[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60154671A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60154671A
JPS60154671A JP1006584A JP1006584A JPS60154671A JP S60154671 A JPS60154671 A JP S60154671A JP 1006584 A JP1006584 A JP 1006584A JP 1006584 A JP1006584 A JP 1006584A JP S60154671 A JPS60154671 A JP S60154671A
Authority
JP
Japan
Prior art keywords
silicon
region
oxide film
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1006584A
Other languages
Japanese (ja)
Other versions
JPH0560266B2 (en
Inventor
Kazuo Nakazato
和郎 中里
Toru Nakamura
徹 中村
Masataka Kato
正高 加藤
Takao Miyazaki
隆雄 宮崎
Takahiro Okabe
岡部 隆博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1006584A priority Critical patent/JPS60154671A/en
Publication of JPS60154671A publication Critical patent/JPS60154671A/en
Publication of JPH0560266B2 publication Critical patent/JPH0560266B2/ja
Granted legal-status Critical Current

Links

Classifications

    • H01L29/7827

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To integrate MOSFETs having short gate length and large gate width in high density by forming a current flowing passage between the source and the drain of the MOSFET on the side substantially perpendicular to the surface of a substrate. CONSTITUTION:An n type epitaxial layer 210 is grown on the entire substrate, a silicon oxide film 41, a silicon nitride film 42 and a silicon oxide film 43 are accumulated, patterned and selectively etched. Then, with the films 41-43 as masks the layer 210 is etched selectively substantially perpendicularly. Thereafter, a silicon oxide film 25 is formed by thermally oxidizing on the entire surface. Subsequently, a silicon nitride film is accumulated on the entire surface, and the silicon nitride film 44 remains only on the side of a projection by dry etching. Thereafter, with the film 44 as a mask a silicon oxide film 27 is formed by thermally oxidizing. After the film 44 is then removed, a polycrystalline silicon 24 is accumulated on the overall surface. Then, a polycrystalline silicon on the silicon single crystal projection is removed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体装置の製造及び構造に係り、特に、非
常に高速で且つ非常に低電力の性能を有する非常に小さ
な集積回路に好適な絶縁グー1〜形電界トランジスタ(
MO3FIET)に関する、〔発明の背景〕 第1図は従来のMOSFETの構造断面図を示したもの
である。従来のnチャンネルMO5FETはp形基板1
1内に、ソースおよびドレイン11形拡散領域12.1
3を形成し、ゲート酸化膜15上にゲート電極14を有
する構造をしている。なお、1Gは選択的に形成された
素子分離用シリコン酸化膜である。第1図に示した従来
のMOSFETは、ソース・ドレイン間の電流導電路が
基板に水平な表面に設けられているため、次のような欠
点があった。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the manufacture and construction of semiconductor devices, and in particular to the field of isolation suitable for very small integrated circuits with very high speed and very low power performance. Goo 1 ~ Type electric field transistor (
[Background of the Invention] FIG. 1 shows a cross-sectional view of the structure of a conventional MOSFET. The conventional n-channel MO5FET has a p-type substrate 1
1, source and drain 11 type diffusion regions 12.1
3 is formed, and has a structure in which a gate electrode 14 is formed on a gate oxide film 15. Note that 1G is a selectively formed silicon oxide film for element isolation. The conventional MOSFET shown in FIG. 1 has the following drawbacks because the current conduction path between the source and drain is provided on a surface horizontal to the substrate.

(1)ソースおよびドレイン電極は、ソースおよびドレ
イン拡散領域12.13よりも小さな穴(コンタクト・
ホール)より取り出さなければならない。そのため、ソ
ース・ドレイン拡散領域は、少なくともコンタク1〜・
ホールよりも大きくなり、この拡散領域と基板1】との
間の寄生容量を無視することはできない。この寄生容量
の充放電時間は素子のスイッチング動作を遅くする。
(1) The source and drain electrodes have holes (contact holes) smaller than the source and drain diffusion regions 12.13.
hole). Therefore, the source/drain diffusion region has at least contacts 1 to 1.
The parasitic capacitance between this diffusion region and the substrate 1 cannot be ignored. The charging and discharging time of this parasitic capacitance slows down the switching operation of the device.

