JPS60138433A - Pressure transducer - Google Patents
Pressure transducerInfo
- Publication number
- JPS60138433A JPS60138433A JP24712883A JP24712883A JPS60138433A JP S60138433 A JPS60138433 A JP S60138433A JP 24712883 A JP24712883 A JP 24712883A JP 24712883 A JP24712883 A JP 24712883A JP S60138433 A JPS60138433 A JP S60138433A
- Authority
- JP
- Japan
- Prior art keywords
- resistance
- resistor
- temperature
- bridge
- resistors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/22—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
- G01L1/2268—Arrangements for correcting or for compensating unwanted effects
- G01L1/2281—Arrangements for correcting or for compensating unwanted effects for temperature variations
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は一導電所の半導体感圧ダイヤフラムに形成され
た逆導電形の領域からなる歪計ブリッジの出力によシ圧
力を電気に変換する高感度の圧力変換器に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention converts pressure into electricity by the output of a strain gauge bridge consisting of regions of opposite conductivity type formed in a semiconductor pressure-sensitive diaphragm of one conductive station. Concerning highly sensitive pressure transducers.
シリコン感圧ダイアフラムを備えた高感度圧力変換器に
おける温度特性、とシわけ零点の温度特性は、ダイアフ
ラムにつ〈シこまれ、ブリッジに構成される歪計相互間
の温度特性のわずかの差によって発生する。特に高精度
の圧力変換器にシリコン感圧ダイアフラムが使用される
場合には、大部分のもので零点温度特性の補償が必賛と
なる。The temperature characteristics of a high-sensitivity pressure transducer equipped with a silicon pressure-sensitive diaphragm, and the temperature characteristics at the zero point, are affected by the slight difference in temperature characteristics between the strain gauges that are inserted into the diaphragm and configured as a bridge. Occur. Particularly when silicon pressure-sensitive diaphragms are used in high-precision pressure transducers, compensation of the zero-point temperature characteristics is essential in most of them.
この温度補償のために従来から用いられている方法は、
歪計の抵抗温度係数とは異なる抵抗温度係数をもつ抵抗
体RX(例えばサーミスタ、金鴇皮膜抵抗、拡散抵抗な
ど)を、第1図の如く歪計SG1〜SG4で構成される
ブリッジ回路に挿入して、ブリッジのアンバランスに温
度特性を持たせ、補償する方法である。この場合抵抗R
xを挿入したことによってブリッジ出力レベルが変化す
るので、これを補償するために歪計と同じ、あるいは近
い温度特性をもつ抵抗R7を前記抵抗flxを挿入した
辺の隣辺に挿入することもある。この方法は直接的でf
f5便な方法であるが、次のような欠点をもっている。The conventional method used for this temperature compensation is
Insert a resistor RX (e.g. a thermistor, gold-plated film resistor, diffused resistor, etc.) with a temperature coefficient of resistance different from that of the strain meter into the bridge circuit consisting of strain gauges SG1 to SG4 as shown in Figure 1. This is a method of compensating for the unbalance of the bridge by giving it a temperature characteristic. In this case the resistance R
Inserting x changes the bridge output level, so to compensate for this, a resistor R7 with the same or similar temperature characteristics as the strain meter may be inserted on the side adjacent to the side where the resistor flx is inserted. . This method is direct and f
Although this method is easy to use, it has the following drawbacks.
+11歪計で構成するブリッジ回路に、他の抵抗RX。A bridge circuit consisting of a +11 strain meter and another resistor RX.
RVを挿入するために、それまでの調整工程で調整され
た値(例えばスパン)が影響を受け、再調整が必要とな
る場合もでてくる。特にRx+Ryの値が大きくなる程
この影響は顕著となる。Inserting an RV may affect the values adjusted in the previous adjustment process (for example, span) and require readjustment. In particular, this effect becomes more significant as the value of Rx+Ry increases.
