[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60120990A - Cloned dna coding rabbit cancer-necrosing factor - Google Patents

Cloned dna coding rabbit cancer-necrosing factor

Info

Publication number
JPS60120990A
JPS60120990A JP58228790A JP22879083A JPS60120990A JP S60120990 A JPS60120990 A JP S60120990A JP 58228790 A JP58228790 A JP 58228790A JP 22879083 A JP22879083 A JP 22879083A JP S60120990 A JPS60120990 A JP S60120990A
Authority
JP
Japan
Prior art keywords
dna
cancer
necrosis factor
rabbit
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58228790A
Other languages
Japanese (ja)
Other versions
JPH0695939B2 (en
Inventor
Masaaki Yamada
正明 山田
Taiji Furuya
古谷 泰治
Mitsue Notake
野竹 三津恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Pharmaceutical Co Ltd
Original Assignee
Dainippon Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Pharmaceutical Co Ltd filed Critical Dainippon Pharmaceutical Co Ltd
Priority to JP58228790A priority Critical patent/JPH0695939B2/en
Priority to KR1019840007423A priority patent/KR920009523B1/en
Priority to EP84114325A priority patent/EP0146026B1/en
Priority to ES538000A priority patent/ES8604309A1/en
Priority to AT84114325T priority patent/ATE60933T1/en
Priority to DE8484114325T priority patent/DE3484125D1/en
Priority to AU36014/84A priority patent/AU577810B2/en
Priority to PH31507A priority patent/PH26947A/en
Priority to US06/677,680 priority patent/US5043271A/en
Priority to DK572284A priority patent/DK572284A/en
Publication of JPS60120990A publication Critical patent/JPS60120990A/en
Priority to ES547436A priority patent/ES8605578A1/en
Publication of JPH0695939B2 publication Critical patent/JPH0695939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/525Tumour necrosis factor [TNF]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