(2)素子の動作速度を決めるゲート容量および電子走
行時間はゲート長に比例する。従って、高速動作にはゲ
ート長を短くする必要がある。ゲート長はリングラフィ
により決めらJしているため、これを短くすることは困
難である。
(2) The gate capacitance and electron transit time, which determine the operating speed of the device, are proportional to the gate length. Therefore, it is necessary to shorten the gate length for high-speed operation. Since the gate length is determined by phosphorography, it is difficult to shorten it.

(3)次段の負荷容量を高速に充放電するためには、ゲ
ート幅を大きくして相互コンダクタンスを大きくする必
要がある。これは、ゲート幅に比例して、素子の面積増
大をもたらす。
(3) In order to quickly charge and discharge the load capacitance of the next stage, it is necessary to increase the gate width and increase the mutual conductance. This results in an increase in the area of the device in proportion to the gate width.

(4)電流導電路が基板表面にあるため、α線等放射線
の影響を受けやすくなる。これは、同素子を用いた回路
の信頼性を低下させる。
(4) Since the current conduction path is on the substrate surface, it is susceptible to radiation such as alpha rays. This reduces the reliability of a circuit using the same element.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の欠点を徐去し、高密度で高速か
つ低消費電力の半導体装置を提供しようとするものであ
る。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a semiconductor device with high density, high speed, and low power consumption.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明の構成はソース・ドレ
イン間の電流導電路を半導体単結晶のほぼ垂直な側壁を
設けるものである。電流導電路を流れる電流は薄い酸化
物を介して設けられた多結晶シリコン層に印加される電
圧により制御される。
In order to achieve the above object, the present invention has a configuration in which a current conduction path between the source and drain is provided by a substantially vertical side wall of a semiconductor single crystal. The current flowing through the current conductive path is controlled by a voltage applied to a polycrystalline silicon layer provided through a thin oxide.

この多結晶シリコン層は半導体基体と厚い酸化膜により
絶縁される。
This polycrystalline silicon layer is insulated from the semiconductor substrate by a thick oxide film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例として第1のMO5FET形
半導体装置の平面図を、第3図は第2図においてn−n
’ に沿った構造断面図を示すものである。
FIG. 2 is a plan view of a first MO5FET type semiconductor device as an embodiment of the present invention, and FIG.
' shows a cross-sectional view of the structure.

第3図において、23はp形基板21の表面に設けられ
た高濃度n形ドレイン拡散層である。P影領域211、
高濃度n影領域22および28は基板上のn形エピタキ
シャル層2 ]、 Oに順次、不純物を添加することに
より形成されたもので、特に22はソース拡散層を表わ
す。P影領域211のほぼ垂直な側壁に接して、シリコ
ン酸化膜25およびゲート電極24が設けられている。
In FIG. 3, reference numeral 23 denotes a highly doped n-type drain diffusion layer provided on the surface of the p-type substrate 21. P shadow area 211,
The high-concentration n-shaded regions 22 and 28 are formed by sequentially adding impurities to the n-type epitaxial layer 2 and O on the substrate, and in particular, 22 represents a source diffusion layer. A silicon oxide film 25 and a gate electrode 24 are provided in contact with the substantially vertical sidewalls of the P shadow region 211 .

ゲート電極24はシリコン酸化膜26.27により、基
板21ないし、高濃度n膨拡散層領域23と絶縁されて
いる。
The gate electrode 24 is insulated from the substrate 21 and the high concentration n-swelled diffusion layer region 23 by silicon oxide films 26 and 27.

第4図は、本発明の第1の半導体装置の製造工程を示し
たもので、第3図の断面構造になる以前を示しである。
FIG. 4 shows the manufacturing process of the first semiconductor device of the present invention, and shows the state before the cross-sectional structure of FIG. 3 is obtained.

以下、製造過程を図番にしたがって説明する。The manufacturing process will be explained below according to the drawing numbers.

