JPS6014619A - Magnetic bearing control device - Google Patents
Magnetic bearing control deviceInfo
- Publication number
- JPS6014619A JPS6014619A JP12275383A JP12275383A JPS6014619A JP S6014619 A JPS6014619 A JP S6014619A JP 12275383 A JP12275383 A JP 12275383A JP 12275383 A JP12275383 A JP 12275383A JP S6014619 A JPS6014619 A JP S6014619A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- circuit
- band
- center frequency
- magnetic bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003379 elimination reaction Methods 0.000 abstract description 8
- 238000001514 detection method Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 10
- 230000008030 elimination Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0444—Details of devices to control the actuation of the electromagnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2322/00—Apparatus used in shaping articles
- F16C2322/39—General buildup of machine tools, e.g. spindles, slides, actuators
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Turning (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
この発明は、工作機械主軸等に使用する磁気軸受の制御
装置に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a control device for a magnetic bearing used in a main shaft of a machine tool or the like.
(ロ)従来技術及び発明が解決しようとする問題点
第1図には従来の磁気軸受装置が示されており、これは
、回転軸1の半径方向の位置を検出するセンサ2の検出
信号と、回転軸1の基準位置を設定した軸位置基準器3
の基準位置とによって、基準位置と実際の回転軸1との
ずれ量である偏差信号を加算器4から制御回路5に出力
している。この制御回路5は、偏差信号を増幅する偏差
増幅器6と、この増幅器6からの出力信号の位相等を制
御する二次位相進み遅れ回路7とからなり、制御回路5
から出力される偏差信号に対応した信号が電力増幅器8
を介して重石9のコイル10に入力され、電磁石9を励
磁する。なお、このコイル10の出力は、第2図に示す
ように、電力増幅器8に電流フィードバックされるため
、電力増幅器8の入力電圧はコイル10の電流と比例関
係にある。(b) Problems to be solved by the prior art and the invention FIG. , a shaft position reference device 3 that sets the reference position of the rotating shaft 1
A deviation signal representing the amount of deviation between the reference position and the actual rotating shaft 1 is output from the adder 4 to the control circuit 5 based on the reference position. This control circuit 5 includes a deviation amplifier 6 that amplifies the deviation signal, and a secondary phase lead/lag circuit 7 that controls the phase etc. of the output signal from this amplifier 6.
A signal corresponding to the deviation signal output from the power amplifier 8
The signal is input to the coil 10 of the weight 9 through the coil 10 of the weight 9, and excites the electromagnet 9. Note that, as shown in FIG. 2, the output of the coil 10 is fed back as a current to the power amplifier 8, so that the input voltage of the power amplifier 8 is proportional to the current of the coil 10.
以上の制御において、−巡伝達関数は第3図のようにな
り、センサ2の出力電圧から電力増幅器8の入力電圧(
制御回路5の出力電圧〕までの伝達関数は第4図のよう
になる。この−巡伝達関数におけるゲインodB の周
波数即ちクロスオーバ周波数ω。における位相余裕は、
制御系の安定度等を考慮して磁気軸受の場合15°〜5
0°である。また、クロスオーバ周波数ω。は、回転軸
の固有振動数ω1に対してかなり小さい値に設定される
。例えば、軸固有振動数ω1を800Hz とすると、
クロスオーバ周波数ω。は8o〜4’QQI(z程度に
設定される。In the above control, the −cyclic transfer function becomes as shown in FIG. 3, and the input voltage of the power amplifier 8 (
The transfer function up to the output voltage of the control circuit 5 is as shown in FIG. The frequency of the gain odB in this -cyclic transfer function, that is, the crossover frequency ω. The phase margin at is
In the case of magnetic bearings, the angle is 15° to 5°, considering the stability of the control system, etc.
It is 0°. Also, the crossover frequency ω. is set to a considerably smaller value than the natural frequency ω1 of the rotating shaft. For example, if the shaft natural frequency ω1 is 800Hz,
Crossover frequency ω. is set to about 8o to 4'QQI (z).