(2)この補償方法では温度特性の曲シを補償すること
ができない。RxおよびRyの挿入しない状態でも温度
特性の曲シは存在するが、RxおよびRyの挿入によっ
ても温度特性に曲シを生じる。これは歪計や補償用の抵
抗値が温度に対して直線的に変化しないことに起因して
いる。この両者の曲りが相殺されて曲シのない温度特性
になることは非常に稀な場合であり、通常は温度特性の
曲シが見られる。(2) This compensation method cannot compensate for the curvature of the temperature characteristics. Although there is a curvature in the temperature characteristic even when Rx and Ry are not inserted, a curvature in the temperature characteristic also occurs when Rx and Ry are inserted. This is due to the fact that strain gauges and compensation resistance values do not change linearly with temperature. It is very rare that these two curvatures cancel each other out and result in a temperature characteristic with no curvature, and curvature of the temperature characteristic is usually observed.
し発明の目的〕
この発明の目的は、上述の欠点Tl)を除去し、て零点
の温度特性補償がそれ以前の調整工程に影響せず、同時
に欠点(2)を除去して零点の温度特性の曲りを補償し
た圧力変換器を提供することにある。[Object of the Invention] An object of the present invention is to eliminate the above-mentioned drawback Tl) so that zero point temperature characteristic compensation does not affect the previous adjustment process, and at the same time eliminate the drawback (2) to improve the zero point temperature characteristic compensation. An object of the present invention is to provide a pressure transducer that compensates for bending.
本発明による圧力変換器においては、隣接するアームの
双方にそれぞれ温度依存性の大きい抵抗とそれに直列お
よび並列に接続された温度依存性をもたない抵抗とが介
挿された抵抗ブリッジの出力側ならびに歪計ブリッジの
出力側を演算増幅器の入力側に接続することによって上
記の目的を達成する。In the pressure transducer according to the present invention, the output side of a resistor bridge has a resistor with a large temperature dependence and a resistor with no temperature dependence connected in series and parallel to the resistor in both adjacent arms. The above object is achieved by also connecting the output side of the strain meter bridge to the input side of the operational amplifier.
第2図は本回路の一実施例を示す回路図である。 FIG. 2 is a circuit diagram showing one embodiment of this circuit.
抵抗R7に直列に温度依存性の大きい抵抗RAが接続さ
れ、その2つの抵抗に並列に抵抗R8が接続される。こ
の3つの抵抗をまとめてRαとする。抵抗R9に直列に
温度依存性の大きい抵抗RBが接続され、その二つの抵
抗に並列に抵抗RIOが接続される。A resistor RA with high temperature dependence is connected in series with the resistor R7, and a resistor R8 is connected in parallel with the two resistors. These three resistances are collectively referred to as Rα. A resistor RB with high temperature dependence is connected in series with the resistor R9, and a resistor RIO is connected in parallel with the two resistors.
この3つの抵抗をまとめてVとする。RA (!: R
Bは同じ傾向の温度依存性をもった抵抗である。例えば
8人が正の温度依存性を持っていればRBも正の温度依
存性を持っている。抵抗R4とR5が電源VCとアース
電位間に直列に接続される。抵抗Rα、Rβ及び抵抗R
4,R5でフルブリッジが構成される。Rαとジの結合
点1と演算増幅器OPのマイナス入力端子5との間に抵
抗R11が接続されるOR4とR5の結合点2と演算増
幅器OPのプラス入力端子6間に抵抗R6が接続される
0端子3,40間に歪計ブリッジ出力からの信号電圧v
inが加わる。このVinは歪計ブリッジ出力電圧その
ものである場合と、歪計ブリッジ出力を差動増幅器によ
シ増幅した電圧である場合とがある。端子3と演算増幅
器OPのマイナス入力端子5の間に抵抗R1が接続され
、端子4とOPのプラス入力端子60間に抵抗R2が接
続される。These three resistances are collectively referred to as V. RA (!: R
B is a resistance having the same tendency of temperature dependence. For example, if eight people have positive temperature dependence, RB also has positive temperature dependence. Resistors R4 and R5 are connected in series between power supply VC and ground potential. Resistance Rα, Rβ and resistance R
4, R5 constitutes a full bridge. A resistor R11 is connected between the node 1 of Rα and J and the negative input terminal 5 of the operational amplifier OP.A resistor R6 is connected between the node 2 of OR4 and R5 and the positive input terminal 6 of the operational amplifier OP. Signal voltage v from strain meter bridge output between 0 terminals 3 and 40
in is added. This Vin may be the strain meter bridge output voltage itself, or may be a voltage obtained by amplifying the strain meter bridge output by a differential amplifier. A resistor R1 is connected between the terminal 3 and the negative input terminal 5 of the operational amplifier OP, and a resistor R2 is connected between the terminal 4 and the positive input terminal 60 of the operational amplifier OP.