第4図(a):p形シリコン基板21表面に選択的に不
純物を添加し、高濃度n形層領域23を形成する。その
後、基板全面にn形エピタキシャル層210を成長させ
、シリコン酸化膜41、シリコン窒化膜42、およびシ
リコン酸化膜43を堆積し、パターニングして3層膜4
1〜43に選択エツチングする。
FIG. 4(a): Impurities are selectively added to the surface of the p-type silicon substrate 21 to form a high concentration n-type layer region 23. FIG. Thereafter, an n-type epitaxial layer 210 is grown on the entire surface of the substrate, and a silicon oxide film 41, a silicon nitride film 42, and a silicon oxide film 43 are deposited and patterned to form a three-layer film 4.
Selective etching from 1 to 43.

第4図(b):3層膜41〜43をマスクに、エピタキ
シャル層210をほぼ垂直に選択エツチングする5その
後、全面に熱酸化によりシリコン、7、酸化膜25を形
成する。
FIG. 4(b): Using the three-layer films 41 to 43 as a mask, the epitaxial layer 210 is selectively etched almost vertically (5). Thereafter, a silicon film (7) and an oxide film (25) are formed on the entire surface by thermal oxidation.

第4図(C):全面にシリコン窒化膜を堆積し、ドライ
エツチングにより凸出部の側面にのみシリコン窒化膜4
4を残す。この後、シリコン窒化膜44をマスクにして
熱酸化により、シリコン酸化膜27を形成する。
Figure 4 (C): A silicon nitride film is deposited on the entire surface, and then dry etched to form a silicon nitride film 4 only on the side surfaces of the protrusions.
Leave 4. Thereafter, a silicon oxide film 27 is formed by thermal oxidation using the silicon nitride film 44 as a mask.

第4図(d):シリコン窒化膜44を除去した後、全面
に多結晶シリコン24を堆積する。
FIG. 4(d): After removing the silicon nitride film 44, polycrystalline silicon 24 is deposited on the entire surface.

第4図(e):シリコン単結晶凸出部上の多結晶シリコ
ンを除去した後、全面にシリコン窒化膜を堆積し、パタ
ーニングしてシリコン窒化膜の1部45を残す。その後
、シリコン窒化膜45をマスクに多結晶シリコン24の
1部を熱酸化し、シリコン酸化膜26を形成する。
FIG. 4(e): After removing the polycrystalline silicon on the silicon single crystal convex portion, a silicon nitride film is deposited on the entire surface and patterned to leave a portion 45 of the silicon nitride film. Thereafter, a portion of the polycrystalline silicon 24 is thermally oxidized using the silicon nitride film 45 as a mask to form a silicon oxide film 26.

第4図(f)ニドレイン電極の取り出しとなる領域に不
純物を添加して、高濃度■影領域28を形成した後、シ
リコン窒化膜45およびシリコン酸化膜43を徐去する
。この後、シリコン窒化膜42をマスクに多結晶シリコ
ン24の表面を酸化する。この後、P形不純物、n形不
純物を表面から順次添加することによりp影領域211
及び高濃度n影領域22を形成し、ゲート・コンタクト
穴29及びアルミニュウム電極配線を行うことにより第
3図の構造が得られる。
FIG. 4(f) After adding impurities to the region from which the Ni-Drain electrode will be taken out to form a highly concentrated black region 28, the silicon nitride film 45 and the silicon oxide film 43 are gradually removed. Thereafter, the surface of the polycrystalline silicon 24 is oxidized using the silicon nitride film 42 as a mask. After that, P-type impurities and N-type impurities are sequentially added from the surface to form the P shadow region 211.
The structure shown in FIG. 3 is obtained by forming a high concentration n shadow region 22, and forming a gate/contact hole 29 and aluminum electrode wiring.

第5図は本発明の他の実施例として第2のM OS F
 E ’II半導体装置の平面図を、第6図は第5図に
おいてV−V′に沿った構造断面図を示すものである。
FIG. 5 shows a second MOS F as another embodiment of the present invention.
FIG. 6 is a plan view of the E'II semiconductor device, and FIG. 6 is a structural sectional view taken along the line V-V' in FIG.