このような制御回路を有する磁気軸受装置では、固有振
動数ω1における動剛性が小さくなり、回転軸が非回転
制御状態において自励発振することがある。このため、
従来は、固有振動数ω1に挿入して自励発振を押えてき
た。しかし、この方法は、固有振動数ω1付近での剛性
の改善に対してはほとんど寄与せず、このような磁気軸
受で支承されたスピンドルをミリリング加工等の主軸と
して使用すると、固有振動数ω1付近での回転軸の振動
が大きくなり、軸受が制御不能となり易く十分な切削力
が得られなかった。In a magnetic bearing device having such a control circuit, the dynamic stiffness at the natural frequency ω1 becomes small, and the rotating shaft may self-oscillate in a non-rotation controlled state. For this reason,
Conventionally, self-excited oscillation has been suppressed by inserting it at the natural frequency ω1. However, this method makes little contribution to improving rigidity near the natural frequency ω1, and when a spindle supported by such a magnetic bearing is used as the main shaft for milling, etc., the natural frequency ω1 The vibration of the rotating shaft in the vicinity increased, making it easy for the bearing to become uncontrollable, making it impossible to obtain sufficient cutting force.
(ハ)問題を解決するための手段
この発明は、以上の事情に鑑みなされたもので、クロス
オーバ周波数ω。における位相余裕を15°〜50°の
範囲に維持し、且つ固有振動数ω1付近における制御系
のゲイン・位相特性を改良し、固有振動数ω1付近での
振動減衰力を大きくすることにより、回転軸の固有振動
数ω1における動剛性の低下を防止できる磁気軸受の制
御装置を提供することにある。(c) Means for solving the problem This invention was made in view of the above circumstances, and the crossover frequency ω. By maintaining the phase margin in the range of 15° to 50° at An object of the present invention is to provide a control device for a magnetic bearing that can prevent a decrease in dynamic rigidity at the natural frequency ω1 of the shaft.
この発明は、回転軸の半径方向の位置を検出するセンサ
と、このセンサの出力信号により電磁石のコイルへの電
流を制御する制御回路とを備え、設定した回転軸の半径
方向の位置に回転軸を保持する磁気軸受において、上記
制御回路は、回転軸の固有振動数にほぼ等しい周波数を
中心周波数とする帯域通過フィルタと、この周波数より
小さい周波数を中心周波数とする帯域消去フィルタと、
これらフィルタによって生じる位相遅れを補償する位相
進み回路とを直列に接続し、この直列回路に並列に低周
波数域の剛性を付与する積分要素を設けて構成され、固
有振動数付近の周波数帯域における位相を局所的に進ま
せるようにしたものである。This invention includes a sensor that detects the radial position of the rotating shaft, and a control circuit that controls the current to the coil of the electromagnet based on the output signal of this sensor. In the magnetic bearing that maintains a magnetic bearing, the control circuit includes a bandpass filter having a center frequency approximately equal to the natural frequency of the rotating shaft, a band-elimination filter having a center frequency smaller than this frequency,
A phase lead circuit that compensates for the phase delay caused by these filters is connected in series, and an integral element is provided in parallel to this series circuit to provide stiffness in the low frequency range. is made to advance locally.
に)実施例
第5図に示すように、センサ2からの検出信号と、軸位
置基準器3からの基準位置とを合成する加算器4は、基
準位置から検出信号を減算して偏差信号を出力している
。この偏差信号は、帯域通過フィルタ11.帯域消去フ
ィルタ12及び位相進み回路13からなる直列回路14
を介して加算器15に送信される。帯域通過フィルタ1
1は回転軸1の固有振動数ω1に等しい周波数付近を中
心周波数即ちピークとし、帯域消去フィルタ12はこの
周波数より小さい周波数を中心周波数とし、位相進み回
路13はフィルタ11.12によって生じる位相遅れを
補償する。なお、帯域消去フィルタ12の中心周波数は
、帯域通過フィルタ11の中心周波数(固有振動数ω1
)よりも小さければよく、例えば固有振動数ω1の一〜
又程度が望ましく、また、10 3
固有振動数ω1より小さく、且つ回転軸1の最高回転速
度の際の周波数であってもよ“い。B) Embodiment As shown in FIG. 5, an adder 4 that combines the detection signal from the sensor 2 and the reference position from the shaft position reference device 3 subtracts the detection signal from the reference position to obtain a deviation signal. It is outputting. This deviation signal is passed through the bandpass filter 11. Series circuit 14 consisting of band elimination filter 12 and phase lead circuit 13
is sent to adder 15 via. Bandpass filter 1
1 has a center frequency, that is, a peak, near a frequency equal to the natural frequency ω1 of the rotating shaft 1, a band elimination filter 12 has a center frequency smaller than this frequency, and a phase lead circuit 13 adjusts the phase delay caused by the filters 11 and 12. Compensate. Note that the center frequency of the band-pass filter 12 is equal to the center frequency of the band-pass filter 11 (natural frequency ω1
), for example, the natural frequency ω1 is less than
Further, it is desirable that the frequency is smaller than 10 3 natural frequency ω1 and the frequency is the same as the maximum rotational speed of the rotating shaft 1.
