JPS60123021A - Amorphous semiconductor film forming device - Google Patents
Amorphous semiconductor film forming deviceInfo
- Publication number
- JPS60123021A JPS60123021A JP58231797A JP23179783A JPS60123021A JP S60123021 A JPS60123021 A JP S60123021A JP 58231797 A JP58231797 A JP 58231797A JP 23179783 A JP23179783 A JP 23179783A JP S60123021 A JPS60123021 A JP S60123021A
- Authority
- JP
- Japan
- Prior art keywords
- hollow
- anode
- substrate
- raw material
- semiconductor film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は化合物ガスをグロー放電を用いたプラズマ反応
lこより分解して基体上に堆積させるアモルファス半導
体膜生成装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to an amorphous semiconductor film producing apparatus in which a compound gas is decomposed by a plasma reaction using glow discharge and deposited on a substrate.
第1図Iこ、牛導体原料ガスをグロー放電を用いたプラ
ズマ反応により分解し、半導体膜を堆積させるための従
来用いられている代表的な生成装置を示す。以下、シラ
ン(SiH,) ガスによりアモルファスシリコン半導
体膜を作成する場合を例にとり、説明を行う。真空排気
系lこ排気管8を介して接続された反応室6内に原料ガ
スであるシランあるいはシランと水素の混合ガスを導入
管7より導入し、ITorr前後の減圧下で電極1,2
間にグロー放電を生起させる。その結果、放電プラズマ
中では高速電子の衝突にょリシランや水素の活性種が生
成され、これらがヒータ4により加熱される下部電極2
の上に置かれた基板3の上に堆積され、半導体膜が生成
される。FIG. 1 shows a typical generation device conventionally used for decomposing conductor material gas by a plasma reaction using glow discharge and depositing a semiconductor film. The following will explain the case of forming an amorphous silicon semiconductor film using silane (SiH) gas as an example. A raw material gas, silane or a mixed gas of silane and hydrogen, is introduced into the reaction chamber 6 connected via the vacuum exhaust pipe 8 through the introduction pipe 7, and the electrodes 1 and 2 are heated under reduced pressure around ITorr.
A glow discharge is generated in between. As a result, active species of silane and hydrogen are generated in the discharge plasma due to the collision of high-speed electrons, and these are heated by the heater 4 at the lower electrode 2.
is deposited on the substrate 3 placed on top of the substrate 3 to produce a semiconductor film.
こうして作成された半導体膜の特性は放電プラズマの性
質に大きく依存する。プラズマ生成には直流(以下DO
とかく)電圧印加方式と高周波(以下R,Fとかく)電
圧印加方式があるが、現在は絶縁物基板を電極上におい
ても一様なプラズマが得られることなどの利点から′E
LF印加力式が主に用いられている。しかし、RF放電
では久方パワー以外のプラズマの人為的制御が困難であ
ること、及びプラズマの物理的性質を評価する研究方法
が理論的にも実験的にも十分には確立されていないとい
う問題点がある。従って、一つの生成装置においである
膜質の半導体膜を成長させるための最適放電条件は別の
生成装置に適用することが困難である0
さらに第1図のような構造の生成装置ではRF放電、D
C放電を問わず基板3が直接プラズマ中−乙さらされる
ため、プラズマと基板の間にイオンさやが形成され、そ
れらの間に大きな電位差が発生する。この電位差により
加速された正イオンは高速で基板に衝突し、半導体膜の
特性を劣化させる場合がある。こうした問題を避けるた
めに基板と対向電極の間にメツシュ電極を置き、−放電
はメツシュ電極と対向電極間で行い、基板への堆積はプ
ラズマの外で行う方法も提案されている。この場合lこ
は絶縁物基板に対しても、制御の容易なりO放電を用い
ることが可能となるが、RF放−電、DC放電のどちら
の方式を用いても堆積速度が遅くなるという欠点がある
0
〔発明の目的〕
この発明は、上記従来の装置にみられる欠点を取除くた
めになされたものであり、放電の制御が容易で、かつ半
導体膜の堆積速度の大きなプラズマの発生させそれを用
いた半導体膜生成装置を提供することを目的とする。The characteristics of the semiconductor film thus created depend largely on the characteristics of the discharge plasma. Direct current (hereinafter DO) is used to generate plasma.