本例では、エピタキシャル層210の1部の側面にゲー
1へ酸化膜25が形成され、同層210の他の1部の側
面に多結晶シリコン層24(b)が直接接続される。こ
れは、第4図(C)において、シリコン窒化膜44を除
去した後、パターニングにより酸化膜25の1部を選択
エツチングすること、さらに多結晶シリコン層24に高
濃度のP形不純物を添加することにより実現される。第
5.第6図において、51は多結晶シリコン24 (b
)中に含まれるp形不純物がエピタキシャル層210へ
拡散することにより形成されるP影領域である。P影領
域211はP影領域51と電気的に接続され、多結晶シ
リコン層24(b)およびコンタクト穴29(b)を通
してアルミニュウム電極に接続され、ここに電圧を印加
することにより、 MOSFETのスレッショルド電圧
を制御することができる。
In this example, an oxide film 25 is formed on the side surface of a portion of the epitaxial layer 210 on the gate 1, and a polycrystalline silicon layer 24(b) is directly connected to the side surface of the other portion of the epitaxial layer 210. This is done by selectively etching a part of the oxide film 25 by patterning after removing the silicon nitride film 44 in FIG. This is achieved by Fifth. In FIG. 6, 51 is polycrystalline silicon 24 (b
) is a P shadow region formed by diffusion of p-type impurities contained in the epitaxial layer 210 into the epitaxial layer 210. The P shadow region 211 is electrically connected to the P shadow region 51 and connected to the aluminum electrode through the polycrystalline silicon layer 24 (b) and the contact hole 29 (b), and by applying a voltage thereto, the threshold of the MOSFET can be adjusted. Voltage can be controlled.

第7図は本発明の他の実施例として第3のMO3FET
形半導体装置の断面構造図を示すものである。本例では
n形エピタキシャル層210がP形基板21に接してい
る。さらに、製造工程図第4図(b)において、全面に
P形不純物を添加することにより、第7図のP影領域7
1が形成される。
FIG. 7 shows a third MO3FET as another embodiment of the present invention.
1 is a cross-sectional structural diagram of a shaped semiconductor device. In this example, an n-type epitaxial layer 210 is in contact with a p-type substrate 21. Furthermore, in the manufacturing process diagram FIG. 4(b), by adding P-type impurities to the entire surface, the P shadow region 7 in FIG.
1 is formed.

P影領域211はP影領域51及び71を通してp形基
板21と電気的に接続され、基板に電圧を印加すること
により、M OS F IE ’rのスレッド・ショル
ド電圧を制御することができる。本図の例はp影領域2
11に印加する電圧の配線が基板によりなされるため、
第5,6図の素子に比べ素子面積が縮小する利点がある
。なお第7図において24(b)および51はなくても
よい。但しその場合P影領域71と211は接続してい
なければならない。
The P shadow region 211 is electrically connected to the P type substrate 21 through the P shadow regions 51 and 71, and by applying a voltage to the substrate, the thread shoulder voltage of the MOS F IE'r can be controlled. The example in this figure is p shadow area 2.
Since the wiring for the voltage applied to 11 is done by the board,
This has the advantage that the element area is smaller than the elements shown in FIGS. 5 and 6. Note that in FIG. 7, 24(b) and 51 may be omitted. However, in that case, the P shadow areas 71 and 211 must be connected.

以」二の各実施例1〜3において、絶縁物は、シリコン
の熱酸化による形成ないし、シリコン窒化膜の他に、絶
縁性樹脂等を用いることもできる。
In each of the following Embodiments 1 to 3, the insulator may be formed by thermal oxidation of silicon, or an insulating resin or the like may be used in addition to a silicon nitride film.