PURPOSE:To provide the titled cloned DNA which is very useful as a probe or primer in the cloning of a factor nocrosing cancer in different animals including human and is used to form a microorganism or cells for producing the necrosing factor. CONSTITUTION:The DNA which is represented by the formula and has base sequence that can code the polypeptide containing the aminoacid sequence of the factor necrosing rabbit cancer. At first, the cancer-necrosing factor produced in the rabbit body is isolated and purified to clarify the chemical properties of the protein, then the mRNA of the factor is efficiently produced in vitro using macrophage of rabbit albeoruses and the product is isolated and concentrated. Then, gene recombination is effected to clone cDNA coding the factor necrosing rabbit cancer.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はウタギ船壊死因子をコードするクローノ化I)
NA.それらを組込んたベクターDNA及びそれらのベ
クターDNΔて形質転換された宿主に関する。 本明細書では記載の簡略化のために以下の略記を使用す
る。 Aアデ二ノ Cントン/ Gグアニン Tプーミ/ Alaアラ二/ ArIrアルギニ/ Asnアスパラギ/ Aspアスバシギン酸 Cysシスデイン Ginグルタミン G]uグルタミン酸 GIyグリシ/ 11isヒスチジ7 11eイソ口イン/ Le11口イン/ 1..ysリジン MeLメチ詞二ノ P量)Cフェニルアラ二ノ Proプロリ/ Serセリノ ThrスレAニン Trp}リブlフ7ン Tyrチ11ンノ Va.Iバリン 1)NAデオキシリI:+A百 cl)NA相補DNA 1ぐNAリボも66シ mRNA伝令RNA dAT11デ]キンアデノシ/三リン酸dCTPデλ一
ト7ンヂジ/三リン酸 dGTIlデ詞キングアノン7三リン酸dTTP7’λ
キシヂミジ/三リン酸 詞リゴ(dC)オリゴデオキシ7ヂシル酸詞リゴ(dG
)Jリゴデλキシグアニル酸詞リゴ((IT)Aリゴデ
Aキシチミンル酸、1′り(Δ)ボリアデニル酸 ポリ(U)ポリウリジル酸 ポリ(dA)ボリデ]キンアデニル酸 1!IJ(dC)ボリデλキシシヂジル酸、1′り(d
G);l!リデオキ7グアニル酸ポリ(dT)ボリプ゛
Aキシヂミシル酸AT+’アデ/ンン三り/酸 11)TAエチレンジアミ/四酢酸 kb4−.jJ地1.L kl1p4’口塩JI(対 Carswallらは、あらかじめbacillusC
almette−Guerin(IICG’)で感染さ
せ、次いで工/]ト−ト/ンで処即したマウスの+fn
清中には、移植したMatl1^肉腫による局を壊死さ
刊る物質が含まれていることを見いたし、この物質をん
壊死因子と名づ劃ノk[Proc.Nat.Acad.
Sci.USA,″72.3G(i(i(1975)コ
。 癌壊死囚了はマクロフ7−′)から放出される生yI!
活性物デ(と名えられており、その特徴としてほ、(1
)担癌動物に投りするとある柿の癌を壊死さUnjf&
+2シめること(ii)invitroである種の厚4
111胞(例えばマウスの癌細胞である■,細jj,+
,ヒ}%(,4山来のr’c−to細胞)を傷害するか
、正゛;ル細胞にはほとんど有害な作用を及ぼさないこ
と、及び(ti+)その作用か種特異的でないことか知
られている。 このような特徴の故に癌壊死因子は、新しいタイプの制
歴剤としてその臨床的応用か強く期待されている。 しかしながら、従来の癌壊死囚f−製迅法はマウスやウ
ザギなどの動物に11CG又はl’rop口)n目1a
(・t(じr+umacncsを注射し、次いでーr7
1ト.lンノを投与した後その血液及び体dkより癌壊
タ・,因rを++s−1′1+精製一iるものであるた
め、安定して多量の癌壊死囚rを安価に得ることは難し
い状況であった。 乙の問題点解決のため、近年進歩の著しい逍伝rAl1
換え技術の応用か考えられるが、その実施に際して必要
な癌壊死因子のアミノ酸配列やmRNAの採取方法に閏
ずるノ、(礎的知見はこれまで全く繁りく一されていな
かっtこ。 そこで本発明者らは、まずウサギの体内に産生さ■たρ
:イ壊死因子を単#I精製し、その蛋白質化学的P1質
を明らかにし、次いで、ウザギ肺胞マクロフl−ジを用
いてinvitroで癌壊死因子mRNAを効率よく産
土音t積させる誘導条{4を見いたし、ウリ1!局壊死
因子mRNAを精製濃縮した。更に、逍伝f′−絹換え
技術を応用することにより、ウサギ癌壊死因子を:′I
−ドずるcDNAをクローン化すること番ご成功して本
発明を完成した。 本発明は、ウーリ.1!癌壊死因子のアミノ酸配列を含
む,J′リペブチトをコーlする塩基配列を有する1)
NΔ、特に下記塩基配列(r) を有ずるDNAを提供するものである。 −11記(1)で示されるDNAは、次のアミノ酸配列
(n) をイ1−4るボリベブチドをコードする。 1記1)N八(1)は、その5′末端に下記1111人
配列(II+) をイrしていてもよい。更に.DNA(1)及びその5
′末端に(I’ll)で示される11J基配列を佇ずる
I)NA[以下DNA(1±1)という]は、5′末端
にATGをイ「(7ていてもよい。 1)NA(I’)の5′末端に」一記(rl+)で示さ
れる川越配列を有するDNAは、ポリベブチド(II)
に加えて(II)のN末fj7に次のアミノ酸配列(I
V)を有1るボリペプチドし以下ポリペプチド(TV+
I+)という]をコードする。DNA(I)の5′末端
にATGで示される塩基配列を有するDNAは、ポリペ
ブヂト(TI)に加えて(It)のN末端にMetをイ
1ずるボリペプチドをコードし,I)NA(ITI+I
)の5′末端にATGで示される塩基配列を有するDN
Aほ、ポリベブチド(rV+rl)にカロえて(IV+
n)のN末端にMetをイイするポリペプチドをコード
する。 本発明には、上記DNA,それらを組込んだベクター1
)NA及びそれらのベクターDNAで形質転換された宿
主たけでなく、上記1’)NAが対立逍伝子変異,逍伝
子コートの縮重又は一部の修飾を含む場合であっても、
それらを組込んだベクターDNAで形質転換された宿主
により産生されるポリペプチドがウ−リギ癌壊死因子と
等価の免疫学的又は生物学的話V1を示すポリベブチド
である限り、上記DNAの変シ゜(体,それらを組込ん
たベクターDNA及びそれらのベクターDNAで形質転
換された宿主も又含まれる。なお、D.NAの一部の修
飾を含む場合とは、上記DNAの一部が欠落している場
合及び上記DNAに他のDNA断片が付加している場合
を意味する。 以下に本発明を詳細に説明する。 (1)ウ号ギ癌壊死因子の単離精製 参考薩嘔詳記したように、ウ勇ギにI’ropioni
−bactartumacnesを投与し、更に工/ト
トキシンを投与することによりその体内にバ4壊死因子
を産生させ、その血液中よりイオン交換ク『Jマトグラ
フィー及びゲルσ3過等の組合せによりウサギ癌壊死因
子を単離精製した。ウ乃ギ癌壊死因子の同定はその生物
学的活性を指標として行った。用いた指標は(+)マウ
スL−M細胞<ATCCCCI.1.2)に対する細胞
傷害活性及び(ii)マウスに移植したMath^肉腫
に対する抗肚瘍活性である。これらの試験方法は例えば
特開昭58−174330号に記載されている。 分離精製されたウサギ癌壊死囚了について、その分子量
を8M尿素存在下及びノ1イfイ1トにわ(ノる;!’
!+速液(4クロマトグラフィーによるゲル濾過分析で
IIll1定した。その結果、ウサギ血漿由来の癌壊死
囚了の分子量は尿素非存在下では約4,5万ダルトノ、
尿索イj在下では単一のポリペプチドに解離し、その分
子ム[は約1.[f万ダルトンとめられた。尿〃イl在
士、即ち完全解IlII吠態の分子量がウサギ癌壊死因
子の基本構成単位の分子量であると名えられる。更に、
N末端及びC末喘を含む部分アミノ酸配列をそれぞれエ
トマノ分解法並びにヒドラジ7分解法とカルボキシベプ
チダーゼを用いる酵素法で解IJiLた。その結果、N
末端及びC末端部分のアミノ酸配列は以下に示す構造で
あることが明らかになった。 N末端:Ser一八la−Ser−^rg−^1a・・
・・・・・CA..端=Val一丁yr−Phe−Gl
y−1lc−Ile−八la−1.eu(2)ウーリギ
癌壊死因子mRNAの調製ウーリギ癌壊死因子mRNA
を得るには、まずウザ1!にI’ropionibac
tcriulIacnes,BcG,Zymosanの
ような網内系賦活剤を静脈内又は腹腔内に注射する。模
り7〜14[1後にウ・リギを屠殺し、肺胞,腹腔,血
液,その他のIII織からマクロフ!−ジを得る。この
マクロフ7−′)を培養R}:面1cJ当り約2×10
4〜IX106個播き、35〜38゜C1好ましくは約
37゜C1約5〜lO%炭酸ガス含有空気中、湿度約9
0〜100%で約30分〜2時間萌培養する。次いでグ
ラム陰性菌より得られたエン1トキシン、例えば大腸菌
,緑膿菌,ヂフス菌山來のりボボリタソヵライド及び蛋
白合成阻害剤(例えばシクロヘ4−ンミド)を加え、更
に培養を3〜8時間継続してウーリギ癌壊死囚子mRN
A合成を誘導蓄積させる。なお前培養は省略してもよい
。工/トトートンンの添加量は、一般に約01〜+00
Qlzg/ml(最終IO度、以下同じ)、好ましくは
約1〜100μg/mlである。この際、;1ルボール
ー12〜ミリステートー13−アセテート,ホルボール
−12.13−ジデカノエート,,1、ルボールー12
.13−ジベンゾエートのような、1、ルボールエステ
ル類を約1〜2000ng/ml添加してもよい。蛋白
合成阻害剤の添加量は、化合物のi:1類等により異な
るが、例えばンクロヘキシミlの’45(’L、0.1
〜50llg/+1である。I〆9Jljiとしては、
高″1動物細胞の1,イ養にΔした各種合成Ig地が用
いられ、例えばI伸Ml−1640.イーグルのMlシ
M培地,ダルベノコ変法によるMEM培地(以上の培地
の組成については、例えば宗村庚修編「細胞培養マニュ
アルJ,:lζ談社,1982年に記載されてぃる)が
挙げられる,J〆7地には、全培養液■の約1〜20%
の動物崩清(例えば牛胎児血1ri,子牛血清)を加え
ておくのが好ましい。培養終了後、細胞より常法、例え
ばCbirgwinらの方法[旧ochemistry
,+8,5294(1979)]により全RNAを抽出
し、次いでこれを1パ法に従ってAリゴ(dT)セルロ
ース又はポリ(U)セフ7ロース(フ7ルマンアネ」)
などを用いる吸着カラムク「lマトクラフィーにftI
ずが又はバッチ法によりpoly(^)mRNA画分を
分離する。このpo+y(A)mRNA画分を酸性尿素
アガロースゲル電気泳動又はシ?糖密度勾配遠心分離に
付ずことにょりウザギ癌壊死因子mRNAを濃貨1精製
ずることができる。 ここに得られたmRNAが目的とずるウづギ癌壊死囚了
をコ1−ドずるもΦであることを確認するためにはmR
NA8蛋白質に翻訳させてその生物lfi性を調べれば
よい。例えばアフリhノメガ.r−ル(Xenopus
laevis)の卵母細胞,網伏赤血球ライセート,小
麦胚芽のような適当な蛋白合成系にmRNAを注入又は
添加して蛋白質に翻訳させ、その蛋白質がマウスI.,
−929細胞に対して細胞傷害活1′1を示すこと及び
この細胞傷害活性が前述のウツギ血漿から単離した精製
ウサギ癌壊死因子に対する抗体により中和されることを
確認1ることにより行われる。なお、アフリカ7メガエ
ルの卵母細胞を用いる方法は、例えば次のようにして行
われる。卵母細胞1個当り約50ngのmRNAをマイ
クロイ7′)エタン,?/法で注入し、その10個を1
00μlのパース培養液[Gurdon,Jロ.,J.
Embryol.Exp.Morphol.,20,4
01(+9(i8)]中、22℃で24時間培谷し、,
1、モジリ゛イズした後、その遠心上清液(10,00
0rpI1,10分間)を検体として、L−920細胞
傷害活性を指標として癌壊死囚子活性を測定する[L−
029細胞傷害活V1の測定法はRuff,M.R.,
etal.,J.Imiunol.,+25,1[17
1(+980)に記社されている]。 本発明のウサギ癌壊死因子をコートするmRNAは次の
性質により特徴づけられる。 ■I.C〜2.7kbの大きさを有する。 ■3′末端にボリアデニル酸構造を有する。 ■ウ勺ギ癌壊死因子のポリペプチドをコードする。 (331シ勺ギ癌壊死囚子cDNAのクローニング(2
)のコ―程で得られたmRNAを鋳型とし、オリゴ(d
丁)又はウサギ癌壊死因子の部分アミノ酸配列に対応ず
ると考えられる塩基配列を有する合成オリゴヌクレオチ
ドをプライマーとして、dATp,dGTP,dcTr
’,dTTPの存在下で逆転写酵素(例えばトリ骨髄性
白血病ウィルス山米逆転写酵素)によりmRNAと相補
的な単鎖cDNAを合成し、アルカリ処理で鋳型mRN
Aを分解,除去する。次いでこのI11鎖cl)NAを
鋳型にして、逆転写酵素あるいは大腸菌DNAポリメラ
ーゼ■(ラージフラグメン})を用いて二重鎖cDNA
を合成ずる。ここに得られたI)NAを、ポリ(c+6
)一ボリ(dc)又はポリ(dA)−ポリ(dT)++
、モポリマー伸長法[Noda,M.,etat.,N
aLure.295,202(+982>,Nelso
n,T.S.,“MethodsinEnzy*olo
gy″.08,4+(+979>,Acade+icI
ゝr’essInc..NewYork]のような常法
に従って、例えばプラスミドf)13R322の制限酵
素PstI切断部位に組込ませる。得られた糾換えプラ
スミドを、例えばCohenらの方法[Proc.Na
t.^cad.Sci.USA,09,2+10(+9
72)]に準じて例えばE.co口χ1776株のよう
な宿主に導入して形質転換させ、テトラサイクリノ耐性
株を選択してcl)NAライブラリーを作製する。 とのcDNAライブラリーについて、プラス・マイナス
法によるコロニー・ハイブリダイゼーンヨ/試験[1l
anahan,D.,etal.,Gene,In,0
3(1980)]により、目的のクローンをスクリー二
/グずる。即ち、(2)の工程で得られたウサギ癌壊死
囚了mRNAを鋳型として32p標識cDNAを合成し
、誘導プラス・ブローブとする。別途に、正常無処置ウ
慢ギより得た肺胞マクロファージを材料にして、癌壊死
因子mRNAの誘導操作を除いて同様の操イ1を行って
抽出濃縮したmRNAを鋳型として3211標識cDN
Aを合成し、誘導マイリ・ス・プr】−ブとずる。 前述のcDNAライブラリーの中から、誘Jgプラス・
フ【】−ブと強く結合し、誘導マイナス・ブロープきは
ほとんど結合しないクロー7を選択する。とこに911
られたクローンからプラスミドDNAを分離し、加熱又
はアルカリ変性により単鎖cDNAとし二}r:+セル
ロースフィルターに固定する。これにウーリギ癌壊死囚
子mRNAを含むmRNA画分を加えハイブリダイズさ
せた後、結合したmRNAを溶出回収し、これをアフリ
カノメガエルの卵母細胞に注入し、回収されたmRNA
かウサギ癌壊死因子を:l−ドしているか否かを試験す
る(以下ハイプリダイセーション・トランスレーション
試験という)。以上の方法によりウサギ癌壊死因子のm
RNAと相補シ1のある塩基配列を含むDNA断片を組
込んたク[1−ン化DNAプラスミドを含む形質転換株
を得ることができる。 更に、この形質転換株のクローン化DNA断片を6当な
制限酵素で切り出し32pで標識したものをブ
The present invention is a cloned I) encoding Utagi necrosis factor.
N.A. The present invention relates to vector DNAs incorporating these vectors and hosts transformed with these vector DNAΔs. The following abbreviations are used herein to simplify the description. A adenino C tonton / G guanine T pumi / Ala arani / ArIr argini / Asn asparagi / Asp asbashiginic acid Cys cydine Gin glutamine G]u glutamic acid GIy glycy / 11is histidi 7 11e isostin / Le11 mouth in / 1. .. ys Lysine MeL Methyl Nino P amount) C Phenylalanino Pro Pro/ Ser Serino Thr Thre A Nin Trp} Rib l F7 N Tyr Chi 11 N No Va. I valine 1) NA deoxyri I: +A 100 cl) NA complementary DNA 1gNA ribomo66mRNA messenger RNA dAT11 de]quinadenosi/triphosphate dCTPde Phosphate dTTP7'λ
Kisijimiji/Triphosphate Rigo (dC) Oligodeoxy7disyl Rigo (dG
) , 1′ri(d
G);l! Lydeoxy7guanylic acid poly(dT) polypropylene Axidymicylic acid AT+'ade/ene triacetate/acid 11) TA ethylenediami/tetraacetic acid kb4-. jJ ground 1. L kl1p4'Kuchio JI (vs. Carswall et al.
+fn of mice infected with Almette-Guerin (IICG') and then treated with
We found that the serum contained a substance that causes necrosis of the transplanted Matl1^sarcoma, and we named this substance necrosis factor [Proc. Nat. Acad.
Sci. USA, ``72.3G (i (i (1975) Ko. Cancer necrosis prisoner is Makurov 7-') live yI!
It is called an active substance, and its characteristics include (1)
) The cancer in a persimmon becomes necrotic when thrown at a tumor-bearing animal.
+2 reduction (ii) in vitro certain thickness 4
111 cells (for example, mouse cancer cells ■, cells jj, +
, h}% (r'c-to cells from 4 mountains) or have almost no harmful effect on normal cells, and (ti+) the effect is not species-specific. or known. Because of these characteristics, cancer necrosis factor is highly anticipated for its clinical application as a new type of anti-diagnosis agent. However, the conventional method for producing cancer necrosis cells has been applied to animals such as mice and rabbits.
(・t(jir+umacncs injected, then -r7
1 t. It is difficult to stably obtain a large amount of cancer necrosis at a low cost since the cancer necrosis is purified from the blood and body dk after administering the drug. It was the situation. In order to solve the problem of
Although it is conceivable that this technique could be applied to a new technology, the basic knowledge regarding the amino acid sequence of the cancer necrosis factor and the method for collecting the mRNA necessary for its implementation has not been thoroughly unified so far.Therefore, the present invention They first investigated the ρ produced in the rabbit's body.
: Purification of cancer necrosis factor, elucidation of its protein chemical P1 substance, and subsequent induction of efficient production of cancer necrosis factor mRNA in vitro using rabbit alveolar macrophages. I saw 4 and it was a win! Local necrosis factor mRNA was purified and concentrated. Furthermore, by applying the Shoden f'-silk modification technique, rabbit cancer necrosis factor: 'I
The present invention was completed by successfully cloning the Dozuru cDNA. The present invention is based on Uri. 1! Contains the amino acid sequence of cancer necrosis factor and has a base sequence calling J' lipebutite 1)
It provides DNA having NΔ, particularly the following base sequence (r). The DNA shown in item 11 (1) encodes voribebutide having the following amino acid sequence (n). 1.1) N8 (1) may have the following 1111 sequence (II+) at its 5' end. Furthermore. DNA (1) and part 5
I) NA [hereinafter referred to as DNA (1±1)], which has an 11J base sequence indicated by (I'll) at the 5' end, may have ATG (7) at the 5' end. 1) NA DNA having the Kawagoe sequence indicated by the symbol (rl+) at the 5' end of (I') is polypeptide (II).
In addition to (II), the following amino acid sequence (I
V) and the following polypeptide (TV+
I+)] is coded. DNA having the base sequence indicated by ATG at the 5' end of DNA (I) encodes a polypeptide containing Met at the N-terminus of (It) in addition to polypeptide (TI);
) has the base sequence indicated by ATG at the 5' end of
A, polybebutide (rV+rl) is added (IV+
n) encodes a polypeptide with Met at the N-terminus. The present invention includes the above DNA, vector 1 incorporating them.
) Not only hosts transformed with NA and their vector DNAs, but also cases where the above 1') NA contains allelic genetic mutations, degeneracy of the genetic coat, or some modifications,
As long as the polypeptide produced by the host transformed with the vector DNA incorporating them is a polypeptide that exhibits an immunological or biological profile V1 equivalent to Urigi cancer necrosis factor, the above-mentioned DNA modifications ( This also includes cells, vector DNAs into which they have been integrated, and hosts transformed with these vector DNAs.Incidentally, cases in which a portion of the DNA is modified include cases in which a portion of the DNA is missing. The present invention will be explained in detail below. ni, Uyugi ni I'ropioni
Rabbit cancer necrosis factor was produced in the body by administering -bactartumacnes and totoxin, and rabbit cancer necrosis factor was extracted from the blood by a combination of ion exchange chromatography, gel σ3 filtration, etc. Isolated and purified. The rabbit cancer necrosis factor was identified using its biological activity as an index. The index used was (+) mouse LM cell <ATCCCCI. 1.2) and (ii) anti-ulcer activity against Math^sarcoma transplanted into mice. These test methods are described, for example, in JP-A-58-174330. The molecular weight of isolated and purified rabbit cancer necrosis was determined in the presence of 8M urea and in the presence of 8M urea.
! The molecular weight of cancer necrosis derived from rabbit plasma was approximately 45,000 Daltons in the absence of urea.
In the presence of urinary chorda, it dissociates into a single polypeptide, whose molecular weight is approximately 1. [F-10,000 Dalton was arrested. The molecular weight of the complete IlII state is said to be the molecular weight of the basic constituent unit of rabbit cancer necrosis factor. Furthermore,
Partial amino acid sequences including the N-terminus and C-terminus were resolved by the etomanolysis method, the hydrazidegradation method, and the enzymatic method using carboxybeptidase, respectively. As a result, N
It was revealed that the amino acid sequences of the terminal and C-terminal portions have the structure shown below. N-terminus: Ser18la-Ser-^rg-^1a...
...CA. .. End=Val 1-yr-Phe-Gl
y-1lc-Ile-8la-1. Preparation of eu(2) Wooligi cancer necrosis factor mRNA Wooligi cancer necrosis factor mRNA
To get it, first get annoying! I'ropionibacus
A reticuloendothelial system activator such as Tcriullacanes, BcG, or Zymosan is injected intravenously or intraperitoneally. Imitation 7-14 [After 1, slaughter the Urigi and extract the alveoli, peritoneal cavity, blood, and other tissues from III! - get the di. Cultivate this macroph 7-') R}: about 2 x 10 per cJ surface
4-IX 106 seeds sown, 35-38°C1, preferably about 37°C1, in air containing about 5-10% carbon dioxide, humidity about 9
Incubate at 0-100% for about 30 minutes to 2 hours. Next, en-1 toxins obtained from Gram-negative bacteria, such as Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhimurium, bobolita socharide, and a protein synthesis inhibitor (such as cyclohenamide) are added, and the culture is further incubated for 3 to 8 hours. Continue to treat Wooligi cancer necrosis prisoner mRN
A synthesis is induced and accumulated. Note that the pre-culture may be omitted. The amount of addition is generally about 01~+00
Qlzg/ml (final IO degree, same hereinafter), preferably about 1 to 100 μg/ml. At this time,; 1 rubole-12 to myristate-13-acetate, phorbol-12.13-didecanoate, 1, rubole-12
.. About 1-2000 ng/ml of 1, rubole esters, such as 13-dibenzoate, may be added. The amount of the protein synthesis inhibitor added varies depending on the compound i:1 class, etc., but for example, the amount of protein synthesis inhibitor added is
~50llg/+1. As I〆9Jlji,
Various types of synthetic Ig substrates with a Δ value of 1,000 ml are used for animal cell culture, such as Ig's Ml-1640. For example, in ``Cell Culture Manual J,'' edited by Kosuke Munemura, published in 1982, published in 1982, J.
It is preferable to add 1 ri of animal disintegration (for example, 1 ri of fetal bovine blood, calf serum). After the culture is completed, the cells are extracted using a conventional method, such as the method of Cbirgwin et al.
, +8, 5294 (1979)], and then extracted with Alig (dT) cellulose or poly(U) cef7-lose (F7 Leman Ane) according to the 1-pa method.
ftI to adsorption column column using
The poly(^) mRNA fraction is separated by a batch method. This po+y(A) mRNA fraction was subjected to acid urea agarose gel electrophoresis or chromatography. Rabbit cancer necrosis factor mRNA can be purified to a high concentration without being subjected to sugar density gradient centrifugation. mR
It is sufficient to translate it into NA8 protein and examine its biological lfi property. For example, Afri hnomega. r-ru (Xenopus
The mRNA is injected or added to an appropriate protein synthesis system such as mouse I. laevis oocytes, reticulocyte lysate, or wheat germ, and translated into protein. ,
This is done by confirming that it exhibits cytotoxic activity 1'1 against -929 cells and that this cytotoxic activity is neutralized by the antibody against the purified rabbit tumor necrosis factor isolated from rabbit plasma as described above. . Note that the method using African 7-mega frog oocytes is carried out, for example, as follows. Approximately 50 ng of mRNA per oocyte was collected in microorganisms (7') Ethane, ? / method, and 10 of them are injected into 1
00 μl of Perth culture [Gurdon, J. , J.
Embryol. Exp. Morphol. ,20,4
01 (+9 (i8)) at 22°C for 24 hours,
1. After modulation, the centrifuged supernatant (10,000
0rpI1, 10 minutes) as a specimen, and cancer necrosis cell activity is measured using L-920 cytotoxic activity as an indicator [L-
The method for measuring 029 cytotoxic activity V1 is described by Ruff, M. R. ,
etal. , J. Immunol. ,+25,1[17
1 (+980)]. The mRNA encoding the rabbit cancer necrosis factor of the present invention is characterized by the following properties. ■I. It has a size of C ~ 2.7 kb. (2) It has a boriadenylic acid structure at the 3' end. ■Encodes the polypeptide of rabbit cancer necrosis factor. (331 Cloning of necrosis prisoner cDNA from Shiinagi cancer (2)
) was used as a template and oligo (d
dATp, dGTP, dcTr using a synthetic oligonucleotide having a base sequence thought to correspond to the partial amino acid sequence of rabbit cancer necrosis factor or rabbit cancer necrosis factor as a primer.
', Single-stranded cDNA complementary to mRNA is synthesized using reverse transcriptase (e.g., avian myeloid leukemia virus Yamamai reverse transcriptase) in the presence of dTTP, and template mRNA is synthesized by alkaline treatment.
Decompose and remove A. Next, using this I11 chain cl)NA as a template, double-stranded cDNA was generated using reverse transcriptase or Escherichia coli DNA polymerase (large fragment).
Synthesize. I)NA obtained here is converted into poly(c+6
) one poly(dc) or poly(dA)-poly(dT)++
, Mopolymer extension method [Noda, M. , etat. ,N
aLure. 295,202(+982>,Nelso
n, T. S. , “Methods in Enzy*olo
gy″.08,4+(+979>,Acade+icI
ゝr'ess Inc. .. For example, it is inserted into the restriction enzyme PstI cleavage site of plasmid f) 13R322 according to a conventional method such as [New York]. The obtained recombinant plasmid is processed, for example, by the method of Cohen et al. [Proc. Na
t. ^cad. Sci. USA, 09, 2+10 (+9
72)], for example, E. A cl) NA library is prepared by introducing the host protein into a host such as the cocoon Chi1776 strain and transforming it, and selecting a tetracyclino-resistant strain. Colony hybridization/testing using the plus/minus method for cDNA libraries with
Anahan, D. , etal. ,Gene,In,0
3 (1980)] to screen the desired clone. That is, using the rabbit cancer necrosis mRNA obtained in step (2) as a template, 32p-labeled cDNA is synthesized and used as an induction plus probe. Separately, using alveolar macrophages obtained from normal, untreated pigs as material, the same procedure 1 was performed except for the induction procedure of cancer necrosis factor mRNA, and the extracted and concentrated mRNA was used as a template to generate 3211-labeled cDNA.
Synthesize A and induce it. From the above-mentioned cDNA library, Jg plus
Select Claw 7, which strongly couples with the blow []-bu and hardly binds with the induced negative blow. Toko 911
Plasmid DNA is isolated from the isolated clone, converted into single-stranded cDNA by heating or alkaline denaturation, and fixed on a cellulose filter. After adding an mRNA fraction containing Ooligi carcinoma necrosis prisoner mRNA to this and hybridizing, the bound mRNA was eluted and recovered, and this was injected into African frog oocytes, and the recovered mRNA
A test is conducted to determine whether the test sample contains rabbit cancer necrosis factor or not (hereinafter referred to as hybridization/translation test). m of rabbit cancer necrosis factor by the above method.
A transformed strain containing a cloned DNA plasmid incorporating a DNA fragment containing a nucleotide sequence complementary to RNA can be obtained. Furthermore, the cloned DNA fragment of this transformed strain was cut out with 6 appropriate restriction enzymes and labeled with 32p, and the DNA fragment was cut out with a 32p restriction enzyme and labeled with 32p.

