JPS60133996A - Welding material having excellent creep rupture ductility - Google Patents
Welding material having excellent creep rupture ductilityInfo
- Publication number
- JPS60133996A JPS60133996A JP24262683A JP24262683A JPS60133996A JP S60133996 A JPS60133996 A JP S60133996A JP 24262683 A JP24262683 A JP 24262683A JP 24262683 A JP24262683 A JP 24262683A JP S60133996 A JPS60133996 A JP S60133996A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- creep rupture
- welding material
- welding
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
- B23K35/304—Ni as the principal constituent with Cr as the next major constituent
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nonmetallic Welding Materials (AREA)
- Arc Welding In General (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はクリープ破断延性の優れた溶接材料に関し、特
に、多目的高温ガス実験炉における中間熱交換器の溶接
に適した溶接材料に係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a welding material with excellent creep rupture ductility, and particularly to a welding material suitable for welding an intermediate heat exchanger in a multi-purpose high-temperature gas experimental reactor.
現在、多目的高温ガス実験炉の開発が日本原子力研究所
を中心に進められている。この実験炉には一次系を循環
する高温のヘリウムガス(約100O℃)から他の熱媒
体に熱を伝える中間熱交換機(以下、IHXと略称する
)が付属されており、該IHXの高温部材料には商品名
「ハステロイX」を代表とする超耐熱合金(以下、ハス
テロイXと略称する)の使用が予定されている。Currently, the development of a multipurpose high-temperature gas experimental reactor is being carried out mainly at the Japan Atomic Energy Research Institute. This experimental reactor is equipped with an intermediate heat exchanger (hereinafter referred to as IHX) that transfers heat from high-temperature helium gas (approximately 100°C) circulating in the primary system to another heat medium, and the high-temperature section of the IHX It is planned to use a super heat-resistant alloy (hereinafter abbreviated as Hastelloy X) represented by the trade name "Hastelloy X" as the material.
ハステロイXがIHXの高温部材料の有力候補として選
定された主な理由としては、Hz、H2O,CO,CO
2、CH4等ノwl量不純物カスを含むヘリウムガス雰
囲気中で優秀な耐蝕性を示すことが挙げられる。即ち、
ハステロイXは固溶強化型合金であるため、析出強化型
合金に含まれるAI 、Ti等のγ−形成元素を含んで
いない。イの結果、酸化ポテンシャルが非常に低い前記
ヘリウムガス雰囲気中でも粒界腐蝕を生じず、更に表面
にはMnCr2O+の安定なスピネル系酸化被膜を形成
することが確認されている。その他、ハステロイX自体
については、クリープ/クリープ破断特性および疲労特
性に関して多数の研究があり、実際に多くの現象が解明
されている。The main reason why Hastelloy
2. It exhibits excellent corrosion resistance in a helium gas atmosphere containing a large amount of impurity residue such as CH4. That is,
Since Hastelloy As a result, it has been confirmed that grain boundary corrosion does not occur even in the helium gas atmosphere, which has a very low oxidation potential, and that a stable spinel-based oxide film of MnCr2O+ is formed on the surface. In addition, regarding Hastelloy
然し乍ら、IHXを製作する上で必須の溶接材料につい
ては、クリープ延性の点でかなり重大な問題があるもの
のその改良はなかなか旨くいかずまた研究の数も多くな
いのが実状であった。そのような中で、B、Zrおよび
Y等を単独あるいは複合添加して従来の溶接材料の欠点
であるクリープ破断延性を大幅に改善できたという報告
が注目を集めているが、溶接性(例えば耐高温割れ性)
の点では従来の溶接材料の方が遥かに優れていた。However, the welding materials that are essential for manufacturing IHX have a fairly serious problem in terms of creep ductility, but the reality is that improvements have not been successful and there have not been many studies. Under these circumstances, reports have been attracting attention that the creep rupture ductility, which is a drawback of conventional welding materials, can be significantly improved by adding B, Zr, Y, etc. singly or in combination, but weldability (e.g. (hot cracking resistance)
Conventional welding materials were far superior in this respect.
一本発明は上記事情に鑑みてなされたもので、クリープ
破断延性に優れ、且つ溶接性も良好なハステロイX用の
溶接材料を得ようとして為さ机たものである。The present invention was made in view of the above-mentioned circumstances, and was made in an attempt to obtain a welding material for Hastelloy X that has excellent creep rupture ductility and good weldability.