またP形、 +1形の導電形を逆に用いることもできる
。さらにまた、ソース・ドレインを逆に用いることもで
きる。また半導体としてGaAs等の他の半導体を用い
ても本発明の装置を実現できる。
Furthermore, the conductivity types of P type and +1 type can be used in reverse. Furthermore, the source and drain can also be used in reverse. The device of the present invention can also be realized using other semiconductors such as GaAs as the semiconductor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、MOSFETのソース・ドレイン間電
流導電路が基板表面のほぼ垂直な側面に形成されるため
、グー+−長が短くゲート幅が大きいMO3FIETを
高密度に集積することができる6また寄生容量が削減さ
れるため、高速・低消費電力のMO3Fi7Tを実現で
きる。さらにまたα線等の放射線がソース・ドレイン電
流導電路に照射する確率が減り、同放射線に強いMO5
F[ETを実現できる。
According to the present invention, the current conduction path between the source and drain of the MOSFET is formed on the substantially perpendicular side surface of the substrate surface, making it possible to integrate MO3 FIETs with short goo lengths and large gate widths at high density. Furthermore, since parasitic capacitance is reduced, it is possible to realize MO3Fi7T with high speed and low power consumption. Furthermore, the probability that radiation such as α-rays will irradiate the source-drain current conduction path is reduced, and MO5, which is resistant to this radiation,
F[ET can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図tよ従来のMOS V El”の断面構造図、第
2図は本発明の一実施例としてのMOSFETの平面図
、第3図は第2図のI−II ’に沿った断面構造図、
第4図(a)〜(f)は本発明の半導体装置の製法を製
造工f、!1順に示す断面図、第5図は本発明の他の実
施例としてのMO3FET’の平面図、第6図は第5図
のv−v’ に沿った断面構造図、第7図は本発明のさ
らに他の実施例としてMOSFETの断面構造図。 21・・・p形基板、23・・・高濃度Tll領領域2
10・・・n形エピタキシャル領域、211・・p影領
域、22.28・・・高濃度II形領領域25・・・ゲ
ート酸化膜、26.27・・・シリコン酸化膜、24・
・・多結晶シリコン、29・・・ゲート・コンタク1〜
穴、51・−・不1図 1Ii Z z 図 第 3 図 第 4 図 (λ) (C) 第 4 図 (注9 (e) 第 5 図 第1頁の続き 0発 明 者 岡 部 隆 博 国分寺市東恋ケ窪央研
究所内
Fig. 1 is a cross-sectional structure diagram of a conventional MOS V El'', Fig. 2 is a plan view of a MOSFET as an embodiment of the present invention, and Fig. 3 is a cross-sectional structure taken along line I-II' in Fig. 2. figure,
FIGS. 4(a) to 4(f) show the manufacturing method of the semiconductor device of the present invention. 5 is a plan view of MO3FET' as another embodiment of the present invention, FIG. 6 is a sectional structural diagram taken along v-v' in FIG. 5, and FIG. FIG. 3 is a cross-sectional structure diagram of a MOSFET as still another example. 21...p-type substrate, 23...high concentration Tll region 2
10... N type epitaxial region, 211... P shadow region, 22.28... High concentration II type region 25... Gate oxide film, 26.27... Silicon oxide film, 24...
...Polycrystalline silicon, 29...Gate contact 1~
Hole, 51...No 1 Figure 1Ii Z z Figure 3 Figure 4 (λ) (C) Figure 4 (Note 9 (e) Figure 5 Continued from page 1 of Figure 10 Inventor Takahiro Okabe Kokubunji City Higashi Koigakubo Research Institute

Claims (1)