【J−ブ
として用い、前述のcDNAライブラリーをj1jスク
リーニングすることにより、より太きなサイズのcl)
NAを選択してもよい。 このようにして得られた多《のク1−I一ノ化1)NΔ
断片について、例えばMaxaII−Gilbert法
[Proc.Nat.^cad.sci.UsA,74
,500(+977)]に従って塩基配列を解析し、既
に明らかになってぃるウーり゜ギ癌壊死因子の部分アミ
ノ酸配列(N末端及びC禾端を含む)をコードする塩基
配列を探し、最終的に癌壊死因子の全翻訳領域に対応ず
る塩基配列[前記において(1)で示された塩拭配列]
を含むcl)NΔを選び出ずことにより、ウサギ癌壊死
因子のアミノ酸配列を含むポリペプチドを:+−iずる
j*.Iil+配列を有するクローン化1)NAを得る
ことができる。 本発明のクロー/化DNAを趨尚に処置した後、適当な
形質発現ベクターに組込んでウツギ癌壊死囚子生産用ベ
クターを得ることができる。ベクターとしては、形質転
換させる微生物中で増殖するものはすべて用いることが
できる。例えばブラスミド(大腸菌プラスミド,pnR
322など),フlージ(ラノ・タファージ誘導体など
),ウィルス(SV40など)が挙げられる。これらは
!11独で、又はそれらの組合せ、例えばpnR322
−SV40ハイブリノドプラスミドなどの形で川ハても
よい。 そのI)NΔの組込ろ部位も任意に選択することができ
る。即ち、適当な形質発現ベクターの造肖な位置を常1
人により適当な制限酵素を作用さ{↓て開裂させ、その
開裂部位に該クローン化1)NAをl!i肖な長さに処
理して組込むことかできる。 上記クローン化DNAを絹込んたベクターを゛):(法
により滴肖な宿主に作用させて形質転換させることによ
り形質発現宿コ・が得られる。形質発現川」ぺ【Iンと
しては、例えばβ−ガラクトンダーセ,トリブトフ7ン
,β−ラクタマーセ,アルノJリホスフ7ターゼなどの
λべ『コンが挙げられる。更に、形質転換に用いられる
宿主としては、例えば大腸菌,枯r,j菌,酵1;上な
どの微生物及びCOSmonkey細胞などの培養細胞
が挙げられる。 本発明のクr】一ノ化DNAは、ヒトを含む異種動物の
癌壊死因rl)NAのク1.1−ニノクにおいてブ1』
−プ又はプライマーとして極めて自川であり、かつそれ
自体が癌壊死因子生産微生物又は細胞をイ′1るための
祠r1となる。 以下に実施例及び参号例を挙げて本発明を更に具体的に
説明するが、本発明はこれ番ら実施例に限定されるもの
ではない。 実施例 (1)ウ1ギ肺胞マクロファージからのmRNA分画の
単離精製 ウザ.1!(休m約2.5+tg)にPropioni
bacteriumacncs死菌体を1羽当りl00
mgの投与以て静脈内に注入し、8口後に屠殺した。直
ちに開胸気管切開し、気管内に挿入したチューブを介し
てり/酸kt衝化生理食塩液を用い肺洗浮を繰返し、肺
胞マク1コファージを採取した.,12羽のウサギより
約3×109個のIlj11胞マクロファージが得られ
た。このIII胞マクl」ファージを10%牛胎児血清
含イ1のRr’MI−1(i40培堆に懸濁させてペト
リディノンユ(ll’l径8c−)に1枚当り2X10
7個となるように播き、;{7゜Cで5%炭酸ガス含有
空気中、flJICI:90〜100%でni1培養し
た。1時間の前培養の後、エントトトンン(大腸菌由来
のりボボリーリノ力ライト’),TPA(ホルボール−
12−ミリステート−13−アセ冫ート)及び/ク
[By using the above-mentioned cDNA library as a J1j screen, a larger size cl can be obtained]
NA may also be selected. Thus obtained poly(1-I) monomer 1) NΔ
For fragments, for example, the MaxaII-Gilbert method [Proc. Nat. ^cad. sci. UsA, 74
, 500 (+977)], and searched for the base sequence encoding the partial amino acid sequence (including the N-terminus and C-terminus) of the previously clarified Woori Gi cancer necrosis factor. A base sequence corresponding to the entire translated region of cancer necrosis factor [Shiobuki sequence shown in (1) above]
cl) containing NΔ, a polypeptide containing the amino acid sequence of rabbit cancer necrosis factor was obtained by selecting: +−i sulj*. Cloning 1) NA with Iil+ sequences can be obtained. After the cloned/transformed DNA of the present invention is treated in a sequential manner, it can be incorporated into an appropriate expression vector to obtain a vector for producing necrotic captives from rabbit cancer. As the vector, any vector that grows in the microorganism to be transformed can be used. For example, plasmid (E. coli plasmid, pnR
322, etc.), frugi (Rano-Tafage derivatives, etc.), and viruses (SV40, etc.). these are! 11 alone or in combinations thereof, e.g. pnR322
- It may be in the form of a SV40 hybrid plasmid or the like. I) The site for incorporating NΔ can also be arbitrarily selected. That is, the appropriate morphological position of the expression vector is always
Depending on the person, an appropriate restriction enzyme is applied to cleave it, and the cloned 1) NA is inserted into the cleavage site. It can be processed and incorporated into any length. A vector containing the cloned DNA described above can be transformed by acting on a suitable host by a method to obtain a vector for expressing a trait. Examples include λ vectors such as β-galactondase, tributofinase, β-lactamase, and ArnoJ lyphosphtase.Furthermore, examples of hosts used for transformation include E. coli, Bacillus bacillus, J. Examples include microorganisms such as those mentioned above and cultured cells such as COS monkey cells. 1”
It is extremely useful as a primer or primer, and itself serves as a shrine for identifying cancer necrosis factor-producing microorganisms or cells. The present invention will be described in more detail below with reference to Examples and Reference Examples, but the present invention is not limited to these Examples. Example (1) Isolation and purification of mRNA fraction from rabbit alveolar macrophages. 1! (rest m about 2.5+tg) Propioni
100 dead bacteria bodies per bird
The animals were injected intravenously at a dose of 1.0 mg, and sacrificed 8 days later. Immediately, a thoracic tracheotomy was performed, and alveolar macrophages were collected by repeatedly flushing the lungs with acid-kt-enriched physiological saline through a tube inserted into the trachea. Approximately 3 x 109 Ilj11 macrophages were obtained from 12 rabbits. This III phage was suspended in 1 volume of Rr'MI-1 (i40 medium) containing 10% fetal bovine serum, and 2 x 10 phage per plate was added to Petri dinonyu (ll'l diameter 8c-).
They were sown in 7 pieces and cultured in ni1 culture at 7°C in air containing 5% carbon dioxide and flJICI: 90-100%. After pre-incubation for 1 hour, Entototon (Escherichia coli-derived paste Bobolilinolite'), TPA (phorbol),
12-myristate-13-acetate) and/or

