JPS60135540A - Hydrogenatable alloy - Google Patents
Hydrogenatable alloyInfo
- Publication number
- JPS60135540A JPS60135540A JP58242137A JP24213783A JPS60135540A JP S60135540 A JPS60135540 A JP S60135540A JP 58242137 A JP58242137 A JP 58242137A JP 24213783 A JP24213783 A JP 24213783A JP S60135540 A JPS60135540 A JP S60135540A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- hydrogen
- metal
- cfmm
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】 この発明は水素化しうる合金に関する。[Detailed description of the invention] This invention relates to alloys that can be hydrogenated.
種々の金属又は合金が多量の水素を吸収し、水素化され
、金属水素化物を生成し、またこの生成した金属水素化
物は、温度、水素圧力等を制御することによシ水素を放
出してもとの金属あるいは合金に戻ることは既に知られ
ている。これらの性質を利用し、金属水素化物は水素貯
蔵材料としての使用が期待されている。また水素吸収・
放出時に生じる反応熱を利用する蓄熱材料としての使用
が期待されている。Various metals or alloys absorb a large amount of hydrogen and are hydrogenated to produce metal hydrides, and the produced metal hydrides can release hydrogen by controlling temperature, hydrogen pressure, etc. It is already known that the metal or alloy returns to its original form. Utilizing these properties, metal hydrides are expected to be used as hydrogen storage materials. In addition, hydrogen absorption
It is expected to be used as a heat storage material that utilizes the reaction heat generated during release.
(ロ)従来技術
水素化しうる金属もしくは合金の上記の様な利用に際し
て必要となる条件としては■常温で適当な水素解離圧力
をもつ、■操作条件下で水素ガスとの反応速度が大きい
、■水素化反応初期の活性化が賽易である、及び■原料
が安価で入手できること等が挙げられる。(b) Prior art The conditions necessary for the use of metals or alloys that can be hydrogenated in the above manner are: ■ having an appropriate hydrogen dissociation pressure at room temperature, ■ having a high reaction rate with hydrogen gas under operating conditions, and ■ Examples include that activation at the initial stage of the hydrogenation reaction is easy, and (2) raw materials are available at low cost.
従来金属水素化物を形成する合金として、LaNi、
。Conventional alloys that form metal hydrides include LaNi,
.
FeTi、M&Ni、MmNj4. OaN:14など
が代表的なものとして知られている。FeTi, M&Ni, MmNj4. OaN:14 is known as a typical example.
しかし従来の金属水素化物を形成する合金については、
それぞれ以下の様な問題点がある。IJaNi。However, for conventional metal hydride-forming alloys,
Each has the following problems. IJaNi.
は、原料が高価であp、FeTi、は安価ではあるが反
応初期の活性化が困難である。M&Nj−は1気圧以上
の水素解離圧力を得るには300℃以上に加熱する必要
があり、水素との反応速度も遅い。MmNi5は常温で
の水素解離圧力が約23気圧とやや高い。The raw materials for p and FeTi are expensive, and although p and FeTi are cheap, activation at the initial stage of the reaction is difficult. M&Nj- needs to be heated to 300° C. or higher to obtain a hydrogen dissociation pressure of 1 atm or higher, and its reaction rate with hydrogen is also slow. MmNi5 has a slightly high hydrogen dissociation pressure of about 23 atmospheres at room temperature.
CaNi−1は反応初期の活性化が害鳥であり、反応速
度も速いという長所をもつが、常温での水素解離圧力が
約0−4気圧と低いなどの問題点を有する。CaNi-1 has the advantage that activation at the initial stage of the reaction is harmful and the reaction rate is fast, but it has problems such as a low hydrogen dissociation pressure of about 0-4 atm at room temperature.