【特許請求の範囲】[Claims] 1、第1導電形半導体基体と、該基体の表面領域に設け
られた前記第1導電形と反対導電形の第2導電形の第1
領域と、前記基体表面上に設けられ、前記第1領域の少
なくとも一部の領域上に間口部を有する絶縁物と、該開
口部上に設けられたIJL結晶半導体層の第2領域と、
前記絶縁膜」二に設けられかつ前記第2領域のほぼ垂直
な側壁の少なくとも一部と絶縁物をはさんで接するよう
に設けられた多結晶半導体層の第3領域と、前記第2領
域内に設けられた第1導電形の第4領域と、該第4領域
内に設けられた第2導電形の第5領域とを有することを
特徴とする半導体装置。
1. A semiconductor substrate of a first conductivity type, and a first conductivity type of a second conductivity type opposite to the first conductivity type provided on the surface region of the substrate.
an insulator provided on the base surface and having an opening over at least a portion of the first region; and a second region of the IJL crystal semiconductor layer provided over the opening.
a third region of a polycrystalline semiconductor layer provided on the second region of the insulating film and in contact with at least a part of the substantially vertical sidewall of the second region with an insulating material in between; A semiconductor device comprising: a fourth region of a first conductivity type provided within the fourth region; and a fifth region of a second conductivity type provided within the fourth region.
JP1006584A 1984-01-25 1984-01-25 Semiconductor device Granted JPS60154671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1006584A JPS60154671A (en) 1984-01-25 1984-01-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1006584A JPS60154671A (en) 1984-01-25 1984-01-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60154671A true JPS60154671A (en) 1985-08-14
JPH0560266B2 JPH0560266B2 (en) 1993-09-01

Family

ID=11739975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1006584A Granted JPS60154671A (en) 1984-01-25 1984-01-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60154671A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339962A2 (en) * 1988-04-27 1989-11-02 General Electric Company Field effect semiconductor device
EP0388564A2 (en) * 1988-02-11 1990-09-26 STMicroelectronics, Inc. Method for forming a non-planar structure on the surface of a semiconductor substrate
EP0616371A2 (en) * 1993-03-18 1994-09-21 Canon Kabushiki Kaisha Silicon on insulator semiconductor device and its fabrication method
US11227925B2 (en) 2017-04-14 2022-01-18 Ptek Technology Co., Ltd. Semiconductor device and charging system using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388564A2 (en) * 1988-02-11 1990-09-26 STMicroelectronics, Inc. Method for forming a non-planar structure on the surface of a semiconductor substrate
EP0339962A2 (en) * 1988-04-27 1989-11-02 General Electric Company Field effect semiconductor device
EP0616371A2 (en) * 1993-03-18 1994-09-21 Canon Kabushiki Kaisha Silicon on insulator semiconductor device and its fabrication method
EP0616371A3 (en) * 1993-03-18 1995-08-02 Canon Kk Silicon on insulator semiconductor device and its fabrication method.
US11227925B2 (en) 2017-04-14 2022-01-18 Ptek Technology Co., Ltd. Semiconductor device and charging system using the same

Also Published As

Publication number Publication date
JPH0560266B2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
KR100189691B1 (en) Tunnel injection type semiconductor device and manufacturing method of the same
JPH07105496B2 (en) Insulated gate bipolar transistor
JPS6237545B2 (en)
JPH05315608A (en) Semiconductor device
JP3219045B2 (en) Manufacturing method of vertical MISFET
JP3325424B2 (en) Insulated gate semiconductor device
JP2006019578A (en) Semiconductor apparatus and its manufacturing method
JP3057436B2 (en) Semiconductor device and manufacturing method thereof
JPH11354756A (en) Semiconductor device and its fabrication
JPH10107280A (en) Semiconductor integrated circuit and fabrication thereof
JPS60154671A (en) Semiconductor device
JPS62136877A (en) Insulated gate type field effect transistor
JPH03104169A (en) Semiconductor device
JPH04264776A (en) Semiconductor device
JP3402905B2 (en) Semiconductor element
KR900007904B1 (en) Method of manufacturing semiconductor device
JP3248791B2 (en) Semiconductor device
KR100290789B1 (en) SOI structure semiconductor integrated circuit and manufacturing method thereof
JP2774870B2 (en) Semiconductor device
JP2728424B2 (en) Semiconductor integrated circuit device
JPH07221291A (en) Semiconductor device and its manufacture
JPH11220124A (en) Semiconductor device
JP3016162B2 (en) Semiconductor device and manufacturing method
JPS62291179A (en) Double diffused mosfet
JPH0330370A (en) Mis type semiconductor device