上記直列回路14には、偏差信号を入力とする積分回路
16が低周波域における剛性を伺与するために並列に設
けられている。積分回路16は、位相が一90°で一定
であり、ゲインが周波数の増加に対し’l、 Q dB
/decade で減少する特性を有するから、直列回
路14に並列に設けると、低周波では積分回路16が制
御系を支配するが、周波数の増加に伴ないゲインが減少
して影響が小さくなり、上記周波数ω0.ω1付近では
ほとんど影響がなくなる。An integrating circuit 16 which receives the deviation signal as input is provided in parallel with the series circuit 14 in order to obtain stiffness in a low frequency range. The integrator circuit 16 has a constant phase of 190° and a gain of 'l, Q dB as the frequency increases.
/decade, so if it is installed in parallel with the series circuit 14, the integrating circuit 16 will dominate the control system at low frequencies, but as the frequency increases, the gain decreases and the influence becomes smaller, and the above-mentioned Frequency ω0. There is almost no effect near ω1.
上記加算器15は、直列回路14の出力信号から積分回
路16の出力信号を減算した後、電力増幅器8を介して
電磁石9のコイル10への電流を制御する。The adder 15 subtracts the output signal of the integrating circuit 16 from the output signal of the series circuit 14, and then controls the current flowing to the coil 10 of the electromagnet 9 via the power amplifier 8.
以上の制御系を伝達関数を示して説明する。The above control system will be explained by showing the transfer function.
なお、回転軸1の固有振動数ω1は670H2に、クロ
スオーバ周波数ω。は200Hz に設定した場合であ
る。Note that the natural frequency ω1 of the rotating shaft 1 is 670H2, and the crossover frequency ω is 670H2. is the case where the frequency is set to 200Hz.
帯域通過フィルタ11は固有振動数ω1である670H
2に略等しい周波数7QQI(Z をピーク周波数(中
心周波数つとする2次要素フィルタであり、その伝達関
数は第6図に示されている。The bandpass filter 11 has a natural frequency ω1 of 670H.
It is a second-order element filter whose peak frequency (center frequency) is 7QQI (Z) approximately equal to 2, and its transfer function is shown in FIG.
帯域消去フィルタ12は中心周波数が503Hzであり
、その伝達関数は第7図に示されている。The band-stop filter 12 has a center frequency of 503 Hz, and its transfer function is shown in FIG.
第8図は、フィルタ11.12の位相補償回路と位相進
み回路13を合成した伝達関数を示しており、この位相
進み回路13は少なくとも周波数ω。〜ω1の範囲にお
いて進相させるもので、クロスオーバ周波数ω。で40
°程度、固有振動数ω1で90°程度の位相進みを与え
ている。また、第9図は、制御系全体の一巡伝達関数で
あり、周波数の低い領域では積分回路により制御され、
制御系の安定性及び回転軸の固有振動の減衰特性に関与
する周波数ω。、ω、においては、はとんど影響がない
。FIG. 8 shows a transfer function obtained by combining the phase compensation circuit and the phase lead circuit 13 of the filters 11 and 12, and the phase lead circuit 13 has a frequency of at least ω. The phase is advanced in the range of ~ω1, which is the crossover frequency ω. So 40
degree, giving a phase lead of about 90 degrees at the natural frequency ω1. In addition, Fig. 9 shows the open loop transfer function of the entire control system, and in the low frequency region, it is controlled by the integrating circuit,
Frequency ω is involved in the stability of the control system and the damping characteristics of the natural vibration of the rotating shaft. , ω, has almost no effect.
なお、以上の実施例において、上記積分回路16に比例
回路を付加し、制御系の安定性を増加するようにしても
よい。In the above embodiments, a proportional circuit may be added to the integrating circuit 16 to increase the stability of the control system.