また、演算増幅器OPのマイナス入力端子5と出力端子
6の間にフィードバック抵抗R3が接続される。Further, a feedback resistor R3 is connected between the negative input terminal 5 and the output terminal 6 of the operational amplifier OP.
以上のような構成において本発明の詳細な説明する。こ
こでは抵抗RA、RBは抵抗値、温度特性ともに等しい
と仮定し、それらの温度特性は第3図のように正の温度
勾配を持ち、下に凸の曲がシを有する特性であるとする
。またRA、RB以外の抵抗は実質的に温度依存性を持
たないとする。温度上昇によりRhの抵抗値は増加し、
それに伴ない肱の抵抗値も増加する。この場合R7の抵
抗値が小さいはど、またR8の抵抗値が大きい#1ど抵
抗Rαの温度特性の傾きは大きくなる。第4図にRA
(27℃)=7槌、R7=2肛、R8=4相の場合を基
準(線41)にして、@42によシR7=0 、 R8
=4にΩにした場合、線43によ、り R7=2KXl
、 R8=6KJ’lにした場合の抵抗Rαの温度特
性を示す(27℃のときの抵抗値を1とする)0また温
度特性の傾きを一定に保つという条件を満たしなからR
7の抵抗値を大きくシ、同時にR8の抵抗値を大きくす
ると、抵抗Rαの温度特性は下に凸の傾向が生じ、逆に
R7の抵抗値を小さくシ、同時にR8の抵抗値を小さく
すると、抵抗Rαの温度特性は上に凸の傾向が生じる。The present invention will be described in detail with the above configuration. Here, it is assumed that the resistance values and temperature characteristics of the resistors RA and RB are equal, and that their temperature characteristics have a positive temperature gradient and a downward convex curve as shown in Figure 3. . Further, it is assumed that resistances other than RA and RB have substantially no temperature dependence. As the temperature rises, the resistance value of Rh increases,
Along with this, the resistance value of the elbow also increases. In this case, the slope of the temperature characteristic of resistor Rα becomes larger when the resistance value of R7 is small and when the resistance value of R8 is large. RA in Figure 4
(27℃) = 7 holes, R7 = 2 holes, R8 = 4 phases as the standard (line 41), @42 = 0, R8
When Ω is set to =4, according to line 43, R7=2KXl
, shows the temperature characteristics of the resistance Rα when R8 = 6KJ'l (resistance value at 27°C is 1).
If the resistance value of R7 is increased and at the same time the resistance value of R8 is increased, the temperature characteristics of the resistor Rα will tend to convex downward.On the other hand, if the resistance value of R7 is decreased and the resistance value of R8 is decreased at the same time, The temperature characteristics of the resistance Rα tend to be upwardly convex.
