[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60138962A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS60138962A
JPS60138962A JP24452383A JP24452383A JPS60138962A JP S60138962 A JPS60138962 A JP S60138962A JP 24452383 A JP24452383 A JP 24452383A JP 24452383 A JP24452383 A JP 24452383A JP S60138962 A JPS60138962 A JP S60138962A
Authority
JP
Japan
Prior art keywords
region
type
drain region
type region
type drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24452383A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Koike
小池 重好
Teisho Omura
大村 禎昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24452383A priority Critical patent/JPS60138962A/en
Publication of JPS60138962A publication Critical patent/JPS60138962A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To enable to form ohmic contacts with favorable wirings by a method wherein each barrier layer of a high-melting point metal silicide is selectively formed in contact windows provided in n type semiconductor regions (each inclusive of both of a single crystal region and a polycrystalline region), and after that, metal wirings are performed. CONSTITUTION:A p type source region 3 and a p type drain region 4 are formed in a region surrounded with the field oxide films 2 of an n type silicon single crystal substrate 1, while a big p type well 5 is formed in another region surrounded with one of the field oxide films 2 and another field oxide film 2 and an n type source region 6 and an n type drain region 7 are formed. A molybdenum layer 11 is ashered on the whole surface, a resist 12 is applied thereon, and apertures are respectively provided selectively on the n type source region 6, the n type drain region 7 and gate electrodes 9 of polycrystalline silicon by performing a patterning. After a condition that a reaction of molybdenum and silicon is easy to generate has been brought by ion-implanting arsenic, an annealing is performed and barrier layers 13 are respectively formed on the n type source region 6, the n type drain region 7 and the gate electrodes 9. Aluminum layers (each an alloy containing silicon of 1%) 14 are respectively adhered on the p type drain region 3, the p type drain region 4, the n type source region 6, the n type drain region 7 and the gate electrodes 9, and metal wirings (electrodes) are formed by performing a patterning.

Description

【発明の詳細な説明】 発明の技術分野 本発明は半導体装置およびその製造方法、特にC −M
O S ( Complementary Metal
 OxideSemiconductor )タイプの
半導体装置の′#i.極形成方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, particularly C-M
OS (Complementary Metal
Oxide Semiconductor) type semiconductor device'#i. This relates to a method of forming poles.

従来技術と問題点 C−MO8集積回路( IC)は低消費算、力、高速と
いう特長を有しているので、盛んに開発が進められてい
る。しかし、C−MO8 ICLv%,極形成には問題
がある。C−MOS ICは、例えば、n形単結晶シリ
コン基板内にp形のソース領域およびドレイン領域を形
成し、その間のチャンネル領域上にゲート酸化膜を介し
てポリシリコンのゲート電極が形成されるとともに、基
板内に大きなp形つェルが形成され、その中にn形のソ
ース領域およびドレイン領域を形成し、その間のチャン
ネル領域上にゲート酸化膜を介してポリシリコンのゲー
ト電極が形成されている。とうしたC−MOSICのp
膨拡散層領域、n形拡散層領、域およびポリシリコン領
域に対してアルミニウム(例えば1チシリコン合金)で
配線を形成すると、コンタクト窓内にアルミニウムがド
ープされたp形のエピタキシャル層が形成されるため、
n膨拡散層領域およびポリシリコン領域において良好な
電気的コンタクトオーミックコンタクトが達成されず、
特にコンタクト窓が小さい場合にこの傾向は著しい。
Prior Art and Problems C-MO8 integrated circuits (ICs) are being actively developed because they have the advantages of low power consumption, power, and high speed. However, there are problems with C-MO8 ICLv% and pole formation. In a C-MOS IC, for example, a p-type source region and a drain region are formed in an n-type single crystal silicon substrate, and a polysilicon gate electrode is formed on a channel region between them with a gate oxide film interposed therebetween. , a large p-type well is formed in the substrate, an n-type source region and a drain region are formed therein, and a polysilicon gate electrode is formed on the channel region between them with a gate oxide film interposed therebetween. There is. Toshita C-MOSIC p
When wiring is formed with aluminum (for example, 1T silicon alloy) for the expansion diffusion layer region, the n-type diffusion layer region, and the polysilicon region, a p-type epitaxial layer doped with aluminum is formed within the contact window. For,
Good electrical contact and ohmic contact are not achieved in the n-swelled diffusion layer region and the polysilicon region,
This tendency is particularly noticeable when the contact window is small.

発明の目的 本発明は、以上の如き従来技術の現状に鑑み、C−MO
Sタイプの半導体装置においてp形およびn形のシリコ
ン領域(ボリン1)コンを含む)に対して配線の良好な
オーミックコンタクトを形成することを目的とする。
Purpose of the Invention In view of the current state of the prior art as described above, the present invention is directed to C-MO
The purpose of this invention is to form ohmic contacts with good wiring to p-type and n-type silicon regions (including BOLIN 1) in an S-type semiconductor device.

発明の構成 上記目的を達成するために、本発明では、n形半導体領
域(単結晶領域および多結晶領域の双方を含む)のコン
タクト窓内に選択的に高融点金属シリサイドのバリヤ層
を形成してから金属配線を行なう。p形波散層領域では
直接に金属(AI−8i) オーミックとコンタクトを
取ることが可能であり、ま□だn影領域でも上記バリヤ
層が存在すれば良好な(抵抗が低くかつ安定な)オーミ
ックコンタクトが達成可能である。高融点金属シリサイ
ドはp影領域とは良好なオーミックコンタクトを形成し
ないので、n影領域に選択的に形成する必要がある。し
かし高融点金属シリサイド層の選択的形成は簡単ではな
く単純な選択的エツチングや単純なリフトオフを利用す
ると位置合わせが増え、工程がますます複雑になる。そ
こで、本発明では、ボンタクト窓開けした基板上の全面
に形成した高融点金属層に選択的に不純物打ち込みを行
なってからアニールし、当該部分を7リサイド化し、シ
リサイド化されなかった残シの高融点金属層を除去する
Structure of the Invention In order to achieve the above object, the present invention selectively forms a barrier layer of a high melting point metal silicide within a contact window of an n-type semiconductor region (including both a single crystal region and a polycrystalline region). Then do the metal wiring. In the p-type scattering layer region, it is possible to make direct contact with the metal (AI-8i) ohmic, and even in the n-shade region, if the above barrier layer exists, it is good (resistance is low and stable). Ohmic contact is achievable. Since high-melting point metal silicide does not form good ohmic contact with the p-shade region, it is necessary to form it selectively in the n-shade region. However, selective formation of a refractory metal silicide layer is not easy, and using simple selective etching or simple lift-off increases alignment, making the process increasingly complex. Therefore, in the present invention, impurities are selectively implanted into the high melting point metal layer formed on the entire surface of the substrate with the bond window opened, and then annealing is performed to convert the relevant portion into 7 silicide, and the remaining portions that have not been silicided are removed. Remove the melting point metal layer.

発明の実施例 本発明をC−MOS )ランジスタに応用する実施例に
ついて説明する。第1図を参照すると、n形シリコン単
結晶基板(リンドーグ、ρ=10Ω・tM)1のフィー
ルド酸化膜2で囲まれた領域内にp形ソース領域3およ
びp形ドレイン領域4(それぞれホウ素ドープ、 I 
X 10”cm−2)が形成されるとともに、フィール
ド酸化膜2で囲まれた別の領域内に大きなp形つェル(
ホウ素ドープ、5X1013cm−2) sが形成され
、その中にn形ソース領域苧およびれ形ドレイン領域7
(それぞれヒ素トーン。
Embodiment of the Invention An embodiment in which the present invention is applied to a C-MOS transistor will be described. Referring to FIG. 1, a p-type source region 3 and a p-type drain region 4 (each boron-doped , I
x 10"cm-2) is formed, and a large p-type well (
Boron-doped, 5X1013 cm-2) is formed in which an n-type source region and a bent drain region 7 are formed.
(Arsenic tone respectively.

4X1 r)”cm−2)が形成されている。また1、
形七よびn形のチャンネル上にはそれぞれゲート酸花膜
8を介してポリシリコン(燐ドープ、15’/gj)に
よるゲート電極9が形成されている。全面を)。
4X1 r)"cm-2) is formed. Also, 1,
Gate electrodes 9 made of polysilicon (phosphorous doped, 15'/gj) are formed on the seven-type and n-type channels, respectively, with a gate acid film 8 interposed therebetween. all over).

PEG膜10が覆っているが、各ソースおよびドレイン
領域3,4,6.7ならびにゲート電極9直本の酸化膜
およびPEG膜10には電極窓が開孔さ娯ている。 i
: 第2図を参照すると、モリブデン層11を全一に厚さ5
0III11程度被着する。その上にレジスト1搦を厚
さ1μm程度に塗布し、パターニングしてnmのソース
領域6およびドレイン領域7の上とポゆシリコンのゲー
ト電極9の上を選択的に開孔す逮。
Although covered with a PEG film 10, electrode windows are formed in each source and drain region 3, 4, 6.7 and the oxide film and PEG film 10 directly on the gate electrode 9. i
: Referring to FIG. 2, the molybdenum layer 11 has a thickness of 5.
Approximately 0III11 adheres. A resist layer of about 1 .mu.m thick is applied thereon and patterned to selectively open holes on the nm-thick source region 6 and drain region 7 and on the polysilicon gate electrode 9.

ヒ素を加速電圧70 keV 、ドース量4 X 10
15cm−″2程度でイオン打ち込みすることによって
、イオン打ち込みした領域のモリブデンとシリコンの反
応を起こり易くする。窒素雰囲気中550℃で30分間
アニールすると、n形ソース領域6.n形ドレイン領域
7およびゲート電極9のコンタクト窓内にモリブデンシ
リサイド(Mo8i2)のバリヤ層13が形成される。
Accelerating arsenic at a voltage of 70 keV and a dose of 4 x 10
By implanting ions at a depth of about 15 cm-2, the reaction between molybdenum and silicon in the ion-implanted region is facilitated. When annealing is performed at 550° C. for 30 minutes in a nitrogen atmosphere, the n-type source region 6, n-type drain region 7 and A barrier layer 13 of molybdenum silicide (Mo8i2) is formed within the contact window of the gate electrode 9.

シリサイド化されなかったモリブデン層11の残シは王
水で選択的に除去できる。
The residue of the molybdenum layer 11 that has not been silicided can be selectively removed with aqua regia.

レジスト12を除去してから、ハロゲンランプで105
0℃、10秒程度のフラッシュアニールf行なう。これ
によってバリヤ層13が完全なシリサイドになる。
After removing the resist 12, the resist 105 is removed using a halogen lamp.
Flash annealing f is performed at 0° C. for about 10 seconds. This makes the barrier layer 13 completely silicided.

第3図を参照すると、アルミニウム層(シリコン1%合
金)14を被着し、パターニングして配線(電極)を形
成する。次いで、450℃、30分間程度のアニールを
行なってp影領域におけるアルミニウムの電気的(オー
ミック)コンタクトを補償する。こうして、p影領域3
,4ではアルミニウムとシリコンが直接に良好な電気的
(オーミツク)コンタクトを形成し、n影領域6,7と
ポリシリコン領域9ではモリブデンシリサイドのバリヤ
層を介してアルミニウムとシリコンの良好な電気的コン
タクトが形成される。
Referring to FIG. 3, an aluminum layer (1% silicon alloy) 14 is deposited and patterned to form wiring (electrodes). Next, annealing is performed at 450° C. for about 30 minutes to compensate for electrical (ohmic) contact with aluminum in the p shadow region. In this way, p shadow region 3
, 4, aluminum and silicon form good electrical (ohmic) contact directly, and in n-shaded regions 6, 7 and polysilicon region 9, good electrical contact is made between aluminum and silicon through a barrier layer of molybdenum silicide. is formed.

なお、バリヤ層としてはモリブデンシリサイドの他タン
グステンシリサイド、タンタルシリサイド、チタンシリ
サイド、等を用いることもできる。
In addition to molybdenum silicide, tungsten silicide, tantalum silicide, titanium silicide, etc. can also be used as the barrier layer.

シリサイド化を促進するために打ち込む不純物は素子特
性に悪影響を与えないものであれば何でもよい。
Any impurity implanted to promote silicidation may be used as long as it does not adversely affect device characteristics.

発明の効果 以上の説明から明らかなように、本発明に依り、C−M
OS ICのようにp−導電型領域とn−導電型領域の
両方を含、むシリコン半導体基板に対して配# (t+
、極)の良好な電気的(オーミック)コンタクトを達成
できる。
Effects of the Invention As is clear from the above explanation, according to the present invention, C-M
Layout (t+
, poles) can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の詳細な説明する工程順の半導
体装か′の断面図である。 l・・・n形シリコン基板、2・・・フィールド酸化膜
。 3・・・p形ソース領域、4・・・p形ドレイン領域、
5・・−p形つェル、6・・・n形ソース領域、7・・
・p形ドレイン領域、9・・・ゲート電極(ポリシリコ
ン)、11・・・モリブデン層、13・・・バリヤ層(
モリブデンシリサイド)、14・・・配線(アルミニウ
ム)。 特許出願人 富士通株式会社 特許出願代理人 弁理士 官 木 朗 弁理士西舘和之 弁理士内田幸男 弁理士山口昭之
FIGS. 1 to 3 are cross-sectional views of a semiconductor device in the order of steps to explain the present invention in detail. l...n-type silicon substrate, 2...field oxide film. 3...p-type source region, 4...p-type drain region,
5...-p-type well, 6... n-type source region, 7...
・P-type drain region, 9... Gate electrode (polysilicon), 11... Molybdenum layer, 13... Barrier layer (
molybdenum silicide), 14... wiring (aluminum). Patent applicant Fujitsu Limited Patent application agent Akira Kanki Patent attorney Kazuyuki Nishidate Patent attorney Yukio Uchida Patent attorney Akiyuki Yamaguchi

Claims (1)

【特許請求の範囲】 1、半導体基体内に形成されたp−専一、型領域および
n導電型領域夫々に対し、直接および高融点金緘シリサ
イド層を介して接続されたアルミニ □ラム質金属電極
配線層によジオ−ミツクコ/タフ 1トが形成されてい
ることを特徴とする半導体装置。:2、表面絶縁膜内に
形成された開口を介して露 :出したp−1型領域およ
びn、、−導電型領域上有 □。 するシリコン半導体基体上に全面に高融点金属層 11 全形成し、高融点金属層の前記n−導電型領域上に位I
f、する部分に選−択的に不純物を打ち込んでか ′:
・)。 らアニールすることによってn−導電型領域上の 、1
開口内に選択的に高融点金属シ、・リサイドを生成せ 
[し、め、高融点金属層のシリサイド化されない残部 
□:・、: を除去し、そして金属配線層を形成してp−導電 11
、j 型領域およびn−導tRL型領域の夫々に対しオーミ 
”1.1 ツクコンタクト金取ることを特徴とする半導体装置置の
製造方法。
[Claims] 1. Aluminum □ Lamb metal connected directly and via a high-melting point gold silicide layer to each of the p-type region and the n-conductivity type region formed in the semiconductor substrate. A semiconductor device characterized in that a geometries/tufts are formed by an electrode wiring layer. :2.Exposed through an opening formed in the surface insulating film: Exposed p-1 type region and n, -conductivity type region □. A high melting point metal layer 11 is formed on the entire surface of the silicon semiconductor substrate, and a position I is formed on the n-conductivity type region of the high melting point metal layer.
By selectively injecting impurities into the part where f is ′:
・). , 1 on the n-conductivity type region by annealing from
Selectively generate high melting point metal silicide within the opening.
[The remainder of the high melting point metal layer that is not silicided]
□:・,: is removed and a metal wiring layer is formed to make p-conductor 11
, j-type region and n-conducting tRL-type region, respectively.
1.1 A method for manufacturing a semiconductor device characterized by making contact metals.
JP24452383A 1983-12-27 1983-12-27 Semiconductor device and manufacture thereof Pending JPS60138962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24452383A JPS60138962A (en) 1983-12-27 1983-12-27 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24452383A JPS60138962A (en) 1983-12-27 1983-12-27 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60138962A true JPS60138962A (en) 1985-07-23

Family

ID=17119948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24452383A Pending JPS60138962A (en) 1983-12-27 1983-12-27 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60138962A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114634A (en) * 1988-10-25 1990-04-26 Nec Corp Manufacture of semiconductor device
GB2291536A (en) * 1994-07-21 1996-01-24 Nec Corp Implantation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114634A (en) * 1988-10-25 1990-04-26 Nec Corp Manufacture of semiconductor device
GB2291536A (en) * 1994-07-21 1996-01-24 Nec Corp Implantation method
JPH0837164A (en) * 1994-07-21 1996-02-06 Nec Corp Manufacture of semiconductor device
US5620926A (en) * 1994-07-21 1997-04-15 Nec Corporation Method for forming a contact with activation and silicide forming heat treatment
GB2291536B (en) * 1994-07-21 1998-08-19 Nec Corp Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4392150A (en) MOS Integrated circuit having refractory metal or metal silicide interconnect layer
JPH0523055B2 (en)
EP0018175B1 (en) Process for producing an electrode on a semiconductor device
JPH0750276A (en) Method for manufacture of low-resistance contact in junction between regions of different conductivity types
JPS61234041A (en) Semiconductor device and manufacture thereof
JP2570179B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS60138962A (en) Semiconductor device and manufacture thereof
JPS59197162A (en) Semiconductor device
US6342440B1 (en) Method for forming low-leakage impurity regions by sequence of high-and low-temperature treatments
JP2817518B2 (en) Semiconductor device and manufacturing method thereof
JP2003526198A (en) Amorphization of substrate to prevent intrusion of silicide into channel region of field effect transistor
JPS59177926A (en) Manufacture of semiconductor device
JPH10242462A (en) Semiconductor device and its manufacture
JPS59208772A (en) Manufacture of semiconductor device
JPS60138916A (en) Manufacture of semiconductor device
JP2874885B2 (en) Semiconductor device and manufacturing method thereof
JPS63227019A (en) Manufacture of semiconductor device
JP3095912B2 (en) Semiconductor integrated circuit device
JPH06196693A (en) Manufacture of semiconductor device
JPS60182157A (en) Manufacture of semiconductor device
JP2777153B2 (en) Semiconductor device and manufacturing method thereof
JPH047094B2 (en)
JPS63300566A (en) Manufacture of thin film transistor
JP2889240B2 (en) Compound semiconductor device and method of manufacturing the same
JPH07283323A (en) Manufacture of semiconductor device