(CF)vim)Ni、は、希土類元素の混合物である
ミツシュメタ〜Mmの主成分のセリウムを酸化物の段階
で減少させて作製したセリウムが10重量%以下のミツ
シュメタ、v (C!FMm )とN1とを原料とする
合金で、水素解離圧力は、MmNi、よりも低いが、I
ANi、と比較すると高く、また反応初期の活性化がや
や困難であること、反応速度が遅いこと、水素吸収時と
解離時との間のヒステリシスが大きいこと等の問題点を
有する。(CF)vim)Ni, is Mitsushmetal, v (C!FMm), which contains 10% by weight or less of cerium, which is produced by reducing cerium, the main component of Mitsushmetal~Mm, which is a mixture of rare earth elements, in the oxide stage. The hydrogen dissociation pressure is lower than that of MmNi, but the hydrogen dissociation pressure is lower than that of I
It is expensive compared to ANi, and has problems such as difficulty in activation at the initial stage of the reaction, slow reaction rate, and large hysteresis between hydrogen absorption and dissociation.
この様に、従来知られている合金の金属水素化物はそれ
ぞれ問題点を有しており、水素貯蔵合金として必らずし
も実用的であるとは言えなかった。As described above, the metal hydrides of conventionally known alloys each have their own problems and cannot necessarily be said to be practical as hydrogen storage alloys.
(ハ)発明の目的
この発明は上記の問題点を改善するためになされたもの
であって、水素吸収量が大で、水素化反応初期の活性化
が害鳥でその反応速度も大であり、水素吸収時と解離時
との間のヒステリシスが小さく常温における平衡水素圧
が取扱い易い範囲ICある、水素貯蔵合金として優れた
合金を提供することを目的とするものである。(c) Purpose of the Invention This invention was made to improve the above-mentioned problems, and the hydrogen absorption amount is large, the activation at the initial stage of the hydrogenation reaction is harmful, and the reaction rate is also large. The object of the present invention is to provide an alloy that is excellent as a hydrogen storage alloy, which has a small hysteresis between hydrogen absorption and dissociation and whose equilibrium hydrogen pressure at room temperature is within a manageable range IC.
〔)発明の構成
この発明は、式Cal−z(CFMm)XNi卜yMy
(式中(OFMm )はセリりAの含有量が10重量%
以下のミツシュメタ〜、Mはアルミニウム、マンガン、
銅、鉄、コバルト又はチタン、o < i−<b、、o
< y <5〕で表される水素化しうる合金t−提供
するものである。[) Structure of the Invention This invention is based on the formula Cal-z(CFMm)
(In the formula (OFMm), the content of Seri A is 10% by weight.
The following Mitsushmeta ~, M is aluminum, manganese,
Copper, iron, cobalt or titanium, o<i-<b,,o
< y < 5] is provided.
この発明の合金の特徴は、公知の水素化しうる合金であ
るカルシウム拳ニッケル合金(CaNis) t”構成
する金属の一部を他の金属で置換したことである。すな
わちカルシウムの一部をセリウム含有量が10%以下の
ミツシュメタtv (CFlvlm )で、ニッケルの
一部をアルミニウム、マンガン、銅、鉄、コバルト又紘
デタンでそれぞれ置換した上記式で−3=
表される組成を有する4元系合金の水素化しうる合金で
ある。A feature of the alloy of this invention is that a part of the metal constituting the calcium-nickel alloy (CaNis), which is a known hydridable alloy, is replaced with another metal. That is, part of the calcium is replaced with another metal. A quaternary alloy having a composition represented by -3= in the above formula, in which a portion of nickel is replaced with aluminum, manganese, copper, iron, cobalt, or hirodethane, with an amount of Mitsushmetal tv (CFlvlm) of 10% or less It is an alloy that can be hydrogenated.
この発明の合金として適切なものは、カルシウム金属が
0.1〜0.9原子数、すなわち式中のXが0.1〜0
.9で、一方二ツケ〜金属が3.8〜4.9原子数、す
なわちyが0.1〜1.20合金である。好ましいもの
杜xが0.3〜0.7の範囲においてyが0.2〜1.
