JPS60131865A - Manufacture of silicon nitride ceramics - Google Patents
Manufacture of silicon nitride ceramicsInfo
- Publication number
- JPS60131865A JPS60131865A JP58241378A JP24137883A JPS60131865A JP S60131865 A JPS60131865 A JP S60131865A JP 58241378 A JP58241378 A JP 58241378A JP 24137883 A JP24137883 A JP 24137883A JP S60131865 A JPS60131865 A JP S60131865A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- nitride ceramics
- producing
- oxide
- producing silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は窒化ケイ素セラミックスの製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing silicon nitride ceramics.
窒化ケイ素を主成分としてなる焼結体(窒化ケイ素セラ
ミックス)は、1900℃程度の高温にまで耐えるとい
う優れた耐熱性を有すると共に、熱膨張係数が低く、優
れた耐熱衝撃性も備えている。こうした窒化ケイ素セラ
ミックスは、ディーゼルエンジン、ガスタービン等の高
温時に高強度が要求される構造部品や耐食、耐摩耗部品
への応用が試みられている。Sintered bodies containing silicon nitride as a main component (silicon nitride ceramics) have excellent heat resistance, being able to withstand high temperatures of about 1900°C, and also have a low coefficient of thermal expansion and excellent thermal shock resistance. Attempts are being made to apply these silicon nitride ceramics to structural parts that require high strength at high temperatures, such as diesel engines and gas turbines, as well as corrosion-resistant and wear-resistant parts.
ところで、窒化ケイ素セラミックスの製造方法としては
、従来よシ窒化ケイ素が単独では焼結しにくいために、
これに希土類元素酸′化物やマグネシア等の助剤を添加
物として加え、常圧焼結、ホットプレス、HIPなどの
緻密化焼結を行なう方法が採用されている。By the way, as for the manufacturing method of silicon nitride ceramics, since silicon nitride is difficult to sinter by itself,
A method of adding auxiliary agents such as rare earth element oxides and magnesia as additives and performing densification sintering such as pressureless sintering, hot pressing, and HIP is employed.
窒化ケイ素セラミックスを構造材料として用いる場合は
、常温及び高温での強度もさるととなから、高度な均質
化が要求される。しかしながら、上述した従来方法では
高度に均質化した窒化ケイ素セラミックスを製造するこ
とは至難であった。When silicon nitride ceramics are used as a structural material, a high degree of homogenization is required, especially in terms of strength at room and high temperatures. However, it is extremely difficult to produce highly homogenized silicon nitride ceramics using the conventional methods described above.
本発明は高耐熱性、高強度性はもとより、強度が均質化
された窒化ケイ素セラミックスの製造方法を提供しよう
とするものである。The present invention aims to provide a method for producing silicon nitride ceramics that have not only high heat resistance and high strength but also uniform strength.
本発明者は以下に説明する研究によシ高度に均質化され
た窒化ケイ素セラミックスを製造し得る方法を開発した
。Through the research described below, the present inventors have developed a method for producing highly homogenized silicon nitride ceramics.
α窒化ケイ素(α−81sNa )−希土類元素酸化物
系を焼結すると、α→βの変換時に結晶粒が長柱状に成
長して強度が向上することが知られている。しかしなが
ら、かかる結晶粒の成長においてアスペクト比を制御す
るととは大変難しく、強度は特に長手方向の結晶粒径で
決定されるので、必然的にばらつきが生じる。It is known that when an α-silicon nitride (α-81sNa)-rare earth element oxide system is sintered, crystal grains grow into long columnar shapes during the conversion from α to β, resulting in improved strength. However, it is very difficult to control the aspect ratio in the growth of such crystal grains, and since the strength is determined particularly by the crystal grain size in the longitudinal direction, variations inevitably occur.
このようなことから、本発明者らはα−8i3N4と希
土類元素酸化物系の混合物を仮焼1−てα→βの変換を
行なって長柱状に結晶粒を成長させた後、この仮焼物を
粉砕してアスペクト比を揃えることを行なった。しかし
ながら、アスペクト比を単に揃えた仮焼粉末を焼結して
もかならずしも高度に均質化された窒化ケイ素セラミッ
クスを得ることはできなかった。Based on this, the present inventors calcined a mixture of α-8i3N4 and rare earth element oxides to convert α→β and grow crystal grains in the form of long columns. I crushed it to make the aspect ratio the same. However, it has not been possible to obtain highly homogenized silicon nitride ceramics by simply sintering calcined powders with the same aspect ratio.