餌の温度特性の傾きを一定に保ち、曲シのみを変化させ
た1例を第5図に示す。すなわち、RA=7頽、R7=
2にΩ、 R8=4肋の場合を基準線51にして、線5
2により R7=O,R8−2,2にΩにした場合、線
53によ勺R7=6抱1 、 R8=10.4にΩにし
た場合の抵抗Rαの温度特性を示す。このように抵抗R
7,R8を変えることによシ、抵抗Rαの温度特性の傾
き、および曲シを変えることができる。当然RAをRB
に、R7をR9に、R8をRIOに置き換えても同じこ
とが言える。すなわち抵抗R9、RIOを変えることに
よシ、抵抗Rβの温度特性の傾き、及び曲がシを変える
ことができる。FIG. 5 shows an example in which the slope of the temperature characteristic of the bait was kept constant and only the curve was changed. That is, RA=7, R7=
2 to Ω, set the case of R8 = 4 ribs as the reference line 51, and line 5
2 shows the temperature characteristics of the resistance Rα when R7=O, R8-2, 2 and Ω, and the line 53 shows R7=6−1 and R8=10.4 and Ω. In this way, the resistance R
7. By changing R8, the slope and curve of the temperature characteristic of the resistance Rα can be changed. Of course RA is RB
The same thing can be said if R7 is replaced by R9 and R8 is replaced by RIO. That is, by changing the resistors R9 and RIO, the slope of the temperature characteristic of the resistor Rβ and the curve can be changed.
抵抗RαとRAの温度特性が等しければ、弘とRAの結
合点1の電圧VTは温度依存性を持たない。次に抵抗R
αとRAの温度特性が異なる場合、RC,RAの温度特
性とVTの温度特性の関係を第6図に関して述べる。抵
抗Rαの温度特性の傾きがRAの温度特性の傾きと比較
して正である場合、vTは負の温度特性の傾きを持ち(
第6図(a) ) 、逆に抵抗Rαの温度特性の傾きが
朗の温度特性の傾きよシも負である場合、VTは正の温
度特性の傾きを持つ(第6図(b))。If the temperature characteristics of the resistors Rα and RA are equal, the voltage VT at the connection point 1 between Hiro and RA has no temperature dependence. Next, the resistance R
When the temperature characteristics of α and RA are different, the relationship between the temperature characteristics of RC and RA and the temperature characteristics of VT will be described with reference to FIG. If the slope of the temperature characteristic of resistance Rα is positive compared to the slope of the temperature characteristic of RA, vT has a negative slope of temperature characteristic (
(Fig. 6(a)), conversely, if the slope of the temperature characteristic of the resistance Rα is also negative, then VT has a positive slope of the temperature characteristic (Fig. 6(b)). .
またRCの温度特性がRAの温度特性よシも下に凸であ
る場合、VTは上に凸の温度特性を持ち(第6図(c)
) 、逆にRCの温度特性がRAの温度特性よりも上
に凸である場合、VTは下に凸の温度特性を持つ(第6
図(d))。このように抵抗R7,R8,R9,RIO
の値を選び、抵抗Rα、Rβに適当な温度特性を持たせ
ることにより、RCとRAの結合点1の電圧VTに所定
の温度特性の傾き、及び曲シを持たせることができる。Furthermore, if the temperature characteristics of RC are convex downward as well as those of RA, then VT has temperature characteristics convex upward (Fig. 6(c)).
), conversely, if the temperature characteristics of RC are upwardly convex than those of RA, VT has downwardly convex temperature characteristics (6th
Figure (d)). In this way, resistors R7, R8, R9, RIO
By selecting the value of and giving appropriate temperature characteristics to the resistors Rα and Rβ, it is possible to give the voltage VT at the connection point 1 of RC and RA a predetermined slope and curve of the temperature characteristics.
抵抗R4とR5の結合点2の電圧をVLとし、また説明
を簡単にするため、R4)す” (−R4/R5)<<
R6゜R4+R5
R3=R6とし、入力端子3とアース間の電圧、入力端
子4とアース間の電圧の平均値が常に電源VCの半分に
等しいとすると、圧力変換器出力■0は次の式(1)で
表わされる。Let the voltage at the connection point 2 between resistors R4 and R5 be VL, and to simplify the explanation, R4) (-R4/R5)<<
R6゜R4+R5 R3=R6, and assuming that the average value of the voltage between input terminal 3 and ground, and the voltage between input terminal 4 and ground is always equal to half of the power supply VC, the pressure transducer output ■0 is calculated by the following formula ( 1).