0の範囲の合金である。The alloy suitable for this invention has a calcium metal of 0.1 to 0.9 atoms, that is, X in the formula is 0.1 to 0.
.. 9, on the other hand, the number of atoms of Futatsuke-metal is 3.8-4.9, that is, y is 0.1-1.20 alloy. Preferably, when x is in the range of 0.3 to 0.7, y is in the range of 0.2 to 1.
It is an alloy in the range of 0.
この発明の合金において、CFMmはセリウム含有量が
10重量%以下のミツシュメタyを意味するが、ミツシ
ュメタμとは希土類元素の混合物であってその組成は例
えば加納、柳田編「レア・アースJ (1980年、技
報堂出版)記載の下記の組成のものが挙げられる。In the alloy of this invention, CFMm means mitushmetal y with a cerium content of 10% by weight or less, while mitushmetal μ is a mixture of rare earth elements, and its composition is described, for example, in "Rare Earth J" (ed. Kano, Yanagita, 1980). Examples include those with the following composition described in 2010, Gihodo Publishing).
Ce 約51重量%
IA 1132 ll
Pr tt 4 n
N(1tt12 n
その他の希土類元素 n 0.+5 nFe、 Ca、
Si、 Al、 Mg It 0.5 u 4 −
そしてこの発明に用いられるCFMmは上記のミツシュ
メタ〃を酸化物の段階で、Ceの除去処理を行った後、
電解を行うことによシ作製される。この発明で用いられ
るミツシュメタ〜であるCFMmはセリウム含有量が1
0重量%以下の含有量であることt%黴とし、この中に
はセリウムを全く含まないすなわちセリウム含有量O%
のもの4含まれる。Ce about 51% by weight IA 1132 ll Pr tt 4 n N (1tt12 n Other rare earth elements n 0.+5 nFe, Ca,
Si, Al, Mg It 0.5 u 4 - And the CFMm used in this invention is obtained by removing Ce from the above Mitsushmetal in the oxide stage.
It is produced by performing electrolysis. CFMm, which is Mitsushmetal used in this invention, has a cerium content of 1
The content is 0% by weight or less, and it is considered as t% mold, which does not contain any cerium, that is, the cerium content is 0%.
Includes 4 things.
セリウム含有量の好ましい範囲は0.1〜L0重量%で
ある。そしてとのCFMmとして例えば次の組成のもの
が挙げられる。The preferred range of cerium content is 0.1 to L0% by weight. Examples of the CFMm include those having the following composition.
La 60〜70重量%
Cθ 0.1〜10 1/
Pr 5〜13 tt
Nd 20〜304
8m 0.1〜1.0 //
その他の金属元素 0.5〜1.5〃
この発明の水素化しうる合金は所望の組成になる様に各
原料金属の粉末(通常50〜100メツシユ)あるい酸
チップを秤量混合しプレス成形した後、アーク溶解炉、
高周波真空銹導溶解炉などを用いて溶融して製造するこ
とができる。La 60-70% by weight Cθ 0.1-10 1/ Pr 5-13 tt Nd 20-304 8m 0.1-1.0 // Other metal elements 0.5-1.5〃 Hydrogenation of this invention Uru alloy is made by weighing and mixing powders (usually 50 to 100 mesh) or acid chips of each raw material metal to obtain the desired composition, press-forming the mixture, and then melting it in an arc melting furnace.
It can be manufactured by melting using a high frequency vacuum induction melting furnace or the like.
(ホ)実施例
得られる合金の組成が第1表の実施例1〜7及び比較例
1〜2になるように各金属を秤量混合し、プレス成形後
アーク炉で溶融し合金を作製した。(e) Examples Metals were weighed and mixed so that the compositions of the resulting alloys would be Examples 1 to 7 and Comparative Examples 1 to 2 in Table 1, and after press forming, they were melted in an arc furnace to produce alloys.