そこで、本発明者らは仮焼物の粉砕物について粒成長を
鋭意検討した結果、仮焼時の岬の比率が顕著に影響する
ことを究明し、これに基づいてΦ1の比率を1〜0.1
に規定し、これを粉砕した粉末を用いて再焼結を行なっ
たところ、強度のばらつきのない高均質な窒化ケイ素セ
ラミックスが得られることを見い出した。Therefore, the present inventors conducted a thorough study on the grain growth of the crushed calcined material and found that the ratio of the cape at the time of calcining has a significant effect, and based on this, the ratio of Φ1 was set to 1 to 0. 1
By re-sintering the pulverized powder, it was found that highly homogeneous silicon nitride ceramics with uniform strength could be obtained.
以下、本発明の製造方法を詳細に説明する。The manufacturing method of the present invention will be explained in detail below.
まず、α含有率が80チ以上、好ましくは85チ以上の
窒化ケイ素粉末を用意する。この窒化ケイ素粉末は平均
粒径が2μm以下、好ましくは061〜1μmのものを
選ぶことが望ましい。First, silicon nitride powder having an alpha content of 80 inches or more, preferably 85 inches or more is prepared. It is desirable to select a silicon nitride powder having an average particle diameter of 2 μm or less, preferably 0.61 to 1 μm.
つづいて、この窒化ケイ素粉末に添加物を加えて原料粉
末を調製する。添加物としては、希土類元素酸化物単独
、或いは希土類元素酸化物とアルミナ、マグネシア、窒
化アルミニウム、酸化鉄、酸化チタン、酸化ジルコニウ
ム及び炭化モリブデンから選ばれる少なくとも1極との
混合物等が用いられる。こうした添加物の窒化シリコン
粉末への配合量は15重量%以下、特に前記混合物を用
いる場合は希土類元素酸化物の量を8重量%以下にする
ことが好ましい。なお、添加物の粒径は1μm以下のも
のを用いればよい。Subsequently, additives are added to this silicon nitride powder to prepare raw material powder. As the additive, a rare earth element oxide alone or a mixture of a rare earth element oxide and at least one electrode selected from alumina, magnesia, aluminum nitride, iron oxide, titanium oxide, zirconium oxide, and molybdenum carbide is used. The amount of these additives added to the silicon nitride powder is preferably 15% by weight or less, and particularly when the above mixture is used, the amount of rare earth element oxide is preferably 8% by weight or less. Note that the particle size of the additive may be 1 μm or less.
次いで、前記原料粉末を仮焼してΦq比率を1〜0.1
にまで変換する。仮焼によるα〃比率を限定した理由は
その比率が1を越えると、再焼結に際し、残存したα−
8l、N4のβへの変換によって長柱状粒成長が生じ易
くなシ、強度のばらつきが大きくなる。かといって、そ
の比率を0.1未満にすると、得られた窒化ケイ素セラ
ミックスの強度低下を招く。なお、仮焼条件は窒素気流
中、1600〜1850℃、好ましくは1700〜18
00℃に設定することが望ましい。仮焼時の温度を16
00℃未満にすると、α−813N4からβ−813N
4への変換が遅く、粒成長も遅くなシ、かといって18
50℃を越えると、513N4が分解し始じめる。Next, the raw material powder is calcined to have a Φq ratio of 1 to 0.1.
Convert to . The reason for limiting the α ratio due to calcination is that if the ratio exceeds 1, residual α-
The conversion of 8l and N4 to β makes long columnar grain growth less likely to occur and increases the variation in strength. However, if the ratio is less than 0.1, the strength of the obtained silicon nitride ceramics will decrease. The calcination conditions are 1600 to 1850°C, preferably 1700 to 18°C in a nitrogen stream.
It is desirable to set the temperature to 00°C. Temperature during calcination is 16
When the temperature is below 00℃, α-813N4 to β-813N
The conversion to 4 is slow and the grain growth is slow, but 18
When the temperature exceeds 50°C, 513N4 begins to decompose.
次いで、前記仮焼物を粉砕する。この時の粒径は1〜5
0μmにすることが望ましい。この理由は粉砕粉末の粒
径を1μm未満にすると、アスペクト比が小さくなって
強度向上が難しくなシ、かといってその粒径が50μm
を越えると、欠陥が大きくなって強度低下を招き易くな
る。Next, the calcined product is pulverized. The particle size at this time is 1 to 5
It is desirable to set it to 0 μm. The reason for this is that if the particle size of the crushed powder is less than 1 μm, the aspect ratio will become smaller and it will be difficult to improve the strength.
If it exceeds this value, defects will become large and strength will tend to deteriorate.
次いで、仮焼物の粉砕粉末を用すて常圧焼結成いはホッ
トプレスを行なって窒化ケイ素セラミックスを製造する
。この再焼結に際しては1700〜1820℃の温度下
にて行なうことが好ましく、1700℃未満では焼結が
十分に進まず、一方1820℃を越えると、513N4
の分解が起こシ始じめる。なお、再焼結としてHIPや
雰囲気加圧を採用する場合は、更に高温側での処理が可
能となる。Next, pressureless sintering and hot pressing are performed using the pulverized powder of the calcined product to produce silicon nitride ceramics. It is preferable to carry out this resintering at a temperature of 1700 to 1820°C; below 1700°C, sintering will not proceed sufficiently; on the other hand, if it exceeds 1820°C, 513N4
decomposition begins to occur. Note that when HIP or atmospheric pressure is used for resintering, processing at an even higher temperature is possible.
次に、本発明の詳細な説明する。 Next, the present invention will be explained in detail.
実施例1
まず、平均粒径1.0μm1α含有率92%のSi3N
4粉末92重量%と平均粒径0.9 ttmのY2O。Example 1 First, Si3N with an average particle size of 1.0 μm and a 1α content of 92%
4 powder 92% by weight and an average particle size of 0.9 ttm Y2O.
粉末5重量%と平均粒径0.3μmの”2o5 粉末3
重量%とを混合して原料粉末を調製した。つづいて、こ
の原料粉末を窒素気流中で1700℃の温度にて30分
間仮焼した。この仮焼物はつ1の比率が0.8のもので
あった。次いで、仮焼物を平均粒径5.8μmにまで粉
砕した後、この粉砕粉末を1780℃、300 kFl
/cm2の条件で90分間ポットプレスして窒化ケイ素
セラミックスを製造した。"2o5 powder 3 with 5% powder by weight and average particle size 0.3 μm
A raw material powder was prepared by mixing % by weight. Subsequently, this raw material powder was calcined at a temperature of 1700° C. for 30 minutes in a nitrogen stream. This calcined product had a ratio of 1 to 1 of 0.8. Next, after pulverizing the calcined material to an average particle size of 5.8 μm, the pulverized powder was heated at 1780°C and 300 kFl.
Silicon nitride ceramics were produced by pot pressing for 90 minutes under the condition of /cm2.
得られた窒化ケイ素セラミックスは密度が3.24 &
/、、cであった。The obtained silicon nitride ceramic has a density of 3.24 &
/,,c.
また、窒化ケイ素セラミックスを3X4X36wnの寸
法に切シ出し、この試験片について3点曲げ強度(σ”
) 、 h)を測定したところ、’ B 7 =85k
g/wn2、ワイプル係数GTI)=21で、がっσ1
20 、O= ” 2に97wn2、m=27と極めて
高強度で、高均質性のものであることがわかった。In addition, silicon nitride ceramics was cut into a size of 3X4X36wn, and the three-point bending strength (σ”
), h) was measured, 'B 7 =85k
g/wn2, Wipul coefficient GTI) = 21, and σ1
20, O=”2, 97wn2, m=27, and was found to have extremely high strength and high homogeneity.
実施例2
実施例1と同様な原料粉末を温度条件を変えて仮焼しΦ
1の比率が1 、0.6 、0.4 ’、 0.2 。Example 2 The same raw material powder as in Example 1 was calcined under different temperature conditions.
The ratio of 1 is 1, 0.6, 0.4', 0.2.
0.1の仮焼物を作製した後、これら仮焼物を実施例1
と同様な処理を施して5種の窒化ケイ素セラミックスを
製造した。After producing calcined products of 0.1, these calcined products were prepared in Example 1.
Five types of silicon nitride ceramics were manufactured by performing the same treatment as above.
得られたセラミックスの3点曲げ強度を測定し、その結
果を下記表に示した。The three-point bending strength of the obtained ceramics was measured, and the results are shown in the table below.
表
実施例7
実施例1と同組成の原料粉末を仮焼してΦ1=0.7の
仮焼物としだ後、この仮焼物を平均粒径1,5μmの粉
砕した。つづいて、この粉砕粉末にA/Nを2重量%添
加した後、成形し、更に窒素雰囲気中で1800℃、2
時間常圧焼結して窒化ケイ素セラミックスを製造した。Table Example 7 Raw material powder having the same composition as in Example 1 was calcined to obtain a calcined product with Φ1=0.7, and this calcined product was pulverized to an average particle size of 1.5 μm. Subsequently, after adding 2% by weight of A/N to this pulverized powder, it was molded, and further heated at 1800°C for 20 minutes in a nitrogen atmosphere.
Silicon nitride ceramics were produced by pressureless sintering.
得られたセラミックスはσRT = 78 kg/an
、 m=19と極めて高均質のものであった。The obtained ceramic has σRT = 78 kg/an
, m=19, which was extremely homogeneous.
以上詳述した如く、本発明によれば高耐熱性、高強度性
はもとよシ、強度が均質化されたディーゼルエンジン、
ガスタービン等の構造材料として有効な窒化ケイ素セラ
ミックスの製造方法を提供できる。As detailed above, according to the present invention, the diesel engine has not only high heat resistance and high strength, but also has uniform strength.
A method for manufacturing silicon nitride ceramics that is effective as a structural material for gas turbines and the like can be provided.
Claims (7)
素セラミックスの製造において、α含有率が80チ以上
の窒化ケイ素に添加物を混合する工程と、この混合物を
仮焼してΦq比率を1〜0.1にまで変換する工程と、
この仮焼物を粉砕した後、再焼結する工程とを具備した
ことを特徴とする窒化ケイ素セラミックスの製造方法。(1) In the production of silicon nitride ceramics consisting of a silicon nitride-additive sintered body, there is a step of mixing additives into silicon nitride with an α content of 80 or more, and calcining this mixture to increase the Φq ratio. a step of converting from 1 to 0.1;
A method for producing silicon nitride ceramics, comprising the steps of pulverizing the calcined material and then resintering it.
る特許請求の範囲第1項記載の窒化ケイ素セラミックス
の製造方法。(2) The method for producing silicon nitride ceramics according to claim 1, wherein the additive is a rare earth element oxide.
シア、窒化アルミニウム、酸化鉄、酸化チタン、酸化ジ
ルコニウム、及び炭化モリプデ/から選ばれる少なくと
も11[Iとの混合物であることを特徴とする特許請求
の範囲第1項記載の窒化ケイ素セラミックスの製造方法
。(3) A patent characterized in that the additive is a mixture of a rare earth element oxide and at least 11[I] selected from alumina, magnesia, aluminum nitride, iron oxide, titanium oxide, zirconium oxide, and molypide/carbide. A method for producing silicon nitride ceramics according to claim 1.
で行なうことを特徴とする特許請求の範囲第1項記載の
窒化ケイ素セラミ、クスの製造方法。(4) The method for producing a silicon nitride ceramic or wax according to claim 1, wherein the calcination is performed in a nitrogen stream at a temperature of 1,600 to 1,800°C.
とを特徴とする特許請求の範囲第1項記載の窒化ケイ素
セラミックスの製造方法。(5) The method for producing silicon nitride ceramics according to claim 1, wherein the calcined material is pulverized to have a grain size of 1 to 20 μm.
求の範囲第1項記載の窒化ケイ素セラミックスの製造方
法。(6) The method for producing silicon nitride ceramics according to claim 1, wherein the resintering is pressureless sintering.
許請求の範囲第1項記載の窒化ケイ素セラミックスの製
造方法。(7) The method for producing silicon nitride ceramics according to claim 1, wherein the resintering is hot-breathing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58241378A JPS60131865A (en) | 1983-12-21 | 1983-12-21 | Manufacture of silicon nitride ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58241378A JPS60131865A (en) | 1983-12-21 | 1983-12-21 | Manufacture of silicon nitride ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60131865A true JPS60131865A (en) | 1985-07-13 |
JPS6337064B2 JPS6337064B2 (en) | 1988-07-22 |
Family
ID=17073389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58241378A Granted JPS60131865A (en) | 1983-12-21 | 1983-12-21 | Manufacture of silicon nitride ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60131865A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297269A (en) * | 1986-06-16 | 1987-12-24 | 住友電気工業株式会社 | Silicon nitride sintered body and manufacture |
US4880756A (en) * | 1987-09-02 | 1989-11-14 | Ngk Spark Plug Co., Ltd. | Silicon nitride sintered product |
US4892848A (en) * | 1985-07-30 | 1990-01-09 | Kyocera Corporation | Silicon nitride sintered body and process for preparation thereof |
US5030599A (en) * | 1990-07-19 | 1991-07-09 | W. R. Grace & Co.-Conn. | Silicon nitride sintered materials |
US5049531A (en) * | 1988-09-09 | 1991-09-17 | Ngk Spark Plug Co., Ltd. | Silicon nitride sintered body |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151371A (en) * | 1982-02-25 | 1983-09-08 | 住友電気工業株式会社 | Manufacture of silicon nitride sintered body |
-
1983
- 1983-12-21 JP JP58241378A patent/JPS60131865A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151371A (en) * | 1982-02-25 | 1983-09-08 | 住友電気工業株式会社 | Manufacture of silicon nitride sintered body |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4892848A (en) * | 1985-07-30 | 1990-01-09 | Kyocera Corporation | Silicon nitride sintered body and process for preparation thereof |
JPS62297269A (en) * | 1986-06-16 | 1987-12-24 | 住友電気工業株式会社 | Silicon nitride sintered body and manufacture |
US4880756A (en) * | 1987-09-02 | 1989-11-14 | Ngk Spark Plug Co., Ltd. | Silicon nitride sintered product |
US5049531A (en) * | 1988-09-09 | 1991-09-17 | Ngk Spark Plug Co., Ltd. | Silicon nitride sintered body |
US5030599A (en) * | 1990-07-19 | 1991-07-09 | W. R. Grace & Co.-Conn. | Silicon nitride sintered materials |
Also Published As
Publication number | Publication date |
---|---|
JPS6337064B2 (en) | 1988-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5823345B2 (en) | Method for manufacturing ceramic sintered bodies | |
JPS6051655A (en) | Manufacture of ceramic sintered body | |
JPS6054976A (en) | Silicon nitride sintered body and manufacture | |
JPS638071B2 (en) | ||
CN108863393A (en) | A kind of preparation method of high thermal conductivity and high-intensitive aluminium nitride ceramics | |
JPS60131865A (en) | Manufacture of silicon nitride ceramics | |
US5207958A (en) | Pressureless sintering of whisker-toughened ceramic composites | |
US7314593B2 (en) | Process for preparing improved silicon carbide powder | |
JP2526598B2 (en) | Method for manufacturing silicon nitride ceramics | |
JP2687632B2 (en) | Method for producing silicon nitride sintered body | |
JPS63147867A (en) | Manufacture of silicon nitride sintered body | |
JPS62275067A (en) | Manufacture of silicon nitride sintered body | |
JPH06279124A (en) | Production of silicon nitride sintered compact | |
JPS6141872B2 (en) | ||
JPH078746B2 (en) | Silicon nitride ceramics and method for producing the same | |
JPS623077A (en) | Manufacture of silicon nitride base sintered body | |
JP2687633B2 (en) | Method for producing silicon nitride sintered body | |
JP3126059B2 (en) | Alumina-based composite sintered body | |
JP3165205B2 (en) | High strength low thermal conductive ceramics and method of manufacturing the same | |
JPS60186469A (en) | Manufacture of silicon nitride sintered body | |
JPH0517210A (en) | Production of alumina-based composite sintered body and the sintered body | |
JP2687634B2 (en) | Method for producing silicon nitride sintered body | |
JP2746760B2 (en) | Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same | |
JPH0535107B2 (en) | ||
JPH02157112A (en) | Production of silicon nitride raw powder |