(ホ)効果
この発明は、以上のとおり、回転軸の固有振動数にほぼ
等しい周波数を中心周波数とする帯域フィルタと、この
周波数より小さい周波数を中心周波数とする帯5域消去
フィルタと、これらフィルタによって生じる位相遅れを
補償する位相進み回路とを直列に接続した直列回路によ
って、クロスオーバ周波数ω。における位相余裕を15
°〜50°の範囲とし、且つ固有振動数ωl付近におけ
る制御系のゲイン・位相特性を改良しているから、固有
振動数ω1付近での振動減衰力が大きくなり、固有振動
数ω1付近における回転軸の動剛性も向上し、安定なス
ピンドルが得られる。また、低周波域においては直列回
路に並列に設けた積分回路によって補償するから、低周
波域においても良好な剛性が得られ、ミリリング加工等
の切削に用いても十分な切削力が得られる。(E) Effect As described above, the present invention provides a bandpass filter whose center frequency is approximately equal to the natural frequency of the rotating shaft, a band 5-band elimination filter whose center frequency is a frequency smaller than this frequency, and a filter for these filters. A series circuit in which a phase lead circuit that compensates for the phase delay caused by the crossover frequency ω is connected in series. The phase margin at is 15
Since the range is from ° to 50° and the gain and phase characteristics of the control system around the natural frequency ωl are improved, the vibration damping force around the natural frequency ω1 becomes large, and the rotation around the natural frequency ω1 increases. The dynamic rigidity of the shaft is also improved, resulting in a stable spindle. In addition, in the low frequency range, compensation is performed by an integrating circuit installed in parallel to the series circuit, so good rigidity can be obtained even in the low frequency range, and sufficient cutting force can be obtained even when used for cutting such as milling processing. .
、4、図面の簡単な説明
第1図は従来の磁気軸受装置の一例を示すブロック図、
第2図は第1図の要部拡大図、第3図は第1図における
一巡伝達関数を示す特性図、第4図は第1図における電
子制御回路の伝達関数を示す特性図、第5図はこの発明
の一例を示すブロック図、第6図は第5図における帯域
通過フィルタの伝達関数を示す特性図、第7図は第5図
における帯域消去フィルタの伝達関数を示す特性図、第
8図は第5図における帯域通過フィルタ、帯域消去フィ
ルタ及び位相進み回路を総合した伝達関数を示す特性図
、第9図は第5図における積分回路を含めた電子系全体
の伝達関数を示す特性図である。, 4. Brief description of the drawings Figure 1 is a block diagram showing an example of a conventional magnetic bearing device.
Fig. 2 is an enlarged view of the main part of Fig. 1, Fig. 3 is a characteristic diagram showing the open loop transfer function in Fig. 1, Fig. 4 is a characteristic diagram showing the transfer function of the electronic control circuit in Fig. 1, and Fig. 5 is a characteristic diagram showing the transfer function of the electronic control circuit in Fig. 1. 6 is a block diagram showing an example of the present invention, FIG. 6 is a characteristic diagram showing the transfer function of the bandpass filter in FIG. 5, FIG. 7 is a characteristic diagram showing the transfer function of the band-stop filter in FIG. Figure 8 is a characteristic diagram showing the overall transfer function of the bandpass filter, band-elimination filter, and phase lead circuit in Figure 5, and Figure 9 is a characteristic diagram showing the transfer function of the entire electronic system including the integrating circuit in Figure 5. It is a diagram.
1・・・回転軸、 2・・・センサ
3・・・軸位置基準器、5,15・・・加算器、8・・
・電力増幅器、 9・・・電磁石、10・・・コイル、
11・・・帯域通過フィルタ、12・・・帯域消去フィ
ルタ、13・・・位相進み遅れ回路、14・・・直列回
路、16・・・積分回路17・・・比例回路
同 代理人 鎌 l」」 文 二1... Rotation axis, 2... Sensor 3... Axis position reference device, 5, 15... Adder, 8...
・Power amplifier, 9...electromagnet, 10...coil,
11...Band pass filter, 12...Band elimination filter, 13...Phase lead/lag circuit, 14...Series circuit, 16...Integrator circuit 17...Proportional circuit ” Sentence 2
Claims (2)
のセンサの出力信号により電磁石のコイルへの電流を制
御する制御回路とを備え、設定した回転軸の半径方向の
位置に回転軸を保持する磁気軸受において、上記制御回
路は、回転軸の固有振動数にほぼ等しい周波数を中心周
波数とする帯域通過フィルタと、この周波数より小さい
周波数を中心周波数とする帯域消去フィルタと、これら
フィルタによって生じる位相遅れを補償する位相進み遅
れ回路とを直列に接続し、この直列回路に並列に低周波
数域の剛性を付与する積分要素を設けて構成され、固有
振動数付近の周波数帯域における位相を局所的に進ませ
、さらにゲインも大きくすることを特徴とする磁気軸受
の制御装置。(1) Equipped with a sensor that detects the radial position of the rotating shaft, and a control circuit that controls the current to the coil of the electromagnet based on the output signal of the sensor, the rotating shaft is positioned at the set radial position of the rotating shaft. In a magnetic bearing that maintains A phase lead/lag circuit that compensates for the phase lag that occurs is connected in series, and an integral element that provides stiffness in the low frequency range is provided in parallel to this series circuit. A control device for magnetic bearings that is characterized by being able to advance the magnetic bearing and also increase the gain.
を特徴とする特許請求の範囲第1項記載の磁気軸受の制
御装置。(2) The control device for a magnetic bearing according to claim 1, wherein the integral element is provided with a proportional element in parallel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12275383A JPS6014619A (en) | 1983-07-05 | 1983-07-05 | Magnetic bearing control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12275383A JPS6014619A (en) | 1983-07-05 | 1983-07-05 | Magnetic bearing control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6014619A true JPS6014619A (en) | 1985-01-25 |
JPS6234966B2 JPS6234966B2 (en) | 1987-07-30 |
Family
ID=14843751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12275383A Granted JPS6014619A (en) | 1983-07-05 | 1983-07-05 | Magnetic bearing control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6014619A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61244937A (en) * | 1985-04-24 | 1986-10-31 | Yaskawa Electric Mfg Co Ltd | System for restricting natural vibration caused by mechanical system in electric machine |
JPS61286609A (en) * | 1985-06-11 | 1986-12-17 | Ntn Toyo Bearing Co Ltd | Control device of control type radial magnetic bearing |
JPS6228544A (en) * | 1985-07-31 | 1987-02-06 | Yaskawa Electric Mfg Co Ltd | Natural vibration suppressing method for mechanical system of electric machine |
JPS62258219A (en) * | 1986-05-02 | 1987-11-10 | Mitsubishi Heavy Ind Ltd | Magnetic bearing control system |
JPS62258222A (en) * | 1986-05-02 | 1987-11-10 | Mitsubishi Heavy Ind Ltd | Magnet bearing control system |
JPS62297533A (en) * | 1986-06-16 | 1987-12-24 | Mitsubishi Heavy Ind Ltd | Magnetic bearing controller |
JPS63190929A (en) * | 1987-01-31 | 1988-08-08 | Mitsubishi Heavy Ind Ltd | Magnetic bearing control device |
JPH01148203U (en) * | 1988-03-31 | 1989-10-13 | ||
FR2634527A1 (en) * | 1988-07-21 | 1990-01-26 | Seiko Instr Inc | ADJUSTING SYSTEM FOR MAGNETIC BEARING |
JPH0277317U (en) * | 1988-12-01 | 1990-06-13 | ||
US5312226A (en) * | 1991-10-14 | 1994-05-17 | Hitachi, Ltd. | Turbo compressor and method of controlling the same |
US5736802A (en) * | 1993-12-24 | 1998-04-07 | Koyo Seiko Co., Ltd. | Magnetic bearing device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5293853A (en) * | 1975-12-24 | 1977-08-06 | Europ Propulsion | Critical frequency attenuator for rotor suspended with electromagnetic bearing |
JPS5293852A (en) * | 1975-12-24 | 1977-08-06 | Europ Propulsion | Syncronization interference compensator for magnetically suspended rotor |
GB1530918A (en) * | 1974-12-06 | 1978-11-01 | Teldix Gmbh | Arrangement for damping oscillation |
JPS5765415A (en) * | 1980-10-09 | 1982-04-21 | Seiko Instr & Electronics Ltd | Control circuit system for magnetic bearing |
-
1983
- 1983-07-05 JP JP12275383A patent/JPS6014619A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1530918A (en) * | 1974-12-06 | 1978-11-01 | Teldix Gmbh | Arrangement for damping oscillation |
JPS5293853A (en) * | 1975-12-24 | 1977-08-06 | Europ Propulsion | Critical frequency attenuator for rotor suspended with electromagnetic bearing |
JPS5293852A (en) * | 1975-12-24 | 1977-08-06 | Europ Propulsion | Syncronization interference compensator for magnetically suspended rotor |
JPS5765415A (en) * | 1980-10-09 | 1982-04-21 | Seiko Instr & Electronics Ltd | Control circuit system for magnetic bearing |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61244937A (en) * | 1985-04-24 | 1986-10-31 | Yaskawa Electric Mfg Co Ltd | System for restricting natural vibration caused by mechanical system in electric machine |
JPS61286609A (en) * | 1985-06-11 | 1986-12-17 | Ntn Toyo Bearing Co Ltd | Control device of control type radial magnetic bearing |
JPS6228544A (en) * | 1985-07-31 | 1987-02-06 | Yaskawa Electric Mfg Co Ltd | Natural vibration suppressing method for mechanical system of electric machine |
JPS62258219A (en) * | 1986-05-02 | 1987-11-10 | Mitsubishi Heavy Ind Ltd | Magnetic bearing control system |
JPS62258222A (en) * | 1986-05-02 | 1987-11-10 | Mitsubishi Heavy Ind Ltd | Magnet bearing control system |
JPS62297533A (en) * | 1986-06-16 | 1987-12-24 | Mitsubishi Heavy Ind Ltd | Magnetic bearing controller |
JPS63190929A (en) * | 1987-01-31 | 1988-08-08 | Mitsubishi Heavy Ind Ltd | Magnetic bearing control device |
JPH01148203U (en) * | 1988-03-31 | 1989-10-13 | ||
FR2634527A1 (en) * | 1988-07-21 | 1990-01-26 | Seiko Instr Inc | ADJUSTING SYSTEM FOR MAGNETIC BEARING |
JPH0277317U (en) * | 1988-12-01 | 1990-06-13 | ||
US5312226A (en) * | 1991-10-14 | 1994-05-17 | Hitachi, Ltd. | Turbo compressor and method of controlling the same |
US5736802A (en) * | 1993-12-24 | 1998-04-07 | Koyo Seiko Co., Ltd. | Magnetic bearing device |
Also Published As
Publication number | Publication date |
---|---|
JPS6234966B2 (en) | 1987-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6014619A (en) | Magnetic bearing control device | |
US5703424A (en) | Bias current control circuit | |
TW469360B (en) | Servo control device | |
US4967129A (en) | Power system stabilizer | |
Dorrell et al. | Calculation and measurement of unbalanced magnetic pull in cage induction motors with eccentric rotors. Part 2: Experimental investigation | |
JPH0491689A (en) | Speed controller for motor | |
JPS6014929B2 (en) | Synchronous disturbance compensation device in magnetically suspended rotor | |
CN111752153B (en) | Harmonic current suppression method based on 1.5-order hybrid repetitive controller | |
JP3464384B2 (en) | Control signal processing device and power system stabilizing device using control signal processing device | |
JP3591111B2 (en) | Magnetic bearing control device | |
JPS59212519A (en) | Control device of magnetic bearing | |
JP3463218B2 (en) | Magnetic bearing device | |
JPS6166540A (en) | Controlling device for magnetic bearing | |
Bayer et al. | Stability problems with the control of induction machines using the method of field orientation | |
JPH02300518A (en) | Control device for magnetic bearing | |
EP0381898A2 (en) | Method and apparatus for cancelling vibrations of rotating machines with active magnetic bearings | |
CN114114919B (en) | Same-frequency vibration force inhibition method and system based on active magnetic bearing control system | |
JP2002188630A (en) | Control device for magnetic bearing, and magnetic bearing spindle device using the same | |
SU1744313A1 (en) | Rotor magnetic suspension stabilization device | |
Saito et al. | Trial of applying the unbalance vibration compensator to axial position of the rotor with AMB | |
JP3463158B2 (en) | Exciter for synchronous machine | |
JPH0914265A (en) | Magnetic bearing compensating circuit | |
JPH0787680B2 (en) | Radial magnetic bearing device | |
JPS61135338A (en) | Power system stabilizer | |
JPH07259854A (en) | Magnetic bearing device |