なお金属原料のCFMmとしては、IA 64%、Ce
0.5%、PrlO%、Nd、25%、Sm o−1s
%及びその他の金属1%(いずれも重量%)のミツシュ
メタ〜を用い友。The metal raw materials CFMm are IA 64%, Ce
0.5%, PrlO%, Nd, 25%, Sm o-1s
% and other metals 1% (both weight %).
また生成物についてX線回折によって合金化の有無と定
性分析を行い、また生成した合金を無機酸に溶解し原子
吸光分析法によって定量分析してその組成が混合組成と
同一であることを確認した。In addition, the product was qualitatively analyzed by X-ray diffraction to determine the presence or absence of alloying, and the resulting alloy was dissolved in inorganic acid and quantitatively analyzed by atomic absorption spectrometry to confirm that its composition was the same as the mixed composition. .
得られた合金を100メツシユ以下に粉砕した後、15
0℃での脱気、25℃での水素加圧(約30気圧)を2
〜3回繰り返して活性化処理を行った。活性化した合金
について通常の圧力−組成一温度(P−C−T)測定装
置を用いてP−C−T特性を測定した。測定結果を第1
表に示し、また特に実施例1と6及び比較例1と2の合
金についてはそれぞれのP−C−T特性図を第1図に示
した。After pulverizing the obtained alloy to 100 meshes or less, 15
Deaeration at 0℃ and hydrogen pressurization (approximately 30 atm) at 25℃
The activation treatment was repeated ~3 times. The P-C-T properties of the activated alloys were measured using a conventional pressure-composition-temperature (P-C-T) measuring device. Measurement results first
In particular, the P-C-T characteristic diagrams for the alloys of Examples 1 and 6 and Comparative Examples 1 and 2 are shown in FIG.
第1表
似し毘:平衡水素解離圧力(気圧)
Pa:平衡水素吸収圧力(気圧)
(いずれも合金1七〜当りの吸収水素原子数2.5の場
合)
第1表に示したように本願発明の実施例1〜7の水素化
物はいずれも10気圧25℃における吸収−〒 −
水素原子数は4.6〜5.4であシ、大きな水素吸収能
力を有することが分かる。またこれら実施例の水素化物
の合金1七p当りの吸収水素原子数2.5における平衡
水素解離圧力は0.5〜1.5気圧で取扱い易い範囲内
にアシ、かつ上記一般式の範囲内で組成を変えることに
よってこの平衡水素圧力を任意に調節できることが分か
る。また水素吸収時と解離時との間のヒステリシスは第
1表に示すヒステリシスファクターからも明らかなよう
に比較例1のCaNi 。Similar to Table 1: Equilibrium hydrogen dissociation pressure (atmospheric pressure) Pa: Equilibrium hydrogen absorption pressure (atmospheric pressure) (Both cases are when the number of absorbed hydrogen atoms per alloy 17 is 2.5) As shown in Table 1 It can be seen that the hydrides of Examples 1 to 7 of the present invention all have a large hydrogen absorption capacity, with an absorption number of hydrogen atoms of 4.6 to 5.4 at 10 atm and 25°C. In addition, the equilibrium hydrogen dissociation pressure at the number of absorbed hydrogen atoms of 2.5 per 17 parts of the hydride alloy in these examples is 0.5 to 1.5 atm, which is within the range that is easy to handle, and within the range of the above general formula. It can be seen that this equilibrium hydrogen pressure can be adjusted arbitrarily by changing the composition. Furthermore, the hysteresis between the time of hydrogen absorption and the time of dissociation is clear from the hysteresis factor shown in Table 1, in CaNi of Comparative Example 1.
合金と同程度に小さく比較例2の(CFlvlm )
Ni、よりはるかに小さい。The (CFlvlm) of Comparative Example 2 is as small as that of the alloy.
Much smaller than Ni.