There are two types of voltage application methods: the high-frequency (hereinafter referred to as R and F) voltage application methods, but currently the 'E
The LF applied force type is mainly used. However, in RF discharge, it is difficult to artificially control plasma other than Kugata power, and research methods for evaluating the physical properties of plasma have not been sufficiently established both theoretically and experimentally. There is a point. Therefore, it is difficult to apply the optimal discharge conditions for growing a semiconductor film of a certain quality in one generation device to another generation device.Furthermore, in the generation device with the structure shown in Fig. 1, RF discharge, D
Since the substrate 3 is directly exposed to the plasma regardless of the C discharge, an ion sheath is formed between the plasma and the substrate, and a large potential difference is generated between them. Positive ions accelerated by this potential difference collide with the substrate at high speed, which may deteriorate the characteristics of the semiconductor film. In order to avoid these problems, a method has been proposed in which a mesh electrode is placed between the substrate and the counter electrode, the discharge is performed between the mesh electrode and the counter electrode, and the deposition on the substrate is performed outside the plasma. In this case, it is easy to control and it is possible to use O discharge even for insulating substrates, but the disadvantage is that the deposition rate is slow regardless of whether RF discharge or DC discharge is used. 0 [Object of the Invention] The present invention was made in order to eliminate the drawbacks seen in the above-mentioned conventional devices, and provides a method for generating plasma that is easy to control discharge and has a high deposition rate of a semiconductor film. An object of the present invention is to provide a semiconductor film production device using the same.
この発明によれば真空反応室内に原料化合物ガスを導入
し、反応室内に備えられた対向電極間に直流電圧を印加
してグロー放電を発生させ、化合物を分解して陽極近傍
に配置されて加熱される基板上に半導体膜を堆積させる
ものにおいて、陰極は中空で陽極に向けて開口し、その
内部空間に原料ガス導入管の端部が位置している。ホロ
、−電極を用いることにより、通常の平板電極のDC放
電やRF放電では得られない高密度、高エネルギーのプ
ラズマをホロー陰極内に発生させ、原料ガスの励起、解
離、電離等をより活発に行うようにしたものである。ま
た原料ガスを中空陰極内を通過させて供給することによ
り原料ガスにすべて高エネルギープラズマを遭遇させて
原料ガスの利用率を向上させるもので、この結果上記の
目的を達成することができる。According to this invention, a raw material compound gas is introduced into a vacuum reaction chamber, a DC voltage is applied between opposing electrodes provided in the reaction chamber to generate a glow discharge, the compound is decomposed, and the compound is placed near the anode and heated. In a device for depositing a semiconductor film on a substrate, the cathode is hollow and opens toward the anode, and the end of the raw material gas introduction tube is located in the interior space of the cathode. By using a hollow electrode, a high-density, high-energy plasma that cannot be obtained by DC discharge or RF discharge of a normal flat electrode is generated in the hollow cathode, and the excitation, dissociation, and ionization of the source gas are made more active. It was designed to be carried out in the following manner. Furthermore, by supplying the raw material gas by passing it through the hollow cathode, all of the raw material gas is exposed to high-energy plasma, thereby improving the utilization rate of the raw material gas, and as a result, the above object can be achieved.
第2図はこの発明の実施例を示すもので、第1図と共通
の部分には同一の符号を付しである。図中符号9で示し
たのは中空円筒形の金属でできたホロー陰極であり、メ
ツシュ陽極11との間でDC放電を行いプラズマ10を
発生する。この場合半導体薄膜を形成しようとする基板
3の大きさに従い、複数個のホロー陰極9を縦横に適当
な間隔で配置する。基板3はメツシュ陽極11を挾んで
放電部分とは反対側に設置されている取付台12の上に
置かれる0取付台12にはヒーター14が装備されてお
り、基板は任意の温度に設定できる。FIG. 2 shows an embodiment of the invention, and parts common to those in FIG. 1 are given the same reference numerals. Reference numeral 9 in the figure indicates a hollow cylindrical hollow cathode made of metal, which generates plasma 10 by performing DC discharge between it and the mesh anode 11. In this case, a plurality of hollow cathodes 9 are arranged vertically and horizontally at appropriate intervals depending on the size of the substrate 3 on which the semiconductor thin film is to be formed. The substrate 3 is placed on a mount 12 which is installed on the opposite side of the discharge part with the mesh anode 11 in between.The mount 12 is equipped with a heater 14, and the substrate can be set to any temperature. .