式(1)の第2項中のVTは前述したようにR7、R8
。As mentioned above, VT in the second term of formula (1) is R7, R8
.
R9、R1Oの値を選ぶことによシ、所定の温度特性の
傾き及び曲シを持たせることが可能である。また式(1
)の第2項中の抵抗R11の値を変えることによJJ、
’V丁の圧力変換器出力■0の零点温度特性に及はす度
合を調節することが可能である0よって式+11の第2
項以外の項による零点温度特性に応じてVTの温度特性
の傾き及び曲pを決定し、圧力変換器出力yoの零点温
度特性の傾き、及び曲シを補償することができる◇尚R
7、R8、R9、RIOの抵抗値を変えることによシ、
圧力変換器出力VOの零点が影響を受けるが、R4,R
5を適当な値に設定することによル零点を所定の値にす
ることができる。By selecting the values of R9 and R1O, it is possible to provide a predetermined slope and curvature of the temperature characteristics. Also, the formula (1
) by changing the value of resistor R11 in the second term of JJ,
It is possible to adjust the degree to which the pressure transducer output of the
The slope and curve p of the temperature characteristic of VT can be determined according to the zero point temperature characteristic due to terms other than the term, and the slope and curve p of the zero point temperature characteristic of the pressure transducer output yo can be compensated for.
7. By changing the resistance values of R8, R9, and RIO,
The zero point of the pressure transducer output VO is affected, but R4, R
By setting 5 to an appropriate value, the zero point can be set to a predetermined value.
式(1)の第2項以外の項による零点温度特性の曲がシ
が上に凸もしくは下に凸のどちらか一方のみである場合
は、R7,R8,R9,RIOのうちのいずれか一つの
抵抗を省略できる。例えば下に凸のみの場合は抵抗R7
をショートで置き換えて、式(1)の第2項に上に凸の
曲がシを持たせることにより、圧力変換器出力yoの零
点温度特性を補償することが可能である。If the curve of the zero point temperature characteristic due to a term other than the second term of equation (1) is only convex upward or convex downward, one of R7, R8, R9, RIO is selected. One resistor can be omitted. For example, if there is only a downward convexity, resistor R7
It is possible to compensate for the zero point temperature characteristic of the pressure transducer output yo by replacing y with a short and giving the second term of equation (1) an upwardly convex curve.
第7図は他の実施例であり、演算増幅器OPのプラス入
力端子6に結合している抵抗ブリッジの2本のアームに
、温度依存性の大きい抵抗RC,RDを介挿した場合で
ある。RC、RDに直列および並列に接続される温度依
存性を持たない抵抗R14,R15゜R16,R17を
適当に選ぶととにより、第2図の実施例と同様の効果を
呈す。FIG. 7 shows another embodiment, in which resistors RC and RD with large temperature dependence are inserted into two arms of a resistor bridge connected to the plus input terminal 6 of the operational amplifier OP. By appropriately selecting temperature-independent resistors R14, R15, R16, and R17 connected in series and parallel to RC and RD, the same effects as in the embodiment shown in FIG. 2 can be obtained.
第8図は更に他の実施例であυ、抵抗ブリッジの電源V
Cに接続している2本のアームに温度依存性の大きい抵
抗Re l RAを介挿した場合である。抵抗R14,
R15,R7,R8を適当に選ぶことによpS第2図の
実施例と同様の効果を呈す。また抵抗ブリッジのアース
電位に接続している2本のアームに温度依存性の大きな
抵抗を介挿した場合も同様の効果を有する。FIG. 8 shows yet another embodiment υ, the power supply V of the resistor bridge
This is a case where a resistor Re l RA with large temperature dependence is inserted into the two arms connected to C. Resistor R14,
By appropriately selecting R15, R7, and R8, the same effect as in the embodiment shown in pS FIG. 2 can be obtained. A similar effect can also be obtained when a temperature-dependent resistor is inserted between the two arms connected to the ground potential of the resistor bridge.