またこの発明の上記実施例の合金は、前述した活性化処
理、即ち150℃での脱気と25℃での水素加圧(約3
0気圧)t2〜3回線に返すだけでほぼ完全に活性化さ
れ、反応初期の活性化は容易であった。更にこれらのこ
の発明の合金のP−C−T特性の測定時に緻ぼ平衡に達
するまでの時間を測定したところ10〜15分であシ、
反応速度は充分に速い。Further, the alloys of the above embodiments of the present invention were subjected to the activation treatment described above, namely, degassing at 150°C and hydrogen pressurization at 25°C (approximately 3
0 atm) It was almost completely activated just by returning it to the t2-3 line, and activation at the initial stage of the reaction was easy. Furthermore, when measuring the P-C-T characteristics of these alloys of the present invention, the time taken to reach densification equilibrium was found to be 10 to 15 minutes.
The reaction rate is sufficiently fast.
(へ)効果
8−
この発明の水素化しうる合金は高い水素吸収量を有し、
反応初期の活性化が容易で反応速度も速く、水素吸収時
と解離時との間のヒステリシスが小さく、平衡水素圧力
が取扱い易い範囲内にありしかも任意に変化させること
ができる実用上極めて優れた水素貯蔵合金である。(f) Effect 8- The hydrogenatable alloy of this invention has a high hydrogen absorption capacity,
Activation at the initial stage of the reaction is easy, the reaction rate is fast, the hysteresis between hydrogen absorption and dissociation is small, and the equilibrium hydrogen pressure is within an easy-to-handle range and can be changed arbitrarily, making it extremely superior in practical terms. It is a hydrogen storage alloy.
第1図はこの発明の実施例1と6及び比較例1と2それ
ぞれの合金の水素化物の25℃におけるP−C−T特性
図である。FIG. 1 is a P-C-T characteristic diagram at 25 DEG C. of the hydrides of the alloys of Examples 1 and 6 and Comparative Examples 1 and 2 of the present invention.
Claims (1)
(式中(CFMm )はセリウムの含有量が10重量%
以下のミツシュメタル1Mはアμミニクム、マンガン、
JR1&、コバ1, Formula Cal-X(CFMIII)XNj4-7M7
(In the formula, (CFMm) has a cerium content of 10% by weight.
The following Mitsushmetal 1M is Aμ minicum, manganese,
JR1&, Koba
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58242137A JPS60135540A (en) | 1983-12-23 | 1983-12-23 | Hydrogenatable alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58242137A JPS60135540A (en) | 1983-12-23 | 1983-12-23 | Hydrogenatable alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60135540A true JPS60135540A (en) | 1985-07-18 |
JPH0257137B2 JPH0257137B2 (en) | 1990-12-04 |
Family
ID=17084858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58242137A Granted JPS60135540A (en) | 1983-12-23 | 1983-12-23 | Hydrogenatable alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60135540A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6187840A (en) * | 1984-10-05 | 1986-05-06 | Japan Steel Works Ltd:The | Calcium-nickel-misch metal-aluminum type quaternary hydrogen storage alloy |
JPH0353040A (en) * | 1989-07-20 | 1991-03-07 | Sanyo Electric Co Ltd | Hydrogen storage alloy |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54130434A (en) * | 1978-03-31 | 1979-10-09 | Agency Of Ind Science & Technol | Hydrogen storing alloy |
JPS56169746A (en) * | 1980-06-03 | 1981-12-26 | Agency Of Ind Science & Technol | Mischmetal-calcium base alloy for hydorogen occllision |
JPS5896843A (en) * | 1981-12-02 | 1983-06-09 | Agency Of Ind Science & Technol | Hydrogen storing material |
JPS59185755A (en) * | 1983-04-07 | 1984-10-22 | Japan Steel Works Ltd:The | Four-element material composed of calcium-nickel- mischmetal-aluminum for hydrogen occlusion |
JPS6043451A (en) * | 1983-08-15 | 1985-03-08 | Daido Steel Co Ltd | Material for storing hydrogen |
JPS60103143A (en) * | 1983-11-10 | 1985-06-07 | Japan Steel Works Ltd:The | Material for storing hydrogen |
-
1983
- 1983-12-23 JP JP58242137A patent/JPS60135540A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54130434A (en) * | 1978-03-31 | 1979-10-09 | Agency Of Ind Science & Technol | Hydrogen storing alloy |
JPS56169746A (en) * | 1980-06-03 | 1981-12-26 | Agency Of Ind Science & Technol | Mischmetal-calcium base alloy for hydorogen occllision |
JPS5896843A (en) * | 1981-12-02 | 1983-06-09 | Agency Of Ind Science & Technol | Hydrogen storing material |
JPS59185755A (en) * | 1983-04-07 | 1984-10-22 | Japan Steel Works Ltd:The | Four-element material composed of calcium-nickel- mischmetal-aluminum for hydrogen occlusion |
JPS6043451A (en) * | 1983-08-15 | 1985-03-08 | Daido Steel Co Ltd | Material for storing hydrogen |
JPS60103143A (en) * | 1983-11-10 | 1985-06-07 | Japan Steel Works Ltd:The | Material for storing hydrogen |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6187840A (en) * | 1984-10-05 | 1986-05-06 | Japan Steel Works Ltd:The | Calcium-nickel-misch metal-aluminum type quaternary hydrogen storage alloy |
JPH0353040A (en) * | 1989-07-20 | 1991-03-07 | Sanyo Electric Co Ltd | Hydrogen storage alloy |
Also Published As
Publication number | Publication date |
---|---|
JPH0257137B2 (en) | 1990-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gamo et al. | Formation and properties of titanium-manganese alloy hydrides | |
Lee et al. | Effect of the second phase on the initiation of hydrogenation of TiFe1− xMx (M= Cr, Mn) alloys | |
JP3528599B2 (en) | Hydrogen storage alloy | |
US4161402A (en) | Nickel-mischmetal-calcium alloys for hydrogen storage | |
Mizuno et al. | Titanium concentration in FeTix (l⩽ x⩽ 2) alloys and its effect on hydrogen storage properties | |
Varin et al. | Overview of processing of nanocrystalline hydrogen storage intermetallics by mechanical alloying/milling | |
JP2955662B1 (en) | Ternary hydrogen storage alloy and method for producing the same | |
US8163267B1 (en) | Method of synthesizing magnesium-cobalt pentahydride | |
CA2268534C (en) | Hydrogen-absorbing alloy and hydrogen-absorbing alloy electrode | |
Ishikawa et al. | Effect of substitutional elements on the hydrogen absorption–desorption properties of Ti3Al compounds | |
JPS60135540A (en) | Hydrogenatable alloy | |
JP4102429B2 (en) | Hydrogen storage alloy and method for producing the same | |
JPS59143036A (en) | Ternary alloy of rare earth element for occluding hydrogen | |
JPS61199045A (en) | Hydrogen occluding alloy | |
CA1098887A (en) | Nickel-mischmetal-calcium alloys for hydrogen storage | |
Bruzzone et al. | Hydrogen storage in a beryllium substituted TiFe compound | |
JPS60135541A (en) | Hydrogen storing alloy | |
JPS583025B2 (en) | Metal materials for hydrogen storage | |
JP2896433B2 (en) | Magnesium hydrogen storage alloy | |
JPS6141975B2 (en) | ||
JPS58217655A (en) | Hydrogen occluding multi-component alloy | |
KR100350956B1 (en) | Hydrogen storage alloy | |
JPS5939493B2 (en) | Titanium-cobalt multi-component hydrogen storage alloy | |
JPH02240225A (en) | Hydrogen storage alloy and its manufacture | |
JP4766414B2 (en) | Hydrogen storage alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |