for measuring stability of internal combustin engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218813A (en) * 1986-03-20 1987-09-26 Hokoku Kikai Kk Pressure detector
JPS63171335A (en) * 1987-01-09 1988-07-15 Daiwa Shinku Kogyosho:Kk Temperature compensating system for piezoelectric type pressure gage
JPH03123865A (en) * 1989-10-09 1991-05-27 Matsushita Electric Ind Co Ltd Detector for angular velocity
JPH03194469A (en) * 1989-12-22 1991-08-26 Matsushita Electric Ind Co Ltd On-vehicle angular speed detecting device
FR2933137A1 (en) * 2008-06-30 2010-01-01 Renault Sas SYSTEM AND METHOD FOR CORRECTING THE MEASUREMENT OF A TURBINE FRONT PRESSURE SENSOR
WO2010004152A1 (en) * 2008-06-30 2010-01-14 Renault S.A.S. System and method for correcting the measurement of a pre-turbine pressure sensor
JP2010243272A (en) * 2009-04-03 2010-10-28 Denso Corp Pressure detection device and fuel injection system

Similar Documents

Publication Publication Date Title
JPS6347893B2 (en)
US4385606A (en) Ignition timing regulating device for internal combustion engine
US4633838A (en) Method and system for controlling internal-combustion engine
JPS601536A (en) Combusion-pressure detecting method for internal combustion engine
JPS6214704B2 (en)
US4655179A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
JP2765126B2 (en) Fuel injection amount control device
JPH0335506B2 (en)
JPS61237884A (en) Knocking controller for internal-combustion engine
JPH0312217B2 (en)
JPS6176732A (en) Electronic fuel supply amount signal forming apparatus
JP4401635B2 (en) Control device for internal combustion engine
JPH0320597B2 (en)
JPH0312655B2 (en)
JPH0756239B2 (en) Basic control variable setting method for internal combustion engine
JPH0459464B2 (en)
JPH05141334A (en) Knocking control device for internal combustion engine
KR0174017B1 (en) Altitude decision apparatus and method equipped with air flow sensor of internal combustion engine
JP4243383B2 (en) Fuel evaporation characteristic detection device and control device for internal combustion engine
JPS55148926A (en) Controller for internal combustion engine
JPH0524342B2 (en)
JP2567017B2 (en) Measuring method of intake pipe pressure of internal combustion engine
JPS58144635A (en) Method for electronically controlling fuel injection in internal-combustion engine
GB1597776A (en) Apparatus for determining the fuel injection quantity in internal combustion engines having separate ignition
JPH0327745B2 (en)