【ノ
へ17ミトをそれぞれ最終濃度か10μir/Ilt.
IOng/ml及び1μ!r/1となるように添加混和
し、史に培養を継続した。4〜4.5時間後(i!!I
算5〜55時II)に培養液を吸引除去し、ディソン,
1に残ったマク【Jフ7−)を0.6%ラウpイルサル
二j7ノ酸リトリウムとOmMクエノ酸リトリウムを含
有する5Mグアニジルヂオンアネート液で溶解し;lそ
シナイズした。このホモジネートをOIMEl)TA含
イr5.7M塩化センウム水溶液上に重層し、超遠心分
離機(RPS27−21ーター,日ΔY製イ′I所)を
用い20,500rpI1で20n+f間遠心し全RN
A画分をペレノトとして得た。これを0.35MNaC
I,20mMTris及び20mMEDTAを含む7M
尿素液の少量に溶解し、エタノール沈殿として回収した
。 12羽のウ・リ゜ギより全RNAとして5.2mgが得
られた。 この全RNA画分をImMEDTAを含むIOmMTr
is−IIcIkA8iAM(pll7.4>(以下T
E峨トイウ)2mlk−溶解し、65℃で5分間加熱し
た。これにNaCI溶液’i:05Mとなるように加え
た後、あらかじめ0,5MNaCI庖含むTEilkで
甲衡化した]リゴ(dT)セルjJ−スノノラムに1・
jシ、吸谷したpoly(八)mRNΔを刊こ+1冫で
溶出−d’ルコと◆コより、314ugのpoly(^
)mRNAを?τノだ。ここで得たpoly(^)mR
NAノ20(bzgヲアノfu−スゲル電気泳動(ゲル
濃度1%,(3M尿素存在1・,pl14)に伺し、そ
の分了1イズに従って7つの両分に分け、ゲルを憑解(
70’C,10分1tl)させた後、水飽和フ,メール
による抽出とクrlItiレレノ・にょる抽出ののち、
エク7−ルにより沈殿さゼて各両分よりpoly(A)
mRNAを回収した。各画分のpoly(八)mRNA
についてアフリカノメガエルの卵1号細胞を用いる方l
去でウ・リギ癌壊死囚子mRN’Afitを11111
定し、分子サイズとして1.6〜2.7kbに相当すル
II!II分にウサギ癌壊死因子mRNAを高濃度に回
収した。 この精製poly(^)mRNAの比活性は約1,23
011’−(:t./μglセNAであり、未精製po
ly(^)mRNA調製品の比活性約320単位/tt
I?RNAに比べて約4倍にrQhiされた(第1図)
。 このWit!k!lpoly(八)mRNAを鋳型とし
−(−t71Jカノメガエルの卵母細胞の巾で翻訳合成
されたIJirIPiがウザギ血漿から調製した癌壊死
因子と同−・であることを参考例3でAllII製した
精製抗ウサギ癌壊死因r抗体を用いて確認した。即ち、
poly(A)mRNAをγフリカノメガエルの卵母細
胞にiJ二人し、バースjバ養壱で22゜C,24時間
培養した後、;1モジリ−イズしそのiffl心上7#
液を検体とした。この検体+00Blに粕製抗ウザギ島
壊死因子抗血清20μlを加え、;{7゜Cで2時間反
応させた後、L−02!)細胞に対する細胞傷害活性を
測定した。その結果、抗体非存在1・では1,2f+7
り1位/1を示したが、抗体存在下でほ1中イ4“//
IN+以下となり、ほぼ完全に中和された。 第2区1にd111定粘呆をウ・リギ血漿由来癌壊死因
子の場合と対比させて示した。図中、拳はアフリカ7メ
ガyルの卵[、上細胞中でmRNAから翻訳さわたウ!
+1!v.++壊死囚−r一の細胞傷害活性を、0はウ
勺ギ血5π111米島壊死因子の細胞傷害活性を、点腺
は抗休(rイl:’hの場合を、実線は抗体J1一存在
下の場合を示′J. ここで得られた!+’i製poly(^)mRNAを以
下の実験に用いた。 (1代)(・l)NAの合成 精製poly(^)mRNA4μgG用い以下に示j条
イI1でcDNAを合成した。 反応液量:100μl 50mMTris−11CI緩衝液(pll8.3):
IOmMMg(12;70mMKCI;ImMジヂAス
レイl一iv;05mMdTT+”,dcTr’,dA
TP.dGTI1(但LdCTl1は321)で標識,
比活性4.4XI06cpa/nmola);3oμg
{リゴ(dT>12〜II1.80!l’−位トリ骨髄
性白血病ウイルス11l米逆転写酵素。 43゜Cて90分間反応させた後、El)TA水溶液で
Ik応を停止させた。フーエノールークjljl;l;
ルム混dk(1:I)によりcDNA−mRNΔ複合体
を仙出1,、エタノールにより沈殿さU回収した。史に
、アルカリ加4λ処理することによりmRNAを分解除
去した後、合成されたj11鎖cDNAをエタノールに
より沈殿させ回収した。 この単鎖cl)NAの沈殿を下記絹成の反応緩衝i1′
k40μlに溶解した。 反応緩衝液: 0.5mMdATI’,dTTP,dGT+’,(IC
TI’;5mMMl4CI2;70mMKCI:1.5
mMβ−メノレカブトr−9ノール;8単位大腸菌DN
AポリメラーゼI(ラーンフラグメ/ト)を含有する0
.IMIlepes緩衝液(pll0.9)。 15゜Cで20時間反応させ二重鎖cDNAを合成した
。 反応壱にドデシル硫酸ナトリウム水溶液を加えて反応を
停止させ、二重鎖cDNAをファノーノレーク口ロホル
ム混液で抽出し、エタノーノレにより沈殿さ廿回収した
。 得られた二重鎖cDNAの沈殿を、50mM酢酸づ−ト
リ・ンI−(pll4.5>.1mMZnSO4,20
0mMNaCI,0.5%クリセロール及びS1ヌクレ
アー・tF0.5単位を含自する水溶jlM1007l
/に溶解し、37゜Cで20分間反応させてヘアピン構
造を開裂させた。反応LtEDTA水溶液を添加して停
止させ、フエノーノレークロロホルノ・混液で抽出じ、
更にエーテノレで再抽出した後、yタノールにより沈殿
させcDNAを回収した。 (3)lリゴ((IC)テール付加cDNAの調製i記
により得られた二重鎖cDNAに次の絹成の反応j1衝
液100Illを加え37゜Cで20分間反応させ、二
重鎖cl)NAに」リゴ(dC)テールをf.I加させ
た。 反応緩衝峨: 1mMCoCI2,0.1mMジヂ詞スレイトーJl/
,0,2uyボ’)(A),O’.ImM3II−dc
Tr”(比活fJ:5400(:Ill/pmol)及
びIO!It位ターミナルデAキシヌクレ詞チジルトラ
ノスフェラーゼを含自ずる130mM力:1ジル酸リト
リウム−30mMTris−11CIkA?+ritM
(pll6.8)。 反応は1ΣDTA水溶液を添加して停+tさ廿、フェノ
ールークロロホルム混液で抽出し、更にコ−−ラルで再
抽出した後、オリゴ(dC)テールf−1加(:l)N
Aをエタノールにより沈殿させ回収した。これを10m
MTris−11CI緩衝iffl(pll7.4),
1mMTI)TA及び]00mMNaC+を含む水溶液
に11当り0,2llirの」リコ(dc)テール付加
cDNAを含むように溶解【7だ。 (4)オリゴ(dG)テールイ、1加プラスミ1・p1
口ぐご322DNAの調製 20mMTris−11Cflu衝itk(pll7.
4).lOmMM14CI2.50mM(NH4)2S
O4及び11当りn.+11.+のウ/lIlli1’
iアルフミンヲ含む水dgi&IOOμIニ1)旧<3
22をlO/l+!?古解し、制限酊索PStI工/ド
ヌクレアーゼ15単(:1を加え、37゜Cで1時間反
応させた。反応終了後、反応液をフェノール抽出し、水
届からエタノール沈殿によってDNAを回収した。得ら
れたDNAを前述のλリゴ(dC)テール付加に用いた
水溶液(但し3II−dcTI)の代りに3II−dG
TPを含む)200μlに溶解し、ターミリルデオキシ
ヌクレ1チジルトラノスフェラーゼl’iQ111{◇
を用いて37℃で20分間反応さu1約10〜15個の
dG残基を取り込ませた。反応r’7を水飽和フユノー
ルークロロホルム混戚でhl+出し、水層からエタノー
ル沈殿によってオリゴ(da)ブールイ、1加プラスミ
ドpBR322DNAを回収した。 これを」リゴ(C+C)テール付加cDNAの場合と同
様のj了衝液にlsl当り2μgの]リゴ(dC)テー
ル付加ゾシスミドpllR322DNAを含むように溶
解した。 (5)I’ll換え体ブラスミドの作製Aリゴ(dC)
1″−ルイ・I加cDNA溶液50/llをAリゴ(d
G)J−ル付加1)lシR3221)NA溶液50ll
lと混合し、(;5゜CてIO分間、57゜Cで120
分間、45゜Cて60分間、35゛Cで60分間及び3
{渦で60分間イノキュベートしてア二−リングを行い
、組換え体ブシスミl溶i1kを調製した。 (6)形質転換体の選択 −1ユ記で得られたIII換え体ブラスミド溶液を用い
、E.coliχ1776株を形質転換させた。即ち、
[.coliχ1770Kを、ジアミノビメリ71!t
IOOttrr/if及びチミジン40μg/mlを補
った■、一ブロス201中、37゜Cで吸光度((!O
Onm>が0.5となるまで培養し、菌体を冷却器f寸
遠心分離機で集め、50mMCaC+2含有10mMT
ris−11CI緩衝戚(pll7.3NOwlに分散
し、0゜Cで再度遠心して沈殿させた。集めた菌体をI
『−1じ緩衝液2−1に分散し、0゜Cで5分間静iF
7Lた。 この分散液0.21に上記組換え体ゾラスミl’IFf
ilk011を添加混合し、0゛Cで15分間静置し、
史に42゜Cて2分間保持した後、前の18査で月1い
l.:のと同一絹成の■,−ブ『』ス051を加えて1
時間振;1.;む゛7養を行った。この培養i1&の一
部を取り、If!lI’l8の成分の他にテトラーり゛
イクリノ+51zlr/1@含む1,一/ロス寒天甲板
に広げ:l7’Cで約12”+flfflIij青し、
ノ1ラづイクリ/酎性菌を選択して(;I)NAソイ/
ノリーをイ′1製した。 (7)ハイブリグイセーン。ン試験 則記のcDNAライブラ゜ノーについて、ウサギ癌壊死
因r−をコードずるcDN八を含むブラスミドをIl7
ツ形質転換体をスクリーニノグするため32pi議cl
)NAブl7−ブを用いるコロニー・/1イブリダイl
F−ンH+7試験をllanahanらの方法[Gen
e,10.63(+980)]に従って行った。32p
jM識cl)NAプローブは、AノOプラス及びマイナ
ス肺胞マクロファージJ、り1,記(1)項の方法で得
たmRNAを鋳型として、(2)項のノノ7ノ:で合成
した。但し、32rI−dCTPは高放ロ,1能比活ヤ
1のものを用い、高濃度に標識した。この試験により誘
導プラスのブローブと強く結合し、誘ノgマイリスのプ
[J−ブとは/XイブリダイズしないIuM配列を含む
組換え体プラスミドをイ『する形負転換体を選別した。 約2万個のコロニーから50個の.1口二一か】Xび出
された。 次いて、これらの選択された菌株について/′Sイノリ
ダイレーン,ン・トラノスレーンヨン試験をt+lan
iaLD;,T.,atal,(cd)“MOIQc+
Ilarclon+ng”.329(1980),Co
ldSpringllarborI.ab.,に記4’
lO)力法に従って行った。それぞれの形質転換体より
ブラスミドDNAを抽出し、ニトロセルロースフィルタ
ー上に加熱変性させたのち固定し、これに上記(II1
ftで得たウ慢ギん壊死囚子mRNAを含むpoly(
A)mRNA画分を加え、50℃で30分間反応させ、
ハイブリダイセーシ3ノを行った。結合したmRNΔを
溶出回収した後アフリカノメガエルの卵1リ細胞にl1
人し、回収されたInRNAかウ慢ギ癌壊死囚rmRN
Aであるか否かを検定した。この試験により、上記で選
択された20個の形質転換体よりウリ1!鮎壊死因子m
RNAと強くハイブリダイズ1るcl)NA’a+含む
ブラスミトをt11つ菌株3個を見いたした。そのうち
最も艮いcDNA(約750bP)を自ずるブフスミF
より、制限酊累l)deIでl)NA断ハをIノノリ出
し、二次スクリー二/グ用のプローブとした。このDN
A断片を32pで標識し、上記(6)JIIて得たcl
)NAシイブラリーについて再度コ『J二一・ハイゾリ
ダイセーション試験を行い、標識ブ【J−プと強く鮎合
ずるcl)NAを含むブラスミドを持つ形質転換体を選
んた。cl)NAシイブラリーの約6万個のコロニーの
うち98個か陽性コロニーであった。これらからcl)
NAを制限酵素PstIで切り出し、そのサイズをポリ
アクリルアミトゲル電気泳動で調べ、1kbl+以1.
の1イズを有ずるl7個のクローンを選び出した。これ
らのうち最も大きなcDNAを含む形質転換体(菌体番
号:RTNFR02,クローン化DNAMシ;:pR′
rNF802)にツイて、クアーン化DNAを中−1し
、後述の方法で塩基配列を決定した。 (811(−+−ノ化DNAの塩基配列の決定(7)項
で選択された菌株(RTNF802)をジアミノピメリ
/酸及びチミジンを添加した■、一グロスで培養して菌
体を得た。この菌体をWilkieらの方lノ[Nuc
le;cAC+clSRes.,7.859(+979
)]に従って処理し、ブシスミドDNAを得た。このプ
ラスミド1)NAを制限酵Jr’stlで分解し、精製
分離してクI1−ノ化1)NAを得た。このク【フー7
化DNA断片を手〔々の制限酊A,で分解し、店当な制
限酵素断片についてそれぞれの1一基配列をMλxam
−Gilbert法によI)脱リノ酸化321)による
末靖標識,塩基特異的化学分解反応,ゲル電気詠動及び
]一Fシジ」グラフィーから決定した。 第3図に塩バ配列決定に用いた制限酊索切断部位と塩基
配列を決定した方向及びilii囲を矢印で示す。二:
コ部分はウ号ギ癌壊死因子の翻訳領域をゴードする部分
を示す。 その地基配列は第1表の通りである。第1〜15番はc
DNΔをベクターに組込むために付加したG迎鎖テール
である。第+6〜276番は癌壊死因rのn11駆体を
構成ずるに必要なポリペブチトをml−トすると拍定さ
れる地基配列である。第277〜2旧番の11.iMは
ウサギ癌壊死囚了のN末端に411当1るアミノ酸配列
をコートし、第715〜738番1−1の塩J1(はC
末喘部分のアミノ酸配列をコートしている(第1表にお
いてC==aで囲んた配列)。C木端アミノ酸(0イシ
ン)のフ1トンに続いて毅+l::+ド7(TGA)が
ある。 ウザ.1゛癌壊死因子のポリペプチドをコー1する領域
の塩基配列(第277〜738番)から翻訳されるアミ
ノ酸残基数は154個であり:その紐成及びR19分,
(,ilj.は第2表に示す通りである。第2表から明
らかなように、参刀例1に記載の方法で得た精製ウーリ
1!癌壊死因子のアミノ酸紹成及び測定分子;I1と7
1111定誤差の範囲内て一致した。なお、表中のカノ
:J内の数値は分析値を四捨五入した整数値を表札 参考例1 ウーリ1!癌壊死因子の単目t精製 ウ勺ド(体ir12.5〜3.0kg)にPropio
nibacterコu1aC:n(!S死菌体50.を
耳静脈より注射した。8日後に.れノトトキンン(大腸
菌由来のりボボリザッカシイト)1007ll?を耳静
脈より注射し、2時間後に心Th’.!J、り全採血し
た。採取した血液に1001当り+001−位のヘバリ
/ナトリウムを加えた後、5.000rpmで;10分
間冷却遠心操作を行い、血球及び不溶固形物を除去した
。400羽のウサギより3,000単位l1の力価を有
ずる血漿24/が得られた。 この血漿24/に■シDTA24g及びセライト240
gを加え1時間撹I1〕シた後、孔径3μ.1μ及び0
.2μのフィルターで順次濾過した。 紹i+1!241に0.04M,Tris−11CI緩
衝液(pll7.8)+27を加えた後、0.IMNa
CIを含む0.04MTris−TICIWoe衝il
k(pll7.8)で1一分に平衡化したDIシAlシ
−セフ7”XC+.−(il+(フlルマ/ア社)のカ
ラム(27×45+:s)に徐々にf−tシた。次いで
カラ!・平衡化緩衝i1k75liび0.I5MNaC
lを含む0.04MTris−11cIffl&i液(
pll7.8)501−t?li次洗j’llffl、
0.I8MNa.CIヲ含む0.04MTriS−11
cItJ衝液(pl+7.2)を用いて溶111シた。 溶出液は8/ずっ分ii!+il,て活性jlii分苓
集めた。この活性画分に同容fitO)0.04MTr
is−11cI緩衝峨(pll7.8>を加えて希釈し
た後、1月:AI7−セフ7ロースCL−Onのhラム
(foxI:lem)にイ−1した。次いで0.IMN
aCIを含む0.04MTris−1ICIf,Y”4
南ink(pll7.8>l/ヲ811,+テ洗jp(
,タ(D、O.I8MNaCIt含む0.04MTri
s−11c15衝ill’(pll7.2>51唆用い
て溶出した。溶出液は25o1ずっ分画して活1l11
1111分を集めた。 次にこの溶出液を容器に移し70’Cの揚浴中に浸し、
撹拌しなから溶出液の41度がGO’Cになるまで加熱
した。その後co’cの別の揚浴に移し、30分間加熱
処理した後、速やかに4゜Cに冷却した。加熱処理した
溶液は、限外濾過にょり0縮した。 0.1MNaC+ヲ含tjO.005M’)7mlm9
4i1k’(pl17.4)で十分に事衡化したセン2
クリルS−2QQ(ファルマシア社)のカシム(5X8
oes)に1記濃縮iPを4fl,、同緩衝液で溶出し
た。40ilずつ分1j)iLで7.ζV{両分を抹取
し、限外σ2過により+5縮した。 ゲル濾過によって得られた活性画分の濃縮液をZn2+
4レートセフ7ロース力ラムに付した。 PoraLh,J.,atal.,Nature,25
8.5fl8(+975)に記職の方2去で得られたキ
レートセフ,r+−ス(イミノジ酎酸1・’・1定化イ
ろ1脂)を充填したカラム(+.Gx2(Jam)に、
1?,/−1のl一化亜鉛水溶液I201を流した。 次いでO.lMNaClを含む0.05Mυノ酸緩衝i
11i(pl+74)で十分に平衡化した後、前工程で
得られた濃紺il灸を{.Iし、同緩衝液で溶出した非
吸着画分を採1νした。活V1はこの両分にほとんどが
回収された。 前精製−1,程でiIJられた活性画分を濃縮し.0.
+5MNaClfl含む0.005Mリン酸緩衝液(p
l+7.4>で十分に甲衡化したトヨバールIIW−5
5(東〆Y−ソーダ株式会冫l)のカシl、(15X9
0+・.)に伺した。同緩衝港で溶出し活tノ+画分を
採取した。全精製丁I′lをiI+il−ての活V+の
四収率は60%、精製度は7.5X10’倍であった。 このようにして得られた精製ウサギ勧7(壊死因rの比
話V1はO.OX106単位/璽g蛋白質であ−,た(
l占jQI11イ)″lの定義は特開昭58−+7+3
3o号のそれと同じである)。また、マウスに移4NL
たMath^肉肚を用いる生物評価において、1匹当り
3,000〜5,000単位を静脈内に投JJシた場合
の71もv1は(+)以−トであった。 参名例2 ウ“v゛−+!IX+壊死因子の性質 (1)分子111測定 参考例1で得られた精製ウサギ癌壊死囚了につイテ、T
SK−G3000SWカラt、(’AI%ン’!株式会
?J)を用い高1!!液体クロマトグラフィーにより分
子1ilを決定した。溶媒には,0.2Mリン酸江綽7
ill(pll7)及び8M尿素と0.5%β−メルヵ
ブトJタノールを含有する同緩衝液を用いた。下記の分
子1,Lfilll定用標準蛋白質を用いて分子II1
検fil腺をf′1成j7、分子L1を測定した゜ ウン血清アルブミン(1i.l’ix10’),ウ・り
1!・Fり」一ス;j、;(フ,一トイソメラ−V(5
.:+x10’).Aボアルブミン(4.5X10),
ブタ・ペブ7ノ(1.27XIO),大豆トリブンノイ
ンヒビター(2.05x10’),ウマ・ミ刈グロビノ
(1.78xIo’).・ンマ・ブ」クu−l.C<I
.24x!0’)[カノフ内の数イ/1は分子量(ダル
ト/)を示ずコ。 その結果、ウリ゛ギ癌壊死因子の分子量は尿素非イfイ
1トては約45万ダルトン、尿素存在下では約16万ダ
ルトンであった。 (2)アミ7酪組成 1l1製ウーリギ癌壊死因子を常法に従ってエ−酸加水
分解1一た後、月ルトアルデヒドを用いた蛍光法による
vIifkアミノ酸分折システム(島小製作所)により
各アミノ酸を定量した。精製ウツギ癌壊死囚子15〜’
:IOttHを6N塩酸中、110℃で、24,48.
72時間加熱し、加水分解した。各アミノ酸の含1i1
{a’iは33時点の甲均fll1及び補正値(Ser
,Thr,Val,I+(!)よりめた。 結果は第2表(n’liff)に示す通りである。 (;3)アミノ酸配列決定 1)精製ウ慢ギ癌壊死因子のN末端部分のアミノ酸配列
はエドマノ分解法[Arch.旧ochem.旧oph
ys.,22,475(+9441)]により決定した
。 1,゛1製ウーリギ癌壊死因子0.3mgをフェニルイ
ンチ詞シアネートと反応させ、N末端より順次分解した
後、遊離してくるフェニルヂ」ヒダ/トイノのアミノ酸
誘導体をZorbaxODS力ラム(4.flX250
ml1.ジュボン社)を用いた高速液体ク1マトグシフ
ィにより同定し、N末端部分のアミノ酸配列を決定した
。 ii)C末端部分のアミノ酸配列はヒドフジ7分解法と
カルボ,l・ンベブチダーゼを用いる酵諺;法により決
定した。 ヒトラジン分解は赤堀の力rJ+[Ilull.Che
Il.SocJap.,25.214(+952)]に
従い、精製ウ号ギ癌壊死囚子30ugヲ4HH(水ヒト
ラシン10oul中、IOO’C−(’flII!7間
分解した後、ベンズアルデヒド処理してアミノ酸のヒト
ラジト誘導体を除去し、アミノ酸分析した。更に、精製
ウサギ癌壊死因子にカルボ1.ンペブチダーゼAとY(
酵素と基質の比はそれぞれ1゛25とl:’+000)
をイ′1用させ、反応開始後2分から180分間にわた
り経時的にJF1iLでくるアミノ酸を分析した。 その結果、N末喘及びC末端部分のアミノ酸配列は以下
に示す構造であるととが明らかになった.N末端:Se
r−八la−Ser−八rg一八1a・・・・・C末端
:・・Val−Tyr−I’he−Gly−1le−1
le−^la−Leu参省例3 抗ウーり〜1!癌壊死囚了抗体の作製 参考例1で得られた精製ウサギ癌壊死囚了1.9XIO
”!It位を含む溶液を等舟のフロイントの完全アジュ
バントで乳濁化し、それをモルモソトの背部皮下数カ所
にl1ミ射した。その後、1,3及び6週後に同様の方
法で免疫した。更に8週後に、同II1の精製ウサギ癌
壊死因子を水酸化アルミニウl,ゲルとともに腹腔内に
j」二射した。最初の免疫からf]週後に心臓より全採
而し、遠心分離により血清を分離することによって抗ウ
ザギ癌壊死囚了抗体を含む抗血清を得た。 この抗而清を、正゛塁ウサギ血清成分を吸イ′tさせた
セフ71.1−ス4■3(ファルマシアネ1)カラムに
3回f’+.M4Lて通過させることにより非特異的な
抗体を除去し、ウーリギ癌壊死因子に対する特異抗体の
みを含む精製抗而清を得た。この抗血清は、免疫電気泳
動法及びゲル内二重拡散法により精製ウサギ癌壊死因子
との間にのみr11−の沈降線を形成した。この精製抗
血清を約6o,ooo倍希釈したものは、ウ勺ギ島壊死
因子の1.−M細胞傷害活iI1100単位を50%中
和ずる能力を打ずる。
[No. 17 microorganisms were added to the final concentration of 10 μir/Ilt.
IOng/ml and 1μ! The mixture was added and mixed so that the ratio was r/1, and the culture was continued. After 4-4.5 hours (i!!I
At 5 to 55 o'clock II), the culture solution was removed by suction, and Dison,
The remaining Mac [JF7-] from step 1 was dissolved in a 5M guanidyldionanate solution containing 0.6% lithium laupirdinium chloride and OmM lithium citrate; and sonicated. This homogenate was layered on a 5.7 M senium chloride aqueous solution containing OIMEITA, and centrifuged for 20n+f at 20,500 rpm using an ultracentrifuge (RPS27-21, manufactured by Japan ΔY) to remove all RN.
Fraction A was obtained as pellet. Add this to 0.35MNaC
I, 7M containing 20mM Tris and 20mM EDTA
It was dissolved in a small amount of urea solution and recovered as an ethanol precipitate. 5.2 mg of total RNA was obtained from 12 E. chinensis. This total RNA fraction was converted into IOmMTr containing ImMEDTA.
is-IIcIkA8iAM (pll7.4> (hereinafter T
Dissolved 2 ml of the mixture and heated at 65° C. for 5 minutes. After adding NaCI solution'i: 05M to this solution, 1.
314ug of poly(8)mRNAΔ was eluted with 1 + d'ruco and ◆co.
)mRNA? It's τノ. The poly(^)mR obtained here