第2図の実施例では、電極等に付着したフレークやほこ
りが基板上に落下するのを防ぐため、基板取付台12は
上部に設置されている。空間的に一様なプラズマを得る
ために、各ホロー電極9と直流電源15は独立した可変
抵抗器16を介して接続されており、各ホロー電極9に
流れる電流は調整可能になっている。In the embodiment shown in FIG. 2, the board mount 12 is installed at the top to prevent flakes and dust attached to the electrodes from falling onto the board. In order to obtain a spatially uniform plasma, each hollow electrode 9 and a DC power source 15 are connected via an independent variable resistor 16, so that the current flowing through each hollow electrode 9 can be adjusted.
原料ガスは、原料ガス導入管7から絶縁物のパイプ17
を介してホロー陰極内lこ供給され、ここで陰極内に生
成されている高密度の負グロープラズマ中で効率よく電
離あるいは解離され、これらの生成物はメツシュ陽極1
1を通過して基板3に堆積する。The raw material gas is passed from the raw material gas introduction pipe 7 to the insulating pipe 17.
The products are supplied to the hollow cathode through the mesh anode 1, where they are efficiently ionized or dissociated in the high-density negative glow plasma generated within the cathode.
1 and is deposited on the substrate 3.
メツシュ陽極11からホロー陰極9あるいは基板3まで
の距離を可変にすると、これらの距離の変化により堆積
膜の性質及び堆積速度が制御できる。例えば、一定の放
電条件のもとてメツシュ陽極から基板までの距離を大き
くすると、イオン密度はメツシュ陽極から離れるに従い
電子との空間再結合により減少し、同時に電子エネルギ
ー(電子温度)も距離と共に急激に減少する。プラズマ
と絶縁物基板間に生ずるイオンさやに発生する電位差は
電子温度に比例するため、電子温度が小さいプラズマで
はこの電位差は非常に小さくなり、イオン衝突が生成膜
に及ぼす影響を―避できる。By making the distance from the mesh anode 11 to the hollow cathode 9 or the substrate 3 variable, the properties and deposition rate of the deposited film can be controlled by changing these distances. For example, when the distance from the mesh anode to the substrate is increased under certain discharge conditions, the ion density decreases as it moves away from the mesh anode due to spatial recombination with electrons, and at the same time, the electron energy (electron temperature) also rapidly increases with distance. decreases to The potential difference that occurs in the ion sheath between the plasma and the insulating substrate is proportional to the electron temperature, so in plasmas where the electron temperature is low, this potential difference becomes extremely small, making it possible to avoid the effects of ion collisions on the produced film.
イオンの効果はホロー陰極放電が直流放電であることか
ら、第2図に図示されているように陽極11と基板取付
台12の間に接続される直流バイアス電源17ζこよっ
て制御することもできる〇ホロー胸極9は中空円筒形に
限らず中空円錐形であってもよい。Since the hollow cathode discharge is a DC discharge, the effect of ions can also be controlled by the DC bias power supply 17ζ connected between the anode 11 and the substrate mount 12 as shown in FIG. The hollow chest pole 9 is not limited to a hollow cylindrical shape, but may be a hollow conical shape.
この発明は原料ガスの分解のために形成されるプラズマ
を中空陰極と陽極との間の直流電圧印加により発生させ
るもので、陰極内に生成される負グロープラズマ内の高
速電子および紫外光により、電離や解離が通常のグロー
放電に比べて非常に活発に起こる。従って半導体膜堆積
速度が増加し、さらlこ原料ガスを中空陰極中を通じて
供給することにより、ガス全体が高エネルギーの放電に
遭遇するためガスの有効利用が可能になり、原料効率が
向上するので、特に太陽電池あるいは感光体用のアモル
ファスシリコン牛導体膜の生成において大きな効果を得
ることができる。In this invention, the plasma formed for the decomposition of raw material gas is generated by applying a DC voltage between a hollow cathode and an anode. Ionization and dissociation occur more actively than in normal glow discharge. Therefore, the semiconductor film deposition rate increases, and by supplying the raw material gas through the hollow cathode, the entire gas encounters a high-energy discharge, which enables effective use of the gas and improves the raw material efficiency. In particular, great effects can be obtained in the production of amorphous silicon conductor films for solar cells or photoreceptors.