第9図は更に他の実施例であり、第2図の実施例におけ
る抵抗R4、R5を省略し、演算増幅器OPのプラス入
力端子6を抵抗R6を介してアースを位に接続した場合
である。抵抗R7,R8,R9,RIOのうち3つ以上
の抵抗を適当に選ぶことによシ、零点温度特性の傾き、
及び曲シを補償し、かつ零点を調整することが可能であ
る。但し第2図の実施例と比較すると補償可能範囲は狭
くなる。FIG. 9 shows still another embodiment, in which the resistors R4 and R5 in the embodiment of FIG. 2 are omitted, and the positive input terminal 6 of the operational amplifier OP is connected to the ground via the resistor R6. . By appropriately selecting three or more of the resistors R7, R8, R9, and RIO, the slope of the zero point temperature characteristic,
It is possible to compensate for and curvature and adjust the zero point. However, compared to the embodiment shown in FIG. 2, the compensable range is narrower.
第10図は更に他の実施例であり、温度依存性を有する
抵抗を介挿した抵抗ブリッジの隣接したアームのそれぞ
れにおいて、抵抗の接続方式が第2図の実施例とは異な
る場合である。すなわち温度依存性の大きい抵抗RAに
並列に温度依存性を持たない抵抗R21が接続され、更
にこの並列抵抗に直列に温度依存性を持たない抵抗R2
0が接続され、これら三つの抵抗で一方のアームが構成
される。FIG. 10 shows yet another embodiment, in which the connection method of the resistors in each of the adjacent arms of the resistor bridge in which temperature-dependent resistors are interposed is different from the embodiment of FIG. 2. In other words, a resistor R21 that has no temperature dependence is connected in parallel to the resistor RA that has a large temperature dependence, and a resistor R2 that has no temperature dependence is connected in series with this parallel resistance.
0 is connected, and these three resistors constitute one arm.
また温度依存性の大きい抵抗RBに並列に温度依存性を
持たない抵抗R23が接続され、さらにこの並列抵抗に
直列に温度依存性を持たない抵抗R22が接続され、こ
れら三つの抵抗でもう一方のアームが構成される。抵抗
R20、R21、R22、R23を適当に選ぶことによ
り、第2図の実施例と同様の効果を呈す。なお隣接した
アームの一方の接続方式を他方のアームの接続方式と異
なるものにした場合、例えは第10図に示した回路にお
いて、RA 、 R201R21からなるアームを第2
図で示した実施例のRαで置き換えだ場合も有効である
。In addition, a resistor R23 that has no temperature dependence is connected in parallel to the resistor RB that has a large temperature dependence, and a resistor R22 that has no temperature dependence is connected in series with this parallel resistor. The arm is configured. By appropriately selecting the resistors R20, R21, R22, and R23, the same effect as the embodiment shown in FIG. 2 can be obtained. If the connection method of one of the adjacent arms is different from the connection method of the other arm, for example, in the circuit shown in FIG.
It is also effective to replace Rα in the embodiment shown in the figure.
〔発明の効果〕
本発明によれば、前述した実施例より明らかなように、
圧力変換器が隣接したアームの双方に温度依存性を有す
る抵抗とそれに直列および並列に接続された温度依存性
を持たない抵抗とか介挿された抵抗ブリッジの出力成分
を、歪計ブリッジの出力成分に重畳させる演算増幅器を
用いた回路を備えている。温度依存性を有する抵抗の温
度特性。[Effects of the Invention] According to the present invention, as is clear from the above-mentioned embodiments,
The output component of the resistance bridge, which has a temperature-dependent resistor connected in series and parallel to it on both arms adjacent to the pressure transducer, and a temperature-independent resistor connected in series and parallel to the resistor bridge, is the output component of the strain meter bridge. It is equipped with a circuit using an operational amplifier that is superimposed on the Temperature characteristics of resistance with temperature dependence.