NANO20 (bzgwoano fu-sgel electrophoresis (gel concentration 1%, (3M urea present 1, pl14) was conducted, and the gel was divided into seven halves according to the understanding (1).
After incubating at 70'C for 10 minutes (1 tl), after extracting with water saturated fume, and extracting with cold water,
Poly(A) was precipitated with Eq.
mRNA was collected. Poly(8) mRNA in each fraction
How to use African frog egg No. 1 cells
At last, the cancer necrosis prisoner mRN'Afit was 11111
and corresponds to a molecular size of 1.6 to 2.7 kb! Rabbit cancer necrosis factor mRNA was collected at a high concentration in the second minute. The specific activity of this purified poly(^) mRNA is approximately 1.23
011'-(:t./μgl SENA, unpurified po
Specific activity of ly(^)mRNA preparation approximately 320 units/tt
I? rQhi was approximately 4 times higher than that of RNA (Figure 1)
. This Wit! k! IJirIPi, which was translated and synthesized using lpoly(8) mRNA as a template and the width of -(-t71J Canoe frog oocytes), is the same as the cancer necrosis factor prepared from rabbit plasma. Confirmed using anti-rabbit cancer necrosis r antibody.
Poly(A) mRNA was injected into the oocytes of γ-Furicanomegae and cultured at 22°C for 24 hours in a birth chamber.
The liquid was used as the sample. Add 20 μl of anti-rabbit islet necrosis factor antiserum manufactured by Kasu to this sample +00Bl, and react at 7°C for 2 hours, then L-02! ) Cytotoxic activity against cells was measured. As a result, in the absence of antibody 1, 1,2f+7
1/1, but in the presence of the antibody, it was 4"//
It became below IN+ and was almost completely neutralized. In Section 2 1, d111 constant viscosity is shown in comparison with the case of Urigi plasma-derived cancer necrosis factor. In the figure, the fist is the African 7-megayl egg [, translated from mRNA in the upper cell].
+1! v. ++ indicates the cytotoxic activity of necrosis prisoner-r1, 0 indicates the cytotoxic activity of Ugigi blood 5π111 Yonejima necrosis factor, dot gland indicates the case of anti-reactive (rI:'h), and the solid line indicates the presence of antibody J1. The following case is shown. The !+'i poly(^) mRNA obtained here was used in the following experiment. (1st generation) (・l) Synthesis of NA Purified poly(^) mRNA 4 μg G was used. cDNA was synthesized as shown in Section 1. Reaction volume: 100 μl 50 mM Tris-11CI buffer (pll8.3):
IOmMMg(12; 70mMKCI; ImM GigiA slay liv; 05mMdTT+", dcTr', dA
T.P. Labeled with dGTI1 (however, LdCTl1 is 321),
Specific activity 4.4XI06cpa/nmola); 3oμg
{Rigo(dT>12~II1.80!l'-position trimyeloid leukemia virus 11L rice reverse transcriptase. After reacting at 43°C for 90 minutes, the Ik reaction was stopped with El)TA aqueous solution. Houenorukjljl;l;
The cDNA-mRNAΔ complex was separated using dk(1:I), precipitated with ethanol, and recovered. After the mRNA was decomposed and removed by treatment with alkali and 4λ, the synthesized j11 chain cDNA was precipitated with ethanol and recovered. The precipitation of this single-stranded cl)NA was carried out using the following reaction buffer i1'.
k was dissolved in 40 μl. Reaction buffer: 0.5mM dATI', dTTP, dGT+', (IC
TI'; 5mM Ml4CI2; 70mMKCI: 1.5
mM β-menolekabutr-9nol; 8 units E. coli DN
0 containing A polymerase I (Learn fragment/to)
.. IMI lepes buffer (pll 0.9). Double-stranded cDNA was synthesized by reacting at 15°C for 20 hours. The reaction was stopped by adding an aqueous solution of sodium dodecyl sulfate to the reaction mixture, and the double-stranded cDNA was extracted with a mixture of fanonolake and chloroform, precipitated with ethanol, and then recovered. The resulting double-stranded cDNA precipitate was treated with 50mM acetic acid ZnI-(pll4.5>.1mMZnSO4,20
Aqueous jlM1007l containing 0mM NaCI, 0.5% Chrycerol and 0.5 units of S1 Nuclea tF
/ and reacted at 37°C for 20 minutes to cleave the hairpin structure. The reaction was stopped by adding an aqueous LtEDTA solution, extracted with a phenol-chloroformo mixture,
Furthermore, after re-extracting with ether, cDNA was recovered by precipitation with ytanol. (3) Preparation of (IC)-tailed cDNA Add 100 Ill of the following silk formation reaction j1 buffer to the double-stranded cDNA obtained in step i, react at 37°C for 20 minutes, and double-stranded cDNA) to NA” Rigo (dC) tail to f. I added it. Reaction buffer: 1mM CoCI2, 0.1mM CoCl/
,0,2uybo')(A),O'. ImM3II-dc
Tr'' (specific activity fJ: 5400 (:Ill/pmol) and 130mM containing IO!It position terminal deA xynuclease tidyltranosferase: 130mM lithium dilate-30mMTris-11CIkA?+ritM
(pll6.8). The reaction was stopped by adding a 1ΣDTA aqueous solution, then extracted with a phenol-chloroform mixture, and then re-extracted with Coral.
A was precipitated with ethanol and recovered. This is 10m
MTris-11CI buffer iffl (pll7.4),
Dissolved in an aqueous solution containing 1mM TI) TA and 00mM NaC+ so that 0.2 llir of ``lico (dc) tailed cDNA per 11'' was dissolved [7]. (4) Oligo (dG) tail, 1 addition plasmid 1・p1
Preparation of mouth 322 DNA 20mM Tris-11Cfluenitk (pll7.
4). lOmMM14CI2.50mM(NH4)2S
n. per O4 and 11. +11. + no u/lilli1'
Water containing i Alfminwo dgi & IOOμI 1) Old <3
22 as lO/l+! ? After dissolving the mixture, 15 mononucleotides of restriction polypeptide PStI/donuclease (1:1) was added and the reaction was allowed to proceed at 37°C for 1 hour. After the reaction was completed, the reaction solution was extracted with phenol, and the DNA was recovered from the water by ethanol precipitation. The resulting DNA was mixed with 3II-dG instead of the aqueous solution (3II-dcTI) used for the above-mentioned λrigo(dC) tail addition.
Dissolve in 200 μl (containing TP) and add termylyl deoxynucleotide l'iQ111 {◇
Approximately 10 to 15 dG residues of ul were incorporated by reaction at 37° C. for 20 minutes. The reaction r'7 was eluted with a water-saturated fluoro-chloroform mixture, and the oligo(da) Boului monoadded plasmid pBR322 DNA was recovered from the aqueous layer by ethanol precipitation. This was dissolved in the same solution as for the oligo(C+C)-tailed cDNA so that each lsl contained 2 μg of the oligo(dC)-tailed zocysmid pllR322 DNA. (5) Production of I'll recombinant plasmid Alig (dC)
Add 50/ml of 1″-Louis I cDNA solution to Aligo (d
G) J-ru addition 1) l-R3221) 50 liters of NA solution
(120 minutes at 57°C for IO minutes at 5°C.
60 minutes at 45°C, 60 minutes at 35°C and 3
{Annealing was performed by incubating in a vortex for 60 minutes to prepare recombinant Bushimi lysed i1k. (6) Selection of transformants - Using the III recombinant plasmid solution obtained in Section 1, E. E. coli χ1776 strain was transformed. That is,
[.. coli χ1770K, Diaminobimeli 71! t
Absorbance ((!O
Onm > 0.5, the bacterial cells were collected using an F size centrifuge with a cooler, and 10mMT containing 50mMCaC+2 was added.
It was dispersed in ris-11CI buffer (pll7.3NOwl) and centrifuged again at 0°C to precipitate it.
Disperse in buffer 2-1 and incubate with static iF for 5 minutes at 0°C.
7L. This dispersion 0.21 was added with the above recombinant Zolami l'IFf.
Add and mix ilk011, leave at 0°C for 15 minutes,
After holding at 42°C for 2 minutes, the previous 18 tests were carried out once a month. :Same as the one with the addition of ■, -bu ``'' 051 and 1
Time swing; 1. ;Mu゛7 nourishment was carried out. Take a part of this culture i1&, If! In addition to the ingredients of lI'l8, it was spread on a 1,1/Ross agar plate containing Tetler Iclino+51zlr/1@: about 12"+flffflIij blue at l7'C,
No 1 Razu Ikuri/Choose a laxative fungus (;I) NA Soi/
I made Nori a'1. (7) Hybridization. Regarding the cDNA library described in the test rules, a plasmid containing cDNA 8 encoding rabbit cancer necrosis r- was used as Il7.
32 pi protocol to screen transformants.
) Colony/1 hybridization using NA blu7-b
The F-N H+7 test was performed using the method of Llanahan et al. [Gen
e, 10.63 (+980)]. 32p
The NA probe was synthesized in step (2), using the mRNA obtained in step (1) as a template. However, 32rI-dCTP, which has a high release rate and a specific activity of 1, was used and was labeled at a high concentration. Through this test, negative transformants were selected that strongly bound to the induced positive probe and imitated a recombinant plasmid containing the IuM sequence that did not hybridize with the induced G.mylis probe. 50 out of about 20,000 colonies. 1 bite, 21?] X was taken out. These selected strains were then subjected to the t+lan test.
iaLD;,T. , atal, (cd) “MOIQc+
Ilarclon+ng”.329 (1980), Co
ldSpringllarborI. ab. , written in 4'
lO) It was performed according to the force method. Blasmid DNA was extracted from each transformant, heat-denatured and fixed on a nitrocellulose filter, and the above (II1)
Poly(
A) Add the mRNA fraction and react at 50°C for 30 minutes.
Three hybridization tests were performed. After elution and recovery of the bound mRNAΔ, injected into African frog egg 1li cells.
The recovered InRNA or rmRN from chronic cancer
It was tested whether it was A or not. This test revealed that 1! out of the 20 transformants selected above! sweetfish necrosis factor m
We found 3 strains containing 1cl)NA'a+ plasmids that strongly hybridized with RNA. Buchsumi F has the most unique cDNA (approximately 750 bP) among them.
Therefore, with the limited amount of alcohol, the NA cutout was obtained and used as a probe for secondary screening. This DN
The A fragment was labeled with 32p, and the cl obtained from (6) JII
) NA library was again subjected to the high solidization test, and transformants having a plasmid containing the labeled plasmid (cl)NA that strongly combined with J-p were selected. cl) Of approximately 60,000 colonies in the NA library, 98 were positive colonies. From these cl)
NA was excised with the restriction enzyme PstI, and its size was examined by polyacrylamide gel electrophoresis.
17 clones with 1 size were selected. Among these, the transformant containing the largest cDNA (cell number: RTNFR02, cloned DNA type: pR'
rNF802), the curnized DNA was amplified, and the base sequence was determined by the method described below. (811 (- Determination of the base sequence of -+-) DNA The strain (RTNF802) selected in section (7) was cultured in 1-gloss supplemented with diaminopimeli/acid and thymidine to obtain bacterial cells. The bacterial cells were collected from Wilkie et al.
le; cAC+clSRes. ,7.859(+979
)] to obtain busismid DNA. This plasmid 1) NA was digested with restriction enzyme Jr'stl and purified and separated to obtain 1) NA. This Ku [Fu 7
The DNA fragments were digested manually using restriction enzymes A, and the 1-base sequence of each commercially available restriction enzyme fragment was extracted using Mλxam.
-Gilbert method I) Determined from terminal labeling by delinooxidation 321), base-specific chemical decomposition reaction, gel electrophoresis, and 1F sigmography. In FIG. 3, arrows indicate the restriction tract cleavage site used in the salt sequence determination, the direction in which the base sequence was determined, and the ilii circle. two:
The part shown here represents the translation region of Eugi carcinoma necrosis factor. The base sequence is shown in Table 1. Nos. 1 to 15 are c
This is a G-interceptor tail added to incorporate DNAΔ into a vector. Numbers +6 to 276 are base sequences that are determined when ml of polypeptide necessary to construct the n11 precursor of cancer necrosis r is generated. No. 277-2 old number 11. iM coats the N-terminus of rabbit cancer necrosis with the amino acid sequence corresponding to 411, and the salt J1 of Nos. 715 to 738, 1-1 (is C
It coats the amino acid sequence of the terminal part (sequence enclosed by C==a in Table 1). Following the C wood terminal amino acid (0 isine), there is Tsuyoshi+l::+do7 (TGA). Annoying. 1. The number of amino acid residues translated from the base sequence (nos. 277 to 738) of the region coding for the polypeptide of cancer necrosis factor 1 is 154;
(, ilj. are as shown in Table 2. As is clear from Table 2, the purified Uri 1! cancer necrosis factor amino acid introduction and measurement molecule; and 7
They agreed within a constant error of 1111. In addition, the numbers in Kano:J in the table are the integer values obtained by rounding off the analysis values. Propio to a single purified tumor of cancer necrosis factor (body ir 12.5-3.0 kg)
50. nibacter u1aC:n(!S) killed cells were injected into the ear vein. Eight days later, 1007 liters of E. coli-derived Noriboli saccharite was injected into the ear vein. Two hours later, heart Th'. !J, whole blood was collected. After adding Hebari/sodium at +001-position per 1001 to the collected blood, a refrigerated centrifugation operation was performed at 5,000 rpm for 10 minutes to remove blood cells and insoluble solids. 400 birds. Plasma 24/24 with a titer of 3,000 units l1 was obtained from a rabbit.
After stirring for 1 hour, the pore size was 3 μm. 1μ and 0
.. It was sequentially filtered through a 2μ filter. After adding 0.04M, Tris-11CI buffer (pll7.8)+27 to the introduction i+1!241, 0. IMNa
0.04M Tris-TICI Woe impulse including CI
Gradually add f-t to a column (27 Next, empty! Equilibration buffer i1k75li and 0.15M NaC
0.04M Tris-11cIffl&i solution containing l(
pll7.8) 501-t? li next washing j'llffl,
0. I8MNa. 0.04MTriS-11 including CI
Solution 111 was carried out using cItJ buffer (pl+7.2). The eluate is 8/long ii! +il, and active jlii fractions were collected. The same volume of this active fraction fitO) 0.04MTr
After diluting by adding is-11cI buffer (pll7.8), it was injected into h lamb (foxI:lem) of January:AI7-Sephulose CL-On. Then, 0.IMN
0.04M Tris-1ICIf, Y”4 including aCI
Minami ink (pll7.8>l/wo811, +te wash jp(
, Ta (D, 0.04MTri including O.I8MNaCIt)
It was eluted using s-11c15 ill'(pll7.2>51).The eluate was fractionated through 25o1
Collected 1111 minutes. Next, this eluate was transferred to a container and immersed in a 70'C frying bath.
The eluate was heated without stirring until the temperature reached 41 degrees GO'C. Thereafter, the mixture was transferred to another CO'C frying bath, heated for 30 minutes, and then rapidly cooled to 4°C. The heat-treated solution was subjected to ultrafiltration to cause zero shrinkage. Including 0.1M NaC+. 005M')7mlm9
Sen 2 fully balanced with 4i1k' (pl17.4)
Kasim (5X8) of Kuril S-2QQ (Pharmacia)
4 fl of the concentrated iP described above was eluted with the same buffer solution. 40il each minute 1j) iL 7. ζV {Both parts were removed and reduced by +5 by ultra-σ2 passing. The concentrated solution of the active fraction obtained by gel filtration was
Added to 4-rate roast and 7-loin lamb. PoraLh, J. , atal. ,Nature,25
8.5 fl8 (+975) was filled with a column (+. ,
1? ,/-1 l zinc monoxide aqueous solution I201 was flowed. Then O. 0.05 Mυ acid buffer containing 1M NaCl
After sufficient equilibration with 11i (pl+74), the dark blue il moxibustion obtained in the previous step was mixed with {. The non-adsorbed fraction eluted with the same buffer was collected and collected. Most of the live V1 was recovered in both parts. Prepurification-1: Concentrate the active fraction subjected to iIJ in step 1. 0.
0.005M phosphate buffer (p
Toyobar IIW-5 which was fully modified at l+7.4>
5 (East〆Y-Soda Co., Ltd.) Kashi L, (15X9
0+.. ). It was eluted at the same buffer port and the active T+ fraction was collected. The yield of active V+ was 60%, and the degree of purification was 7.5x10' times using all purified I'l as iI+il-. The purified rabbit sample 7 thus obtained (the ratio of necrosis factor V1 was O.OX106 units/g protein),
1) Definition of 1 is based on Japanese Patent Application Laid-Open No. 1988-+7+3
It is the same as that of No. 3o). Also, move 4NL to the mouse
In the biological evaluation using the Math^ flesh, 71 when 3,000 to 5,000 units per animal was administered intravenously was also (+) or higher. Reference Example 2 Properties of ``v゛-+!IX+ Necrosis Factor (1) Molecule 111 Measurement Purified rabbit cancer necrosis factor obtained in Reference Example 1, T
High school 1 using SK-G3000SW color t, ('AI%n'! Co., Ltd.? J)! ! Molecule 1il was determined by liquid chromatography. The solvent was 0.2M phosphoric acid
ill (pll7) and the same buffer containing 8M urea and 0.5% β-mercabutoJ tanol were used. Molecule 1, Molecule II1 using Lfill standard standard protein
The gland was examined for f'1, and the molecule L1 was measured for serum albumin (1i.l'ix10').・Fri''one-s;j,;(fu, one toisomera-V(5
.. :+x10'). A-valbumin (4.5X10),
Pig Peb7no (1.27XIO'), Soybean Tribunno Inhibitor (2.05x10'), Horse Mikari Globino (1.78xIo').・Nma bu''kuul. C<I
.. 24x! 0') [The number I/1 in Kanov does not indicate the molecular weight (dalt/). As a result, the molecular weight of Urigi cancer necrosis factor was approximately 450,000 Daltons in the absence of urea, and approximately 160,000 Daltons in the presence of urea. (2) Wooligi cancer necrosis factor manufactured by Ami7 Milk Composition 1l1 was hydrolyzed with acid according to a conventional method, and then each amino acid was analyzed using the vIifk amino acid analysis system (Shimako Seisakusho) using fluorescence method using lutaldehyde. Quantitated. Purified Utsugi cancer necrosis prisoner 15~'
:IOttH in 6N hydrochloric acid at 110°C, 24,48.
Hydrolysis was carried out by heating for 72 hours. Contains 1i1 of each amino acid
{a'i is the average full1 at 33rd time and the correction value (Ser
, Thr, Val, I+ (!). The results are shown in Table 2 (n'liff). (;3) Amino acid sequence determination 1) The amino acid sequence of the N-terminal portion of purified carcinoma necrosis factor was determined by the Edmanolysis method [Arch. Old ochem. old oph
ys. , 22,475 (+9441)]. 1. After reacting 0.3 mg of Wooligi Cancer Necrosis Factor (manufactured by 1) with phenyl cyanate and decomposing it sequentially from the N-terminus, the free phenyl cyanide/toino amino acid derivative was treated with Zorbax ODS (4.flX250).
ml1. The amino acid sequence of the N-terminal portion was determined by high-performance liquid chromatography using Jubon Co., Ltd.). ii) The amino acid sequence of the C-terminal portion was determined by the Hidofuji 7 digestion method and the enzyme method using carbo, l-mbbutidase. Human trazine decomposition is Akahori's force rJ+ [Ilull. Che
Il. SocJap. , 25.214 (+952)], purified Ugi cancer necrotic convict 30ugwo4HH (IOO'C-('flII!7) was decomposed in 10oul of water-hytracine, and then treated with benzaldehyde to obtain the amino acid hydrazito derivative. Furthermore, purified rabbit tumor necrosis factor was treated with carbo1.pebutidase A and Y (
The ratio of enzyme and substrate is 1゛25 and l:'+000 respectively)
The amino acids generated in JF1iL were analyzed over time from 2 minutes to 180 minutes after the start of the reaction. As a result, it was revealed that the amino acid sequences of the N-terminal and C-terminal portions have the structure shown below. N-terminus: Se
r-8la-Ser-8rg181a...C-terminus:...Val-Tyr-I'he-Gly-1le-1
le-^la-Leu Sansho Example 3 Anti-Uri~1! Preparation of cancer necrosis antibody Purified rabbit cancer necrosis antibody obtained in Reference Example 1 1.9XIO
A solution containing ``!It'' was emulsified with Freund's complete adjuvant and injected subcutaneously at several points on the back of Mormosots.Then, 1, 3, and 6 weeks later, they were immunized in the same manner. Eight weeks later, the same purified rabbit cancer necrosis factor II1 was injected intraperitoneally twice along with aluminum hydroxide and gel. [f] weeks after the first immunization, whole hearts were harvested, and the serum was separated by centrifugation to obtain antiserum containing anti-rabbit cancer necrosis antibodies. This antiseptic solution was applied three times to a Cef71.1-S43 (Pharmaciane 1) column that had been adsorbed with normal rabbit serum components. Nonspecific antibodies were removed by passing through M4L to obtain a purified antiserum containing only specific antibodies against Wooligi cancer necrosis factor. This antiserum formed an r11- precipitation line only between purified rabbit cancer necrosis factor and purified rabbit cancer necrosis factor by immunoelectrophoresis and in-gel double diffusion. This purified antiserum was diluted approximately 60,000 times to obtain a 1.0-fold dilution of Ugi Island necrosis factor. - Ability to neutralize 1100 units of iI cytotoxic activity by 50%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はウーリギ癌壊死因子mRN八の酸+1尿l−γ
ガ『J−スゲル電気泳動による分jlri図であり、第
2図はウ1ギ癌壊死因子mRNAの注入にJ、り)′フ
リカツメガエルの卵七上細胞中で翻訳されたウ1ギ癌壊
死因子のL−929細胞傷害活性が抗ウザ1!癌壊死囚
子抗体により中和されること’i:>ic−J図であり
、第3図はウサギ癌壊死因了4.:+−F−Jるクロー
ン化DNA(pRTNF802)の塩ノ.(配列決定に
用いた制限酵素切断部位の位置と大きさを示すものであ
る′。 −504 手玩補τト書(自発) 昭和59年11月.30日 特許庁長官志賀学殿チ牲 1事件の表示 昭和58年特許願第228790号 2発明の名称 ウサギ癌壊死因子をコートするクローン化DNA3補正
をする者 事件との関係特許出願人 住所大阪市東区道修町:3丁目25番地名称291大日
本製薬株式会社・′″2:47’代””Fk藤gN男’
f’゜972 社阪 4代理人〜 住所大阪府吹田市江の本町33番94号大日本製老株式
会r1′総合研究所内 氏名仔埋+:727:I小島−児層鞘圓5補正の対象 明卸1書の「発明の詳細な説明」の欄 6補正の内容 (1)明細書30頁7行において「3o」とあるのを『
3』と補正する。 (2)明細書36頁6行において「3o」とあるのをl
rl80jと補正する、
Figure 1 shows Wooligi cancer necrosis factor mRN 8 acids + 1 urine l-γ
Fig. 2 is a diagram showing the results of gel electrophoresis, and Figure 2 shows the results of the injection of Aguinea carcinoma necrosis factor mRNA into the Aguinea carcinoma necrosis translated in Xenopus laevis oval cells. L-929 cytotoxic activity of factor is anti-Usa 1! It is a 'i:>ic-J diagram showing that cancer necrosis is neutralized by the antibody. :+-F-J cloned DNA (pRTNF802). (This indicates the position and size of the restriction enzyme cleavage site used for sequencing. -504 Handbook Supplement (self-prompted) November 1980. 30th Japan Patent Office Commissioner Shiga Gakudono 1) Display of the case 1982 Patent Application No. 228790 2 Name of the invention Cloned DNA that coats rabbit cancer necrosis factor 3 Person who makes corrections Related to the case Patent applicant Address 3-25 Doshomachi, Higashi-ku, Osaka Name 291 University Nippon Pharmaceutical Co., Ltd. '2:47'generation''Fk Fuji gN man'
f'゜972 Shasaka 4 Agent ~ Address 33-94 Enohonmachi, Suita City, Osaka Prefecture Dainippon Seiro Co., Ltd. r1' General Research Institute Name Kojima +: 727: I Kojima - Kojira Sayaen 5 Correction Contents of the amendment in column 6 of “Detailed Description of the Invention” of the subject Meikaku 1 (1) In line 7 of page 30 of the specification, “3o” was replaced with “3o”.
3” and correct it. (2) On page 36, line 6 of the specification, replace “3o” with l.
Correct with rl80j,

Claims (1)

【特許請求の範囲】 fl1ウーリ−ギ癌壊死因子のアミノ酸配列を含むポリ
ペプチドをコードする塩p配列を有するDNA又は対立
消伝子変異,ill伝子コードの縮重もしくは−部の修
飾を含む該DNAの変異体。 f2]i1!リベブヂドをコードする塩μ配列がである
特許請求の範囲第1項ai!111のI)NA又は対立
消伝子変異,遺伝子コードの縮重もしくは−部の修飾を
含む該DNAの変異体。 (3)ポリベブヂドをコードずるルJ?(配列がである
特許請求の範囲第1項記載のr)NA又は対立逍伝子変
異,逍伝子コードの縮重もしくは一部の修飾を含む該D
NAの変異体。 (4)ポリペプチドをコードする塩基配列がである特許
請求の範囲mIJJ1記載のI)NA又は対立ifl伝
子変異,iff伝子二j−FO)杼iil’iもしくは
−部の住飾を含む該DNAの変異体。 (5}ポリベブチドをコードずるiiij.c配列がで
ある特許請求の範囲第1項記社のl)NA叉は対立消伝
子変異,逍伝子コートの縮重もしくは一部の修篩を含む
該1)NAの変異体。 (6)ベクターに絹込まれている特約請求の範囲第】項
〜第5項のいずれかに記載のl)NA又は対)γ逍伝子
変異.遭伝子コードの縮工もしくは−部の修飾を含む該
DNAの変異体。 (7)ベクターがウ1ギ癌壊死囚了のアミノ酸配列を含
むポリベブチドを発現し得る形質発現ベクターである特
許請求の範囲第〔{項記載のl)NA又は対立逍伝子変
異,逍伝子コートのIVi重もL<は一部の修飾を含む
該DNAの変異体。 (8)ウサギ癌壊死因子のアミノ酸配を11を.′3む
1′リペブチトをコート1る塩基配タI1をイ1jるl
)NA!.iは対立逍伝子変異,』n伝子二ノー}の縮
山もしくは−部の修飾を含む該DNAの変異体を組込ん
だベクターDNAで形質転換された宿主。 (!〕)ベクターがウ慢ギ癌壊死因子のアミノ酸配列を
含むポリベブヂドを発現し得る形質発現ベクターである
1′t許請求の範囲第8項記載の宿主。 (jO)微生物又は培養細胞である特約請求の範囲第8
項又は第9項記社の宿主。
[Scope of Claims] A DNA having a salt p sequence encoding a polypeptide containing the amino acid sequence of fl1 Woolly cancer necrosis factor, or containing an allelic mutation, degeneracy of the ill gene code, or modification of the - region. A variant of said DNA. f2] i1! Claim 1, wherein the salt μ sequence encoding rebebuzido is ai! 111 I) Variants of the DNA containing NA or allelic mutations, degeneracy of the genetic code or modification of the - region. (3) Code cheating on polybegyd? (r according to claim 1, whose sequence is) NA or allelic gene mutation, degeneracy or partial modification of the gene code
Mutants of NA. (4) Claim mIJJ1 in which the nucleotide sequence encoding the polypeptide is: A variant of said DNA. (5) The sequence iii. 1) Mutants of NA. (6) l) NA or pair) gamma gene mutation according to any one of claims 1 to 5 included in the vector. A variant of the DNA containing a shortening of the genetic code or a modification of the - region. (7) The vector is a gene expression vector capable of expressing a polypeptide containing the amino acid sequence of a horse necrosis. Coat IVi weight L< indicates a variant of the DNA containing some modification. (8) The amino acid sequence of rabbit cancer necrosis factor is 11. '3m1' Coat the base platter I1
)NA! .. i is an allelic mutation; a host transformed with a vector DNA incorporating a variant of the DNA containing a truncation or modification of the - region of the n gene. (!) The host according to claim 8, wherein the vector is an expression vector capable of expressing a polypeptide containing the amino acid sequence of cancer necrosis factor. (jO) Special claim 8 which is a microorganism or cultured cell
Section 9 or Section 9 Host of the company.
JP58228790A 1983-12-02 1983-12-02 Cloned DNA coding for rabbit cancer necrosis factor Expired - Lifetime JPH0695939B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP58228790A JPH0695939B2 (en) 1983-12-02 1983-12-02 Cloned DNA coding for rabbit cancer necrosis factor
KR1019840007423A KR920009523B1 (en) 1983-12-02 1984-11-27 Method for preparation of rabbit tumor necrosis factor and dna
EP84114325A EP0146026B1 (en) 1983-12-02 1984-11-27 Dna encoding rabbit tnf, vector having said dna inserted thereinto, host transformed with said vector, rabbit tnf polypeptide, and process for production thereof
ES538000A ES8604309A1 (en) 1983-12-02 1984-11-27 DNA encoding rabbit TNF, vector having said DNA inserted thereinto, host transformed with said vector, rabbit TNF polypeptide, and process for production thereof.
AT84114325T ATE60933T1 (en) 1983-12-02 1984-11-27 DNA ENCODING RABBIT TNF, VECTOR WITH SUCH DNA INSERTED THEREIN, HOST TRANSFORMED WITH SUCH VECTOR, RABBIT TNF-POLYPEPTIDE AND METHOD OF PRODUCTION SAME.
DE8484114325T DE3484125D1 (en) 1983-12-02 1984-11-27 DNA FOR RABBIT TNF, VECTOR INSERTED WITH THIS DNA, HOST TRANSFORMED WITH THIS VECTOR, RABBIT TNF POLYPEPTIDE AND METHOD FOR PRODUCING THE SAME.
PH31507A PH26947A (en) 1983-12-02 1984-11-29 DNA encoding rabbit TNF vector having said DNA inserted thereinto host transformed with said vector rabbit TNF polypeptide and process for production thereof
AU36014/84A AU577810B2 (en) 1983-12-02 1984-11-29 Cloning the gene for rabbit tumor necrosis factor polypeptide
US06/677,680 US5043271A (en) 1983-12-02 1984-11-30 DNA encoding rabbit TNE, vector having said DNA inserted thereinto, host transformed with said vector, rabbit TNF polypeptide, and process for production thereof
DK572284A DK572284A (en) 1983-12-02 1984-11-30 DNA CODING CANETNF, VECTOR WITH THE DNA INCLUDED IN THERE, TRANSFORMED WITH THE VECTOR, CANETNPOLYPEPTIME AND PROCEDURE FOR PREPARING THESE
ES547436A ES8605578A1 (en) 1983-12-02 1985-09-30 DNA encoding rabbit TNF, vector having said DNA inserted thereinto, host transformed with said vector, rabbit TNF polypeptide, and process for production thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58228790A JPH0695939B2 (en) 1983-12-02 1983-12-02 Cloned DNA coding for rabbit cancer necrosis factor

Publications (2)

Publication Number Publication Date
JPS60120990A true JPS60120990A (en) 1985-06-28
JPH0695939B2 JPH0695939B2 (en) 1994-11-30

Family

ID=16881888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58228790A Expired - Lifetime JPH0695939B2 (en) 1983-12-02 1983-12-02 Cloned DNA coding for rabbit cancer necrosis factor

Country Status (10)

Country Link
US (1) US5043271A (en)
EP (1) EP0146026B1 (en)
JP (1) JPH0695939B2 (en)
KR (1) KR920009523B1 (en)
AT (1) ATE60933T1 (en)
AU (1) AU577810B2 (en)
DE (1) DE3484125D1 (en)
DK (1) DK572284A (en)
ES (2) ES8604309A1 (en)
PH (1) PH26947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139624A (en) * 1983-12-27 1985-07-24 Dainippon Pharmaceut Co Ltd Protein having antitumor activity
JPS60252496A (en) * 1984-04-06 1985-12-13 Asahi Chem Ind Co Ltd Novel human physiologically active polypeptide
JPS6140221A (en) * 1984-07-05 1986-02-26 ジエネンテク,インコ−ポレイテツド Tumor nectrotic factor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1265444A (en) * 1983-06-27 1990-02-06 Lloyd J. Old Effect of human tumor necrosis factor and human interferon on human cancer cells and methods
JPS60112718A (en) * 1983-11-21 1985-06-19 Kyorin Pharmaceut Co Ltd Proteinous substance exhibiting antitumor activity and its production
US6686455B1 (en) 1984-07-05 2004-02-03 Genentech, Inc. Tumor necrosis factor
US5672347A (en) * 1984-07-05 1997-09-30 Genentech, Inc. Tumor necrosis factor antagonists and their use
JP2557053B2 (en) * 1984-12-21 1996-11-27 バイオジェン インコーポレイテッド Tumor necrosis factor purification, production and use
US5425940A (en) * 1986-04-09 1995-06-20 Cetus Oncology Corporation Combination therapy using interleukin-2 and tumor necrosis factor
US5843693A (en) * 1989-08-16 1998-12-01 Chiron Corporation Assay method for screening for inhibitors of proTNF conversion
ES2097766T3 (en) 1989-08-16 1997-04-16 Chiron Corp COMPOSITIONS FOR THE INHIBITION OF THE FORMATION OF PROTEIN HORMONES AND THEIR USES.
US6586222B1 (en) 1989-08-16 2003-07-01 Chiron Corporation Recombinant PR-3 and compositions thereof
US5998378A (en) * 1989-08-16 1999-12-07 Chiron Corporation Compositions for the inhibition of TNF hormone formation and uses thereof
WO1991017180A1 (en) * 1990-04-27 1991-11-14 Peptide Technology Ltd Peptides derived from human tumour necrosis factor alpha and useful against intracellular malarial parasites
US5653974A (en) * 1990-10-18 1997-08-05 Board Of Regents,The University Of Texas System Preparation and characterization of liposomal formulations of tumor necrosis factor
WO1995024501A1 (en) 1994-03-07 1995-09-14 Cetus Oncology Corporation Compositions for the inhibition of tnf formation and uses thereof
RU2377253C2 (en) 2002-12-02 2009-12-27 Амген Фремонт,Инк. Antibodies specific to tumour necrosis factor, and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140725A (en) * 1981-12-28 1982-08-31 Dainippon Pharmaceut Co Ltd Physiologically active substance having carcinostatic action
JPS6019719A (en) * 1983-07-15 1985-01-31 Asahi Chem Ind Co Ltd Protein having antitumor activity
DE3472793D1 (en) * 1983-12-26 1988-08-25 Asahi Chemical Ind A novel physiologically active polypeptide
EP0155549B1 (en) * 1984-03-06 1991-03-20 Dainippon Pharmaceutical Co., Ltd. Dna encoding human tumor necrosis factor and human tumor necrosis factor polypeptide
US4879226A (en) * 1984-04-06 1989-11-07 Asahi Kasei Kogyo Kabushiki Kaisha Novel human physiologically active polypeptide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139624A (en) * 1983-12-27 1985-07-24 Dainippon Pharmaceut Co Ltd Protein having antitumor activity
JPH0479358B2 (en) * 1983-12-27 1992-12-15 Dainippon Seiyaku Kk
JPS60252496A (en) * 1984-04-06 1985-12-13 Asahi Chem Ind Co Ltd Novel human physiologically active polypeptide
JPH025760B2 (en) * 1984-04-06 1990-02-05 Asahi Chemical Ind
JPS6140221A (en) * 1984-07-05 1986-02-26 ジエネンテク,インコ−ポレイテツド Tumor nectrotic factor
JPH07291997A (en) * 1984-07-05 1995-11-07 Genentech Inc Mutant of tumor necrosis factor

Also Published As

Publication number Publication date
DE3484125D1 (en) 1991-03-28
JPH0695939B2 (en) 1994-11-30
ES547436A0 (en) 1986-03-16
EP0146026A3 (en) 1987-05-20
KR850004272A (en) 1985-07-11
ES538000A0 (en) 1986-01-16
AU577810B2 (en) 1988-10-06
AU3601484A (en) 1985-06-06
US5043271A (en) 1991-08-27
DK572284A (en) 1985-06-03
KR920009523B1 (en) 1992-10-17
EP0146026A2 (en) 1985-06-26
PH26947A (en) 1992-12-03
DK572284D0 (en) 1984-11-30
ES8605578A1 (en) 1986-03-16
ES8604309A1 (en) 1986-01-16
ATE60933T1 (en) 1991-03-15
EP0146026B1 (en) 1991-02-20

Similar Documents

Publication Publication Date Title
JPS60120990A (en) Cloned dna coding rabbit cancer-necrosing factor
CN102316731B (en) Inhibitors of kinases based on cell permeability peptide
JPS60252496A (en) Novel human physiologically active polypeptide
JPS5890596A (en) Dna, recombined dna, host polypeptide containing them and manufacture
JPS6091995A (en) Preparation of interleukin-2 by yeast belonging to genus saccharomyces
CN111744003B (en) Application of chemotactic factor CX3CL1 in preparation of vaccine and helicobacter pylori vaccine
CN105884876B (en) Earthworm polypeptide, its coding sequence and application
CN110716035B (en) Echinococcosis-resistant high-throughput drug screening method based on echinococcosis tubulin as target spot
JPS6277324A (en) Novel plasma and utilization thereof
JPS60185799A (en) Human cancer necrotic factor
CN108690123A (en) Application of the small peptide in preparing immunoregulation medicament
Srisuk et al. Molecular isolation and characterization of a haemocyanin of Macrobrachium rosenbergii reveal its antibacterial activities
TWI309238B (en) Protein and nucleic acid for glutathione-dependent formaldehyde dehydrogenase (gfd), alcohol dehydrogenase and s-nitrosoglutathione reductase from antrodia camphorata, manufacturing method and uses therefor
CN1238052C (en) Obtainment of cell growth inhibiting polypeptide and its usage
US5045471A (en) Cloned DNA for P450scc and expression thereof
CN104211802B (en) Human blood coagulation light chain protein and its application
CN114774391B (en) Bacteriophage lysin for resisting escherichia coli and application thereof
JPS62226998A (en) Human calcitonin precursor peptide and production thereof
CN112877335B (en) Portunus trituberculatus angiogenin PtANG gene and coding protein and application thereof
CN111303246B (en) Mimic peptide combined with cN-II and pharmaceutical application thereof
Pugh Jr et al. The pathophysiological effects of Moraxella bovis toxins on cattle, mice and guinea pigs
WO2008029807A1 (en) Novel polypeptide having cytotoxicity against cancer, method for screening for the polypeptide, and use of the polypeptide
JPS61293924A (en) Receptor protein for physiologically active substance
CN118063584A (en) Tumor-promoting pyro-death protein, HER 2-targeting immune tumor-promoting pyro-death protein, and encoding gene and application thereof
CN100415299C (en) Correlation factor of blastocyst nidation and application