第1図は従来のグロー放電アモルファス中導体生成装置
の説明用断面図、第2図はこの発明の実施例の断面図で
ある。
3・・・基板、6・・・真空反応室、7.17・・・原
料ガス導入管、9・・・ホロー陰極、11・・・メツシ
ュ陽極、12・・・基板取付台、14・・・ヒーター、
15・・・直流電源。
第1図
第2図FIG. 1 is an explanatory sectional view of a conventional glow discharge amorphous medium conductor generating device, and FIG. 2 is a sectional view of an embodiment of the present invention. 3... Substrate, 6... Vacuum reaction chamber, 7.17... Raw material gas introduction tube, 9... Hollow cathode, 11... Mesh anode, 12... Substrate mounting stand, 14... ·heater,
15...DC power supply. Figure 1 Figure 2
Claims (1)
に備えられた対向電極間に直流電圧を印加してグロー放
電を発生させ、化合物を分解して陽極近傍に配置されて
加熱される基板上に半導体膜を堆積させるものにおいて
、陰極は中空で陽極に向けて開口し、その内部空間に原
料ガス導入管の端部が位置することを特徴とするアモル
ファス半導体膜生成装置。1) A raw material compound gas is introduced into a vacuum reaction chamber, and a direct current voltage is applied between opposing electrodes provided in the reaction chamber to generate glow discharge, decomposing the compound and heating the substrate placed near the anode. 1. An amorphous semiconductor film production device for depositing a semiconductor film thereon, wherein the cathode is hollow and opens toward the anode, and the end of a raw material gas introduction pipe is located in the interior space of the cathode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58231797A JPS60123021A (en) | 1983-12-08 | 1983-12-08 | Amorphous semiconductor film forming device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58231797A JPS60123021A (en) | 1983-12-08 | 1983-12-08 | Amorphous semiconductor film forming device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60123021A true JPS60123021A (en) | 1985-07-01 |
Family
ID=16929168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58231797A Pending JPS60123021A (en) | 1983-12-08 | 1983-12-08 | Amorphous semiconductor film forming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60123021A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62174382A (en) * | 1986-01-27 | 1987-07-31 | Shindengen Electric Mfg Co Ltd | Method and apparatus for depositing metallic alloy from vapor phase |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5727032A (en) * | 1980-07-25 | 1982-02-13 | Hitachi Ltd | Plasma cvd device |
JPS58137938A (en) * | 1982-02-08 | 1983-08-16 | Jeol Ltd | Multicharged particle source |
-
1983
- 1983-12-08 JP JP58231797A patent/JPS60123021A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5727032A (en) * | 1980-07-25 | 1982-02-13 | Hitachi Ltd | Plasma cvd device |
JPS58137938A (en) * | 1982-02-08 | 1983-08-16 | Jeol Ltd | Multicharged particle source |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62174382A (en) * | 1986-01-27 | 1987-07-31 | Shindengen Electric Mfg Co Ltd | Method and apparatus for depositing metallic alloy from vapor phase |
JPH064916B2 (en) * | 1986-01-27 | 1994-01-19 | 新電元工業株式会社 | Method and apparatus for depositing a metal alloy from the vapor phase |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3318336B2 (en) | METHOD AND APPARATUS FOR TREATING ARTICLES BY REACTION SUPPORTING DC ARC DISCHARGE | |
US6368678B1 (en) | Plasma processing system and method | |
US5039376A (en) | Method and apparatus for the plasma etching, substrate cleaning, or deposition of materials by D.C. glow discharge | |
US20100024729A1 (en) | Methods and apparatuses for uniform plasma generation and uniform thin film deposition | |
US20110220026A1 (en) | Plasma processing device | |
WO2011104803A1 (en) | Plasma generator | |
JP2000109979A (en) | Surface treatment method by dc arc discharge plasma | |
US6116187A (en) | Thin film forming apparatus | |
JP2785442B2 (en) | Plasma CVD equipment | |
JPS62203328A (en) | Plasma cvd apparatus | |
US6926934B2 (en) | Method and apparatus for deposited film | |
US4915978A (en) | Method and device for forming a layer by plasma-chemical process | |
US8931433B2 (en) | Plasma processing apparatus | |
JP3595819B2 (en) | Plasma CVD method and apparatus | |
JPS60123021A (en) | Amorphous semiconductor film forming device | |
JP3144165B2 (en) | Thin film generator | |
Fujiyama et al. | Profile control of SiH radicals by cross magnetic field in plasma processing | |
JPS62159419A (en) | Apparatus for forming amorphous semiconductor thin film | |
JPH0420985B2 (en) | ||
JP3095565B2 (en) | Plasma chemical vapor deposition equipment | |
JP3615919B2 (en) | Plasma CVD equipment | |
JP2005116740A (en) | Plasma processing apparatus | |
JP3347383B2 (en) | Microwave plasma processing equipment | |
KR101616304B1 (en) | Selective doping system for solar cell by using atmospheric plasma jet | |
KR20040088650A (en) | A apparatus for synthesis of thin films |