抵抗値および温度依存性を持たない両抵抗の抵抗値を適
宜選定することによp1演算増幅器の出力の零点温度特
性の傾きおよび曲りの補償が可能である。さらに抵抗ブ
リッジを構成する個々のアー・ム、例えば第2図の実施
例の場合のRα、RA、i4.Rsの抵抗値を演算増幅
器の入力端子との間に挿入される抵抗すなわちR6,R
11の抵抗値と比較して十分小さく小さく選ぶことによ
シ、零点温度特性の補償がそれ以前の、例えばスパンな
どの調整工程に及ぼす影響を十分小さくすることも可能
である。By appropriately selecting the resistance value and the resistance value of both resistors that have no temperature dependence, it is possible to compensate for the slope and curvature of the zero point temperature characteristic of the output of the p1 operational amplifier. Furthermore, the individual arms constituting the resistive bridge, for example Rα, RA, i4 in the embodiment of FIG. The resistance value of Rs is the resistance inserted between the input terminal of the operational amplifier, that is, R6, R
By selecting the resistance value sufficiently small compared to the resistance value of No. 11, it is possible to sufficiently reduce the influence that the zero point temperature characteristic compensation has on the previous adjustment process, such as span adjustment.
また歪計ブリッジの出力の増幅に用いる演算増幅器が、
温度補償用電圧信号、例えばVTを歪組ブリッジ出力成
分へ重畳する機能も兼ねているため、簡単な回路構成で
精度の高い圧力変換器を得ることができ、その効果は極
めて高い。In addition, the operational amplifier used to amplify the output of the distortion meter bridge is
Since it also has the function of superimposing a temperature compensation voltage signal, for example VT, on the strain bridge output component, a highly accurate pressure transducer can be obtained with a simple circuit configuration, and its effects are extremely high.
第1図は従来技術による零点温度特性の補償回路図、第
2図は本発明の一実施例の回路図、第3図は第2図の実
施例における抵抗RA、RBの温度特性線図、第4図は
第2図の実施例において抵抗Rαの温度特性の傾きを変
化させた場合の線図、第5図は第2図の実施例において
抵抗Rαの温度特性の曲がpを変化させた場合の線図、
第6図(a) 、 (b) 。
(c) 、 (d)は第2図の実施例における抵抗Rα
、Rβの温度特性と温度補償用電圧信号VTの温度特性
の関係を示す線図、第7図、第8図、第9図、第10図
はそれぞれ本発明の異なる実施例を示す回路図である。
RA 、 RB4D 、、、、、、・、・温度依存性の
大きい抵抗、R7゜R8,R9,R10,R14,R1
5,R20,R21、R22,R23・・・・・・・・
・温度依存性をもたない抵抗、3,4・・・・・・歪計
ブリッジの出力端子、OP・・・・・・演算増幅器。
21図
F?i
才2図
+M、良(’C)
才4図
77図
R1
才8図
才101¥)FIG. 1 is a compensation circuit diagram of zero point temperature characteristics according to the prior art, FIG. 2 is a circuit diagram of an embodiment of the present invention, and FIG. 3 is a temperature characteristic diagram of resistors RA and RB in the embodiment of FIG. FIG. 4 is a diagram when the slope of the temperature characteristic of the resistor Rα is changed in the embodiment shown in FIG. 2, and FIG. The line diagram when
Figures 6(a) and (b). (c) and (d) are the resistances Rα in the embodiment of FIG.
, FIG. 7, FIG. 8, FIG. 9, and FIG. 10 are circuit diagrams showing different embodiments of the present invention, respectively. be. RA , RB4D , , , , ・Resistance with large temperature dependence, R7゜R8, R9, R10, R14, R1
5, R20, R21, R22, R23...