即ち、本発明は
C:O,04〜0.15重量%、
Cr : 20.O〜25.0重量%、Fe : 17
.O〜20.0重量%、Mo:8.O〜10.0重量%
、
W:O,2〜1.0重量%、
Mn :O,4〜1.5重量%、
Si :O,05〜0.5重量%、
CO:O,5〜2.5重量%
の成分を含有すると共に、
B :O,02重量%以下、
Zr :O,05重量%以下、
MU :O,02重量%以下、
Ca :0.02重量%以下、
希土類元素:O,02重口%以下
としたことを特徴とするクリープ破断延性の優れた溶接
材料である。That is, in the present invention, C: O, 04 to 0.15% by weight, Cr: 20. O~25.0% by weight, Fe: 17
.. O~20.0% by weight, Mo: 8. O~10.0% by weight
, W:O, 2-1.0% by weight, Mn:O, 4-1.5% by weight, Si:O, 05-0.5% by weight, CO:O, 5-2.5% by weight. and contains: B: O, 0.02% by weight or less, Zr: O, 0.05% by weight or less, MU: O, 0.02% by weight or less, Ca: 0.02% by weight or less, rare earth elements: O, 0.2% by weight or less. This is a welding material with excellent creep rupture ductility, characterized by the following:
発明者等は、従来のハステロイX用溶接材料が低クリー
プ破断延性を示ず原因を調査するために、溶着金属部の
プントライ1〜境界およびデンドライト内部における不
純物元1k (P、 S、 Cu 、 Mn 。In order to investigate the cause of the low creep rupture ductility of conventional welding materials for Hastelloy .
5ietc)の濃縮の有無に注目し、ライン分析により
各元素について調査したところ、Cuについてのみデン
ドライト境界での濃縮が認められた。When each element was investigated by line analysis, paying attention to the presence or absence of enrichment of 5ietc), enrichment at the dendrite boundary was observed only for Cu.
そこで、GOの含有量を従来の溶接材料(0,1重量%
)よりも少なくした溶接材料を製造して検討した結果、
Culを0.05重量%とするこによってクリープ破断
延性は1桁以上改善され、更に0.01重口%にすると
母材(ハステロイX)のクリープ破断延性の2/3にま
で改善されることを見出し、上記本発明に至ったもので
ある。Therefore, we decided to change the GO content to the conventional welding material (0.1% by weight).
) As a result of manufacturing and considering welding material with less than
By setting Cul to 0.05% by weight, the creep rupture ductility is improved by more than one order of magnitude, and by further increasing it to 0.01% by weight, the creep rupture ductility is improved to 2/3 of that of the base material (Hastelloy X). This discovery led to the above-mentioned present invention.
本発明において、Cu以外の成分についてその範囲を限
定した理由は次の通りである。In the present invention, the reason why the range of components other than Cu is limited is as follows.
[C] :0.04〜0.15重量%
合金の素地強化と共に組織の安定性の点から0゜04%
とする必要があり、他方、0.15%を越えると塑性加
工上の困難が生じるからである。[C]: 0.04 to 0.15% by weight 0°04% from the viewpoint of strengthening the alloy matrix and stabilizing the structure
On the other hand, if it exceeds 0.15%, difficulties arise in plastic working.
[Cr ] : 20.O〜25.0重量%20%未満
では高温での安定した耐酸化性を確保できず、他方、2
5%を越えると機械的強度および加工性が劣化するから
である。[Cr]: 20. O ~ 25.0% by weight If it is less than 20%, stable oxidation resistance at high temperatures cannot be ensured;
This is because if it exceeds 5%, mechanical strength and workability deteriorate.
[Fe ] : 17.0〜20.0重量%熱間加工性
および冷間加工性を改善するには17%以上の含有量を
必要とし、他方20%以上になると耐酸化性が劣化する
からである。[Fe]: 17.0 to 20.0% by weight To improve hot workability and cold workability, a content of 17% or more is required, and on the other hand, if it exceeds 20%, oxidation resistance deteriorates. It is.
[Mo ] :8.O〜10重量%
高温強度と塑性加工性とを両立させるために、上記の範
囲に限定する必要があるからである。[Mo]:8. O to 10% by weight This is because it is necessary to limit the content to the above range in order to achieve both high temperature strength and plastic workability.
[W] :O,2〜i、o型口%
WはMOと同様に高温強度を向上させるが、0゜2%未
満ではその作用が充分でなく、また、1%を越えてもよ
り一層の効果がないからである。[W]: O, 2 to i, o-type mouth% W improves high temperature strength like MO, but its effect is not sufficient when it is less than 0°2%, and even more so when it exceeds 1%. This is because there is no effect.
[Mn ] :低酸化ポテンシャル雰囲気中での耐蝕性
に寄与するMnCr204を生成するに必要な含有量が
0.4%以上であり、また1、5%を越えると高温加工
性を劣化させるからである。[Mn]: The content necessary to generate MnCr204, which contributes to corrosion resistance in a low oxidation potential atmosphere, is 0.4% or more, and if it exceeds 1.5%, high temperature workability will deteriorate. be.
[31] :O,05〜0.5重量%
S1をMnと共存させると酸化膜の剥離が抑制されるこ
とが知られており、その最適含有量が0゜05〜0.5
%だからである。[31]: O, 0.05~0.5% by weight It is known that when S1 coexists with Mn, peeling of the oxide film is suppressed, and its optimum content is 0.05~0.5% by weight.
%.
[CO’l :0.5〜2.5重量%
C0はMoと同様に高温強度を向上させるが、0.5%
未満ではその作用が充分でなく、また2゜5%を越えて
含有させてもより一層の効果が19られないからである
。[CO'l: 0.5 to 2.5% by weight CO improves high temperature strength like Mo, but 0.5%
This is because if the content is less than 2.5%, the effect will not be sufficient, and if the content exceeds 2.5%, no further effect will be obtained.
[B、Zr 、Mu 、Ca 、希土類元素]これらの
成分の内には微量で色々な特性を改善する効果をもつも
のもあるが、何れの場合にも、B :O,02重畿%、
Zr :O,05重量%、
fvlg:O,02重量%、
Ca :0.02重量%、
希土類元素:0.02重量%
を夫々越えると、熱間加工性や溶接性を損うからである
。[B, Zr, Mu, Ca, rare earth elements] Some of these components have the effect of improving various properties in trace amounts, but in any case, B:O,02%, This is because if the content exceeds Zr: O, 05% by weight, fvlg: O, 02% by weight, Ca: 0.02% by weight, and rare earth element: 0.02% by weight, hot workability and weldability are impaired.
[AI ] :O,1ii1%以下
脱酸剤としての効果があるが、−残留する場合、粒界腐
蝕の懸念があるからである。[AI]: O, 1ii 1% or less It is effective as a deoxidizing agent, but if it remains, there is a concern about intergranular corrosion.
[Ti ] :O,02重量%以下
限定理由はA1の場合と同じであるが、更に厳しい制限
が必要とされるからである。[Ti]:O, 0.2% by weight or less The reason for the limitation is the same as in the case of A1, but it is because a stricter limitation is required.
以下に本発明の詳細な説明する。The present invention will be explained in detail below.
実施例1〜3
夫々第1表に示す最終化学成分をもつように原料を配合
し、これを真空高周波誘導炉で溶製した。Examples 1 to 3 Raw materials were blended to have the final chemical components shown in Table 1, and melted in a vacuum high-frequency induction furnace.
1亀られたインゴットに均質化処理を施した後、該イン
ゴットを鍛造圧延して厚さ1.5#lの板に加工し、更
にこれを1.5M口の角材に切断して溶接棒を製作した
。1. After homogenizing the crushed ingot, the ingot was forged and rolled into a plate with a thickness of 1.5#l, which was further cut into 1.5M square pieces to form a welding rod. Manufactured.
比較例
第1表に示し最終化学成分組成(従来の溶接材料と同じ
)をもつように原料を配合し、その後は実施例1〜3の
場合と同様にして1.5M口の溶接棒を作製した。Comparative Example Raw materials were mixed to have the final chemical composition (same as conventional welding materials) shown in Table 1, and then a 1.5M welding rod was produced in the same manner as in Examples 1 to 3. did.
上記実施例1〜3及び比較例で作製された溶接棒の夫々
について、次の同じ試験を行なった。The following same tests were conducted on each of the welding rods produced in Examples 1 to 3 and Comparative Example.
まず、上記の溶接棒を用い、ハステロイXの鋼片を手動
TIG溶接(Tungusten Inert Qas
溶接)により溶接して14#IφX 90 gun l
の全溶着部試験片を製作した。これらの試験片について
、950℃X 2 、70に9/mm”、条件でクリー
プ破断試験を行ない、クリープ破断伸びEL(%)及び
クリープ破断時間tγ(Hr)を測定したところ、添附
の図面に示す結果が得られた。この結果から、Cuの含
有量を0.05重量%とじた実施例1の溶接材料でも、
クリープ破断伸びが従来の溶接金属に比較して1桁以上
改善されていることが判る。First, using the above welding rod, a steel piece of Hastelloy X was manually TIG welded (Tungusten Inert Qas
Welding) by welding 14#IφX 90 gun l
A full weld test piece was fabricated. A creep rupture test was conducted on these test pieces under the conditions of 950°C The results shown are as follows.From these results, even in the welding material of Example 1 with a Cu content of 0.05% by weight,
It can be seen that the creep rupture elongation is improved by more than one order of magnitude compared to conventional weld metal.
また、Cu含有量を夫々0.03%、0.01%とした
実施例2及び実施例3では更に良好な結果が得られ、特
に、実施例3では母材のクリープ破断延性の2/3まで
に改善されていることが判る。In addition, even better results were obtained in Example 2 and Example 3 where the Cu content was 0.03% and 0.01%, respectively. In particular, in Example 3, 2/3 of the creep rupture ductility of the base metal It can be seen that it has been improved.
以上詳述したように、本発明によれば、クリープ破断延
性の優れた溶接材料、特に、多目的高温ガス実験炉にお
ける中間熱交換器の溶接に適した溶接材料を提供できる
ものである。As detailed above, according to the present invention, it is possible to provide a welding material with excellent creep rupture ductility, particularly a welding material suitable for welding an intermediate heat exchanger in a multi-purpose high-temperature gas experimental reactor.
添附の図面は、本発明の実施例になる溶接材料および従
来の溶接材料について行なった比較試験の結果を示す線
図である。
出願人復代理人 弁理士 鈴江武彦The accompanying drawings are diagrams showing the results of comparative tests conducted on welding materials according to embodiments of the present invention and conventional welding materials. Applicant Sub-Agent Patent Attorney Takehiko Suzue
Claims (1)
.O〜20.0重量%、Mo:8.O〜10.0重量%
、 W:O,2〜1.0重量%、 Mn :O,4〜1.5重口%、 Si :O,05〜0.5重」%、 CO:O,5〜2.5重量% の成分を含有すると共に、 B :0.02重量%以下、 Zr :O,05重量%以下、 Mu :0.02重量%以下、 Ca:0.02重量%以下、 希土類元素:0.02重量%以下 のうちの1種または2種以上を含有し、−残部がNbお
よび不可避的不純物からなる組成であっ“C1且つ不可
避的不純物としてのAI、”liおよびCUの含有量を
、夫々 AI:O,1重量%以下、 Ti :O,02重量%未満、 Cu :O,05重量%以下 としたことを特徴とするクリープ破断延性の優れた溶接
材料。[Claims] C: O, 04 to 0.15% by weight, Cr: 20. O~25.0% by weight, Fe: 17
.. O~20.0% by weight, Mo: 8. O~10.0% by weight
, W: O, 2-1.0% by weight, Mn: O, 4-1.5% by weight, Si: O, 05-0.5% by weight, CO: O, 5-2.5% by weight Contains the following components: B: 0.02% by weight or less, Zr: O, 05% by weight or less, Mu: 0.02% by weight or less, Ca: 0.02% by weight or less, Rare earth element: 0.02% by weight % or less, with the remainder consisting of Nb and unavoidable impurities. A welding material having excellent creep rupture ductility, characterized in that O: 1% by weight or less, Ti: O: less than 0.02% by weight, and Cu: O: 0.5% by weight or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24262683A JPS60133996A (en) | 1983-12-22 | 1983-12-22 | Welding material having excellent creep rupture ductility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24262683A JPS60133996A (en) | 1983-12-22 | 1983-12-22 | Welding material having excellent creep rupture ductility |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60133996A true JPS60133996A (en) | 1985-07-17 |
Family
ID=17091849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24262683A Pending JPS60133996A (en) | 1983-12-22 | 1983-12-22 | Welding material having excellent creep rupture ductility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60133996A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1095414C (en) * | 2000-09-08 | 2002-12-04 | 北京工业大学 | Aged hardened toolsteel tungsten argon arc welding metal powder core surfacing welding rod |
US20120267420A1 (en) * | 2011-03-23 | 2012-10-25 | Justin Lee Cheney | Fine grained ni-based alloys for resistance to stress corrosion cracking and methods for their design |
US9738959B2 (en) | 2012-10-11 | 2017-08-22 | Scoperta, Inc. | Non-magnetic metal alloy compositions and applications |
US9802387B2 (en) | 2013-11-26 | 2017-10-31 | Scoperta, Inc. | Corrosion resistant hardfacing alloy |
CN108161278A (en) * | 2018-01-22 | 2018-06-15 | 太原理工大学 | High entropy flux-cored wire for aluminium-steel MIG welding and preparation method thereof |
US10100388B2 (en) | 2011-12-30 | 2018-10-16 | Scoperta, Inc. | Coating compositions |
US10105796B2 (en) | 2015-09-04 | 2018-10-23 | Scoperta, Inc. | Chromium free and low-chromium wear resistant alloys |
US10173290B2 (en) | 2014-06-09 | 2019-01-08 | Scoperta, Inc. | Crack resistant hardfacing alloys |
US10329647B2 (en) | 2014-12-16 | 2019-06-25 | Scoperta, Inc. | Tough and wear resistant ferrous alloys containing multiple hardphases |
US10345252B2 (en) | 2013-10-10 | 2019-07-09 | Scoperta, Inc. | Methods of selecting material compositions and designing materials having a target property |
US10465267B2 (en) | 2014-07-24 | 2019-11-05 | Scoperta, Inc. | Hardfacing alloys resistant to hot tearing and cracking |
US10465269B2 (en) | 2014-07-24 | 2019-11-05 | Scoperta, Inc. | Impact resistant hardfacing and alloys and methods for making the same |
US10851444B2 (en) | 2015-09-08 | 2020-12-01 | Oerlikon Metco (Us) Inc. | Non-magnetic, strong carbide forming alloys for powder manufacture |
US10954588B2 (en) | 2015-11-10 | 2021-03-23 | Oerlikon Metco (Us) Inc. | Oxidation controlled twin wire arc spray materials |
US11279996B2 (en) | 2016-03-22 | 2022-03-22 | Oerlikon Metco (Us) Inc. | Fully readable thermal spray coating |
US11939646B2 (en) | 2018-10-26 | 2024-03-26 | Oerlikon Metco (Us) Inc. | Corrosion and wear resistant nickel based alloys |
US12076788B2 (en) | 2019-05-03 | 2024-09-03 | Oerlikon Metco (Us) Inc. | Powder feedstock for wear resistant bulk welding configured to optimize manufacturability |
-
1983
- 1983-12-22 JP JP24262683A patent/JPS60133996A/en active Pending
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1095414C (en) * | 2000-09-08 | 2002-12-04 | 北京工业大学 | Aged hardened toolsteel tungsten argon arc welding metal powder core surfacing welding rod |
US20120267420A1 (en) * | 2011-03-23 | 2012-10-25 | Justin Lee Cheney | Fine grained ni-based alloys for resistance to stress corrosion cracking and methods for their design |
US8640941B2 (en) * | 2011-03-23 | 2014-02-04 | Scoperta, Inc. | Fine grained Ni-based alloys for resistance to stress corrosion cracking and methods for their design |
US8973806B2 (en) | 2011-03-23 | 2015-03-10 | Scoperta, Inc. | Fine grained Ni-based alloys for resistance to stress corrosion cracking and methods for their design |
US10100388B2 (en) | 2011-12-30 | 2018-10-16 | Scoperta, Inc. | Coating compositions |
US11085102B2 (en) | 2011-12-30 | 2021-08-10 | Oerlikon Metco (Us) Inc. | Coating compositions |
US9738959B2 (en) | 2012-10-11 | 2017-08-22 | Scoperta, Inc. | Non-magnetic metal alloy compositions and applications |
US11175250B2 (en) | 2013-10-10 | 2021-11-16 | Oerlikon Metco (Us) Inc. | Methods of selecting material compositions and designing materials having a target property |
US10345252B2 (en) | 2013-10-10 | 2019-07-09 | Scoperta, Inc. | Methods of selecting material compositions and designing materials having a target property |
US10495590B2 (en) | 2013-10-10 | 2019-12-03 | Scoperta, Inc. | Methods of selecting material compositions and designing materials having a target property |
US9802387B2 (en) | 2013-11-26 | 2017-10-31 | Scoperta, Inc. | Corrosion resistant hardfacing alloy |
US11130205B2 (en) | 2014-06-09 | 2021-09-28 | Oerlikon Metco (Us) Inc. | Crack resistant hardfacing alloys |
US10173290B2 (en) | 2014-06-09 | 2019-01-08 | Scoperta, Inc. | Crack resistant hardfacing alloys |
US11111912B2 (en) | 2014-06-09 | 2021-09-07 | Oerlikon Metco (Us) Inc. | Crack resistant hardfacing alloys |
US10465267B2 (en) | 2014-07-24 | 2019-11-05 | Scoperta, Inc. | Hardfacing alloys resistant to hot tearing and cracking |
US10465269B2 (en) | 2014-07-24 | 2019-11-05 | Scoperta, Inc. | Impact resistant hardfacing and alloys and methods for making the same |
US10329647B2 (en) | 2014-12-16 | 2019-06-25 | Scoperta, Inc. | Tough and wear resistant ferrous alloys containing multiple hardphases |
US10105796B2 (en) | 2015-09-04 | 2018-10-23 | Scoperta, Inc. | Chromium free and low-chromium wear resistant alloys |
US11253957B2 (en) | 2015-09-04 | 2022-02-22 | Oerlikon Metco (Us) Inc. | Chromium free and low-chromium wear resistant alloys |
US10851444B2 (en) | 2015-09-08 | 2020-12-01 | Oerlikon Metco (Us) Inc. | Non-magnetic, strong carbide forming alloys for powder manufacture |
US10954588B2 (en) | 2015-11-10 | 2021-03-23 | Oerlikon Metco (Us) Inc. | Oxidation controlled twin wire arc spray materials |
US11279996B2 (en) | 2016-03-22 | 2022-03-22 | Oerlikon Metco (Us) Inc. | Fully readable thermal spray coating |
CN108161278B (en) * | 2018-01-22 | 2020-08-28 | 太原理工大学 | High-entropy flux-cored wire for aluminum-steel MIG welding and preparation method thereof |
CN108161278A (en) * | 2018-01-22 | 2018-06-15 | 太原理工大学 | High entropy flux-cored wire for aluminium-steel MIG welding and preparation method thereof |
US11939646B2 (en) | 2018-10-26 | 2024-03-26 | Oerlikon Metco (Us) Inc. | Corrosion and wear resistant nickel based alloys |
US12076788B2 (en) | 2019-05-03 | 2024-09-03 | Oerlikon Metco (Us) Inc. | Powder feedstock for wear resistant bulk welding configured to optimize manufacturability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0016225B1 (en) | Use of an austenitic steel in oxidizing conditions at high temperature | |
JPS60133996A (en) | Welding material having excellent creep rupture ductility | |
CN103866163B (en) | A kind of nickel chromium cobalt molybdenum refractory alloy and tubing manufacturing process thereof | |
US4731221A (en) | Nickel aluminides and nickel-iron aluminides for use in oxidizing environments | |
JP6377124B2 (en) | High strength oxidation resistant Ni-Cr-Co-Mo-Al alloy with workability | |
US4227925A (en) | Heat-resistant alloy for welded structures | |
WO2007119847A1 (en) | WIRE FOR Ni-BASE HEAT-RESISTANT ALLOY WELDING | |
US3366478A (en) | Cobalt-base sheet alloy | |
JPS58125396A (en) | Austenitic welded structure | |
JPH0114305B2 (en) | ||
US4068113A (en) | Bare electrode for welding of low temperature steel | |
US7755001B2 (en) | High Cr Ni-based alloy filler material and welding rod for shielded metal arc welding | |
JP3329261B2 (en) | Welding materials and welded joints for high temperature high strength steel | |
JP2004042116A (en) | WELDING WIRE FOR HIGH Cr FERRITIC HEAT RESISTANT STEEL | |
US3514284A (en) | Age hardenable nickel-iron alloy for cryogenic service | |
JPS58202993A (en) | Welding wire rod of stainless steel | |
JPS60231591A (en) | Wire for submerged arc welding of cr-mo group low alloy steel | |
US5425912A (en) | Low expansion superalloy with improved toughness | |
JP3424314B2 (en) | Heat resistant steel | |
JPH07100688A (en) | Tig welding wire for high-strength cr-mo steel | |
JPS631387B2 (en) | ||
US5141704A (en) | Nickel-chromium-tungsten base superalloy | |
JPS62110894A (en) | Welding wire for nonmagnetic steel | |
JPS6046353A (en) | Heat resistant steel | |
US5449490A (en) | Nickel-chromium-tungsten base superalloy |