-Resistor without temperature dependence, 3, 4... Output terminal of strain meter bridge, OP... Operational amplifier. Figure 21 F? i 2 years old + M, good ('C) 4 years old 77 figures R1 8 years old 101 yen)
Claims (1)
形の領域からなる歪計ブリッジの出力によシ圧力を電気
に変換するものにおいて、隣接したアームの双方にそれ
ぞれ温度依存性の大きい抵抗とそれに直列および並列に
接続された温度依存性をもたない抵抗とが介挿された抵
抗ブリッジの出力側ならびに歪計ブリッジが演算増幅器
の入力側に接続されたことを特徴とする圧力変換器。1) - In a device that converts pressure into electricity by the output of a strain gauge bridge consisting of regions of opposite conductivity type formed in a conductivity type semiconductor diaphragm, both adjacent arms each have a resistance with a large temperature dependence and a A pressure transducer characterized in that the output side of a resistance bridge in which a temperature-independent resistor connected in series and parallel is inserted, and the strain meter bridge are connected to the input side of an operational amplifier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24712883A JPS60138433A (en) | 1983-12-27 | 1983-12-27 | Pressure transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24712883A JPS60138433A (en) | 1983-12-27 | 1983-12-27 | Pressure transducer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60138433A true JPS60138433A (en) | 1985-07-23 |
JPH0447779B2 JPH0447779B2 (en) | 1992-08-04 |
Family
ID=17158845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24712883A Granted JPS60138433A (en) | 1983-12-27 | 1983-12-27 | Pressure transducer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60138433A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0409213A2 (en) * | 1989-07-19 | 1991-01-23 | Fuji Electric Co., Ltd. | Amplifiying compensation circuit for semiconductor pressure sensor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53125880A (en) * | 1977-04-08 | 1978-11-02 | Toyoda Chuo Kenkyusho Kk | Pressure converter |
JPS566686U (en) * | 1979-06-29 | 1981-01-21 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5223957A (en) * | 1975-08-19 | 1977-02-23 | Matsushita Electric Ind Co Ltd | Sampling dot recorder |
-
1983
- 1983-12-27 JP JP24712883A patent/JPS60138433A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53125880A (en) * | 1977-04-08 | 1978-11-02 | Toyoda Chuo Kenkyusho Kk | Pressure converter |
JPS566686U (en) * | 1979-06-29 | 1981-01-21 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0409213A2 (en) * | 1989-07-19 | 1991-01-23 | Fuji Electric Co., Ltd. | Amplifiying compensation circuit for semiconductor pressure sensor |
Also Published As
Publication number | Publication date |
---|---|
JPH0447779B2 (en) | 1992-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3071202B2 (en) | Semiconductor pressure sensor amplification compensation circuit | |
EP0086462B1 (en) | Pressure sensor employing semiconductor strain gauge | |
US5193393A (en) | Pressure sensor circuit | |
JPS6142876B2 (en) | ||
US20070186658A1 (en) | Technique for improving Pirani gauge temperature compensation over its full pressure range | |
US4463274A (en) | Temperature compensation circuit for pressure sensor | |
WO1988006719A1 (en) | Transducer signal conditioner | |
US6314815B1 (en) | Pressure sensor with compensation for null shift non-linearity at very low temperatures | |
US6101883A (en) | Semiconductor pressure sensor including a resistive element which compensates for the effects of temperature on a reference voltage and a pressure sensor | |
JPS60138433A (en) | Pressure transducer | |
JPH0434091B2 (en) | ||
JPS6222272B2 (en) | ||
EP0709660A1 (en) | Sensor and a method for temperature compensating for span variation in the sensor | |
JPH10339680A (en) | Semiconductor pressure sensor | |
JPH0273104A (en) | Temperature compensating circuit for semiconductor sensor | |
RU2165602C2 (en) | Semiconductor pressure transducer | |
JPS6356933B2 (en) | ||
JP2610736B2 (en) | Amplification compensation circuit of semiconductor pressure sensor | |
JP2536822B2 (en) | Temperature compensation circuit for weighing device | |
JPH0368830A (en) | Temperature compensation circuit of semiconductor pressure sensor | |
JPH0419470Y2 (en) | ||
JPS622484Y2 (en) | ||
JPS60152912A (en) | Temperature compensating circuit | |
JPS5920658Y2 (en) | Detection circuit for thermal conduction type vacuum gauge | |
KR830001352B1 (en) | Semiconductor pressure detector with zero temperature compensation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |