[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6011106A - Shape detecting device - Google Patents

Shape detecting device

Info

Publication number
JPS6011106A
JPS6011106A JP11972383A JP11972383A JPS6011106A JP S6011106 A JPS6011106 A JP S6011106A JP 11972383 A JP11972383 A JP 11972383A JP 11972383 A JP11972383 A JP 11972383A JP S6011106 A JPS6011106 A JP S6011106A
Authority
JP
Japan
Prior art keywords
sample
peak value
microscope
value
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11972383A
Other languages
Japanese (ja)
Other versions
JPH0129401B2 (en
Inventor
Kenichi Matsumura
憲一 松村
Norio Okuya
奥谷 憲男
Toshitoki Inoue
井上 利勅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11972383A priority Critical patent/JPS6011106A/en
Publication of JPS6011106A publication Critical patent/JPS6011106A/en
Publication of JPH0129401B2 publication Critical patent/JPH0129401B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect the rugged shape of a sample by discriminating a variable density level value of interference fringes in plural positions on the surface of the sample and detecting the relative positions of the sample and a microscope in each position on a basis of the signal of a discriminating means. CONSTITUTION:When a maximum value of variable density level peak values of interference fringes is held in a holding circuit 36, a comparing circuit 37 outputs a sampling signal to a sampling circuit 41, and a galvanomirror driving signal from a galvanomirror driving circuit 40 is read to detect the position of a sample 21 in the X direction, and the position detection signal of a position detecting sensor 33 is read to detect the relative position of the surface of the sample 21 to a microscope 22 in the Y direction. The galvanomirror driving signal, namely, the galvanomirror driving voltage given to a galvanomirror 27 is changed to repeat this operation in plural positions of the sample 21 in the X direction, thus detecting the rugged shape of the surface of the sample 21.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は物体の凸凹形状を干渉縞を使って検出する装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a device for detecting the uneven shape of an object using interference fringes.

従来例の構成とその問題点 従来の形状認識装置の具体構成を第1図に示す。Conventional configuration and its problems The specific configuration of a conventional shape recognition device is shown in FIG.

1は試料で表面は円筒形状をしている、2は試料を照明
する光源、3は参照光ミラー、4はビームスプリッタ−
であり、光源2から出だ光はビームスプリッタ−4によ
り2光束に分けられ、試料1表面で反射した光と参照光
ミラー3で反射した光が干渉し干渉縞を発生する。5は
対物レンズ、6は試料1を走査するガルバノミラ−17
は試f41の実像面上に設けられたスリット、8はス’
、lソh7を通過する光を検出する光電子増倍管である
1 is a sample whose surface has a cylindrical shape, 2 is a light source that illuminates the sample, 3 is a reference light mirror, and 4 is a beam splitter.
The light emitted from the light source 2 is split into two beams by the beam splitter 4, and the light reflected from the surface of the sample 1 and the light reflected from the reference beam mirror 3 interfere to generate interference fringes. 5 is an objective lens, and 6 is a galvanometer mirror 17 that scans the sample 1.
is the slit provided on the real image plane of test f41, and 8 is the slit provided on the real image plane of test f41.
, lso h7 is a photomultiplier tube that detects the light passing through it.

9は特定の周波数の光のみを通すフィルターである。ガ
ルバノミラ−6に試料1を走査した時に光電子増倍管8
によシ検出される干渉縞の波形は第2図に示すようにな
る。第2図に示す波形の干渉縞の1次の波、2次の波・
・・・・をそれぞれ認識すれば照明の波長とから試料の
表面形状を知ることができるが、データ数が膨大になり
信号処理か複雑なうえに、表面形状が複雑な試料の表面
凹凸形状を認識することは困難である。
9 is a filter that passes only light of a specific frequency. When the sample 1 is scanned on the galvanometer mirror 6, the photomultiplier tube 8
The waveform of the interference fringes detected by this method is shown in FIG. The first-order wave, the second-order wave, and
If we recognize each of these, we can know the surface shape of the sample from the wavelength of the illumination, but the amount of data is enormous, the signal processing is complicated, and it is difficult to understand the surface irregularities of the sample with a complex surface shape. It is difficult to recognize.

発明の目的 本発明は上記欠点に鑑み、簡単な信号処理で試料の凹凸
形状を検出する形状検出装置を提供することを、目的と
する。
OBJECTS OF THE INVENTION In view of the above drawbacks, an object of the present invention is to provide a shape detection device that detects the uneven shape of a sample by simple signal processing.

発明の構成 干渉縞発生手段を有する顕微鏡と、前記顕微鏡の実像面
近傍に設けた撮像装置あるいは光電変換装置と、前記撮
像装置あるいは光電変換装置より得られる干渉縞濃淡レ
ベルを判定する判定手段と、試料と前記顕微鏡との相対
位置を検出する検出手段よりなり、前記試料表面の複数
箇所で干渉縞濃淡レベル値を判定し、前記判定手段の信
号に基づき各々の箇所での前記試料と前記顕微鏡との相
対位置を検出することにより 11巣な信号処理で試料
の凹凸形状を検出することができる。
A microscope having an interference fringe generating means, an imaging device or a photoelectric conversion device provided in the vicinity of a real image plane of the microscope, and a determining device for determining the density level of interference fringes obtained from the imaging device or the photoelectric conversion device; It comprises a detection means for detecting the relative position of the sample and the microscope, and determines interference fringe density level values at a plurality of locations on the surface of the sample, and detects the relationship between the sample and the microscope at each location based on the signal from the determination means. By detecting the relative position of the sample, it is possible to detect the uneven shape of the sample through sophisticated signal processing.

実施例の説明 以下本発明の第1の実施例について図面を参照にしなが
ら説明する。第3図は本発明の第1の実施例を示す正面
図である。第3図において21は試料、22は顕微鏡で
あり、顕微鏡22は光源23゜ビームスプリッタ−24
,参照光ミラー25.対物レンズ26.ガルバノミラ−
27,スリット28゜光電子増倍管29で構成されてい
る。ビームスプリッタ−22は光源23から出た光を2
光束に分け、試料21で反射した光と、参照光ミラー2
5で反射した光により干渉縞が発生する。スリット28
は試料21の実像面上に設けられ、光電子増倍管29は
スリット28の後方に設けられており、スリット28を
通過する光を電気信号に変換する。
DESCRIPTION OF EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a front view showing the first embodiment of the present invention. In FIG. 3, 21 is a sample, 22 is a microscope, and the microscope 22 includes a light source 23 and a beam splitter 24.
, reference light mirror 25. Objective lens 26. Galvano mirror
27, a slit 28° and a photomultiplier tube 29. The beam splitter 22 splits the light emitted from the light source 23 into two
Divided into light beams, the light reflected by the sample 21 and the reference beam mirror 2
Interference fringes are generated by the light reflected by 5. slit 28
is provided on the real image plane of the sample 21, and a photomultiplier tube 29 is provided behind the slit 28 and converts the light passing through the slit 28 into an electrical signal.

ガルバノミラ−27は力える電圧値によって複数箇所で
静止し、試料21X方向の干渉縞検出位置を決定する。
The galvanometer mirror 27 comes to rest at a plurality of locations depending on the applied voltage value, and determines the interference fringe detection position in the sample 21X direction.

30は顕微鏡22を載置し、試料21Y方向に移動する
テーブルである。31はモータで、出力軸には送りねじ
32が連結され、顕微鏡22を試料21Y方向に移動さ
せる。モータ31はスライドテーブル(図示せず)に載
っており、送りねじ32とともにY方向に移動する。3
3は顕微鏡の位置を検出する位置検出センサーで、位置
検出センサー33の位置検出信号にょ9、試料21と顕
微鏡22の相対位置変化を知ることにより、試料21の
凹凸を知ることができる。34は制御装置であり、干渉
縞検出信号、位置検出信号が入力され、ガルバノ駆動信
号、モータ駆動信号が出力されている。
30 is a table on which the microscope 22 is placed and moves in the direction of the sample 21Y. Reference numeral 31 denotes a motor, an output shaft of which is connected to a feed screw 32, which moves the microscope 22 in the direction of the sample 21Y. The motor 31 is mounted on a slide table (not shown) and moves in the Y direction together with the feed screw 32. 3
Reference numeral 3 denotes a position detection sensor for detecting the position of the microscope, and by knowing the position detection signal 9 of the position detection sensor 33 and the change in relative position between the sample 21 and the microscope 22, it is possible to know the irregularities of the sample 21. 34 is a control device to which an interference fringe detection signal and a position detection signal are input, and a galvano drive signal and a motor drive signal are output.

制御装置34の構成の一例を第4図によって説明する。An example of the configuration of the control device 34 will be explained with reference to FIG.

35は第6図に示す干渉縞1周期の濃淡レベルのピーク
値P1.P2.P3を検出するピーク値検出回路である
。ピーク値検出回路35がらは保持回路36と比較回路
37に濃淡レベルのピーク値を出力している。保持回路
36はピーク値検出回路36から入力される濃淡レベル
のピーク値を保持し、−周期前のピーク値を比較回路3
7に出力する。比較回路37はピーク値検出回路35か
ら入力される濃淡レベルピーク値と保持回路36より入
力される一周期前の濃淡レベルピーク値とを比較する。
35 is the peak value P1.35 of the density level of one cycle of interference fringes shown in FIG. P2. This is a peak value detection circuit that detects P3. The peak value detection circuit 35 outputs the peak value of the gray level to the holding circuit 36 and the comparison circuit 37. The holding circuit 36 holds the peak value of the gray level inputted from the peak value detection circuit 36, and compares the peak value - period before with the comparison circuit 3.
Output to 7. The comparison circuit 37 compares the gray level peak value input from the peak value detection circuit 35 with the gray level peak value input from the holding circuit 36 one cycle before.

38は比較回路37にピーク値検出回路35から入力さ
れる濃淡レベルのピーク値が保持回路36から入力され
る濃淡レベルのピーク値より大きくなる方向にモータ3
1の回転方向を制御するモータ制御回路であり、39は
モータ31を駆動するモータ、駆動回路である。4oは
ガルバノミラ−27を複数箇所に静止させるガルバノ駆
動回路である。41はサンプリング回路であり、−周期
前の濃淡レベルのピーク値が最大となった時に比較回路
37からサンプリング信号が入力され、その時ガルバノ
駆動回路40からガルバノ駆動信号を読みとり、位置検
出センサー33から位置検出信号を読み取り、両者の値
から試料21の凹凸形状を検出する。
Reference numeral 38 indicates a direction in which the motor 3 moves in a direction such that the peak value of the gray level inputted from the peak value detection circuit 35 to the comparison circuit 37 becomes larger than the peak value of the gray level inputted from the holding circuit 36.
A motor control circuit 39 controls the rotation direction of the motor 31, and 39 is a motor and a drive circuit that drive the motor 31. 4o is a galvano drive circuit that makes the galvano mirror 27 stand still at a plurality of locations. Reference numeral 41 denotes a sampling circuit, which receives a sampling signal from the comparison circuit 37 when the peak value of the gray level before - period reaches the maximum, reads the galvano drive signal from the galvano drive circuit 40 at that time, and reads the galvano drive signal from the position detection sensor 33. The detection signal is read and the uneven shape of the sample 21 is detected from both values.

次に第3図、第4図のように構成された凸凹形状検出装
置において、第6図を参照にしながら試料21表面のY
方向の位置検出原理について説明する。
Next, in the uneven shape detection device configured as shown in FIGS. 3 and 4, the Y of the surface of the sample 21 is measured while referring to FIG.
The principle of directional position detection will be explained.

第3図に示す光源23がハロゲン電球のようなインコヒ
ーレント光の場合には可干渉範囲はレーザー光のような
コヒーレント光に比べせまく、干渉縞の濃淡レベルは光
源23から試料21までの距離と、光源23から参照光
ミラー25までの距離が等しい時、すなわち光源を同時
に出だ光が干渉する時に最大となる。よって試料21と
顕微鏡22の相対距離を変化させると、第6図aに示す
ように干渉縞は徐々に鮮明になり、光源23から参照光
ミラー25までの距離と、光源23から試料21までの
距離が等しくなる位置Bで干渉縞は最も鮮明となり、位
置Bを通過すると干渉縞は徐々に不鮮明となってゆく。
When the light source 23 shown in FIG. 3 is an incoherent light such as a halogen light bulb, the coherent range is narrower than that of a coherent light such as a laser beam, and the density level of the interference fringes varies depending on the distance from the light source 23 to the sample 21. , becomes maximum when the distances from the light source 23 to the reference beam mirror 25 are equal, that is, when the lights emitted from the light sources at the same time interfere with each other. Therefore, when the relative distance between the sample 21 and the microscope 22 is changed, the interference fringes become gradually clearer as shown in FIG. The interference fringes are the clearest at position B, where the distances are equal, and as they pass through position B, the interference fringes gradually become unclear.

この干渉縞の濃淡レベルの変化を、スリット28を通過
する光量の変化により光電子増倍管29で検出するとそ
の検出信号は第6図すに示すような波形となる。よって
この干渉縞の濃淡レベルが最大となる時の試料21と顕
微鏡22との相対距離を試料21X方向の複数箇所につ
いて検出すれば試料21のX方向の凸凹形状を知ること
ができる。
When a change in the density level of this interference fringe is detected by a photomultiplier tube 29 based on a change in the amount of light passing through the slit 28, the detection signal has a waveform as shown in FIG. Therefore, by detecting the relative distance between the sample 21 and the microscope 22 at a plurality of locations in the X direction of the sample 21 when the density level of the interference fringes is maximum, the uneven shape of the sample 21 in the X direction can be known.

次に本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

ガルバノミラ−27にはガルバノ駆動信号が与えられ、
所定の角度だけ振れて静止しており、モータ制御回路3
8はモータ駆動回路39を介してモータ31を一方向に
駆動する。この時試料21を反射する光と参照光ミラー
25を反射する光によって生ずる干渉縞の濃淡レベルを
光電子増倍管29により光電変換し、ピーク値検出回路
36で干渉縞−周期の濃淡レベルピーク値を検出する。
A galvanometer drive signal is given to the galvanomirror 27,
It swings by a predetermined angle and remains stationary, and the motor control circuit 3
8 drives the motor 31 in one direction via a motor drive circuit 39. At this time, the density level of the interference fringe caused by the light reflected from the sample 21 and the light reflected from the reference beam mirror 25 is photoelectrically converted by the photomultiplier tube 29, and the peak value of the density level of the interference fringe period is detected by the peak value detection circuit 36. Detect.

ピーク値検出回路35から濃淡レベルピーク値が保持回
路36と比較回路37に出力される。保持回路36から
は比較回路37に一周期前の濃淡レベルのピーク値が出
力され、比較回路37で両者の値を比較する。保持回路
36の濃淡レベルピーク値は比較回路37での比較が終
了すれば更新される。比較回路37にピーク値検出回路
35より入力される濃淡レベルピーク値が保持回路36
より入力される干渉縞−周期前の濃淡レベルピーク値よ
り大きい時にはモータ制御回路38はモータ31を同方
向に回転させ続ける。次に保持回路36より入力される
干渉縞−周期前のピーク値の方が、ピーク値検出回路3
6より入力される濃淡レベルピーク値よシ大きくなった
時、すなわち保持回路36に干渉縞濃淡レベルピーク値
の最大値が保持されている時、比較回路36はサンプリ
ング回路41にサンプリング信号を出力する。サンプリ
ング回路41にサンプリング信号が入力されると、ガル
バノ駆動回路4oからガルバノ駆動信号を読み取り試料
21のX方向の位置を検出し、さらに位置検出センサー
33の位置検出信号を読み取り、試料2.1表面のY方
向の顕微鏡−2−2との相対位置を検出する。以上の動
作をガルバノミラ−27へ与えるガルバノ駆動信号すな
わちガルバノの駆動電圧を変えることによシ試料21X
方向の複数箇所で繰シ返し、試料21表面の凹凸形状を
検出する。
The peak value detection circuit 35 outputs the gray level peak value to the holding circuit 36 and the comparison circuit 37. The holding circuit 36 outputs the peak value of the gray level one cycle before to the comparing circuit 37, and the comparing circuit 37 compares both values. The gray level peak value of the holding circuit 36 is updated when the comparison circuit 37 completes the comparison. The gray level peak value input from the peak value detection circuit 35 to the comparison circuit 37 is stored in the holding circuit 36.
When the intensity level is greater than the peak value of the previous interference fringe period, the motor control circuit 38 continues to rotate the motor 31 in the same direction. Next, the peak value before the interference fringe period inputted from the holding circuit 36 is
6, when the maximum value of the interference fringe density level peak value is held in the holding circuit 36, the comparison circuit 36 outputs a sampling signal to the sampling circuit 41. . When the sampling signal is input to the sampling circuit 41, the galvano drive signal is read from the galvano drive circuit 4o to detect the position of the sample 21 in the X direction, and the position detection signal of the position detection sensor 33 is read, and the surface of the sample 2.1 is detected. The relative position of the microscope-2-2 in the Y direction is detected. Sample 21
The uneven shape of the surface of the sample 21 is detected repeatedly at a plurality of locations in the direction.

以上のように干渉縞発生手段を有する顕微鏡と、光電変
換器と、干渉縞の濃淡レベルピーク値検出回路と、濃淡
レベルピーク値を保持し一周期前のピーク値を出力する
保持回路と、ピーク値検出回路の出力と保持回路の出力
を比較する比較回路と、試料と顕微鏡との相゛対位置を
検出する位置検出手段を設け、干渉縞濃淡レベル周期毎
のピーク値の最大値近傍での試別と顕微鏡との相対位置
を試料表面の複数箇所で検出することにより、簡単な信
号処理で試別の凹凸形状を精度良く知ることができる。
As described above, there is provided a microscope having an interference fringe generating means, a photoelectric converter, an interference fringe gray level peak value detection circuit, a holding circuit that holds the gray level peak value and outputs the peak value of one cycle before, and the peak value of the interference fringe. A comparison circuit that compares the output of the value detection circuit and the output of the holding circuit, and a position detection means that detects the relative position of the sample and the microscope are provided, and a comparison circuit that compares the output of the value detection circuit and the output of the holding circuit is provided. By detecting the relative position of the sample and the microscope at multiple locations on the sample surface, the uneven shape of the sample can be known with high accuracy through simple signal processing.

以下本発明第2の実施例について説明する。A second embodiment of the present invention will be described below.

第7図は第2の実施例における制御装置の一例を示すブ
ロック図である。W71J御装置以外の構成l′J、第
1の実施例第3図と同様である。第7図において42は
干渉縞濃淡レベルを検出する検出回路であり、43は検
出回路42の出力値とあらかじめ定められた干渉縞濃淡
レベルの所定値とを比1vする比較回路である。44は
モータ制御回路であり、46はモータ駆動回路である。
FIG. 7 is a block diagram showing an example of a control device in the second embodiment. The configuration l'J other than the W71J control device is the same as that in FIG. 3 of the first embodiment. In FIG. 7, 42 is a detection circuit for detecting the interference fringe density level, and 43 is a comparison circuit that compares the output value of the detection circuit 42 with a predetermined predetermined value of the interference fringe density level. 44 is a motor control circuit, and 46 is a motor drive circuit.

47はサンプリング回路であり、検出回路42の出力値
が干渉縞濃淡レベルの所定値以上になった時、比較回路
43よりサンプリング信号が入力され、ガルバノ駆動回
路46よりガルバノ駆動信号を読みとシ、位置恨 検出センサーから位置検出信号を読みとり、試料21の
形状信号を出力する。
47 is a sampling circuit, and when the output value of the detection circuit 42 exceeds a predetermined value of the interference fringe density level, a sampling signal is inputted from the comparison circuit 43, and the galvano drive signal is read from the galvano drive circuit 46. A position detection signal is read from the position detection sensor and a shape signal of the sample 21 is output.

以上のように構成され/と形状検出装置について以下そ
の動作を説明する。
The operation of the shape detection device configured as described above will be explained below.

ガルバノミラ−27にはガルバノ駆動信号が勾えられ、
所定の角度だけ振れて静止し、モータ制御回路44はモ
ータ31を一方向に回転させ5.顕微鏡22を一方向に
移動する。この時干渉縞濃淡レベルを光電子増倍管29
により光電変換し、検U」回路42により検出する。比
較回路43にd:検出回路42より干渉縞濃淡レベルの
値が入力され、あらかじめ定められた値を超えれば、比
較回路43よりサンプリング信号がサンプリング回路4
7に出力される。サンプリング回路47にサンプリング
信号か入力されると、ガルバノ駆動回路46からガルバ
ノ駆動信号を読み取り試料21のX方向の位置を検出し
、位置検出センサー33より位置検出信号を読み取り試
料21のY方向の顕微鏡との相対位置を検出する。
A galvano drive signal is applied to the galvano mirror 27,
The motor control circuit 44 rotates the motor 31 in one direction after swinging by a predetermined angle and coming to rest. Move the microscope 22 in one direction. At this time, the interference fringe density level is determined by the photomultiplier tube 29.
photoelectrically converted and detected by the detection circuit 42. The comparison circuit 43 receives the value of the interference fringe density level from the detection circuit 42, and if it exceeds a predetermined value, the comparison circuit 43 outputs the sampling signal to the sampling circuit 4.
7 is output. When a sampling signal is input to the sampling circuit 47, the galvano drive signal is read from the galvano drive circuit 46 and the position of the sample 21 in the X direction is detected.The position detection signal is read from the position detection sensor 33 and the microscope moves the sample 21 in the Y direction. Detects the relative position with.

十 以上の動作をガルバノミラ−27に与えるガルバノ駆動
信号を変えることにより試料21X方向の複数箇所で繰
り返し、試料21表面の凹凸形状を検出する。
Ten or more operations are repeated at a plurality of locations in the X direction of the sample 21 by changing the galvano drive signal applied to the galvanometer mirror 27 to detect the uneven shape of the surface of the sample 21.

以上のように干渉縞の濃淡レベルを検出する検出回路と
検出回路で検出した干渉縞濃淡レベルを所定の値と比較
する比較回路を設け、干渉縞濃淡レベルが所定の値を超
えた時の試料と顕微鏡の相対位置を試ポ」表面の複数箇
所で検出することにより、簡単な信号処理でしかも高速
に試料の凹凸形状を知ることができる。
As described above, a detection circuit that detects the density level of interference fringes and a comparison circuit that compares the density level of interference fringes detected by the detection circuit with a predetermined value are provided, and when the density level of interference fringes exceeds a predetermined value, the sample By detecting the relative position of the sample and the microscope at multiple locations on the sample surface, the uneven shape of the sample can be determined quickly with simple signal processing.

なお第1の実施例、第2の実施例では光電子増倍管を干
渉縞の検出手段として使用しているが、ITVカメラを
使用しても、あるいはダイオードアレイの光電変換素子
を使用しても本発明に含−止れるものである。
Note that in the first and second embodiments, a photomultiplier tube is used as a means for detecting interference fringes, but it is also possible to use an ITV camera or a diode array photoelectric conversion element. This is not included in the present invention.

丑1を第1.第2の実施例において、カルバノミラーに
よって試料を走査しているが、試別を移動させても、あ
るいはヌリソトを移動させても効果は同じである。
Ox 1 is the first. In the second embodiment, the sample is scanned by a carbanomirror, but the effect is the same even if the sample is moved or the sample is moved.

発明の効果 干渉縞発生手段を有する顕微鏡と、前記顕微鏡の実像面
近傍に設けだ撮像装置あるいは光電変換装置と、前記撮
像装置あるいは光電変換装置より得られる干渉縞濃淡レ
ベル値を判定する判定手段と、試別と前記顕微鏡との相
対位置を検出する位置検出手段よりなり、前記試別表面
の複数箇所で、干渉縞濃淡レベル値を判定し、前記判定
手段の信号に基つき前記試料21表面と前記顕微鏡との
相対位j催を検出して試別の凹凸形状を検出することに
より簡単な信号処理で、精度よ〈試別の凹凸形状を知る
ことができる。
Effects of the Invention The present invention includes a microscope having an interference fringe generating means, an imaging device or a photoelectric conversion device provided near the real image plane of the microscope, and a determination device for determining an interference fringe density level value obtained from the imaging device or the photoelectric conversion device. , comprising a position detection means for detecting the relative position between the sample 21 and the microscope, determines interference fringe density level values at a plurality of locations on the sample surface, and detects the surface of the sample 21 based on the signal from the determination means. By detecting the relative position with respect to the microscope and detecting the uneven shape of the sample, it is possible to determine the accuracy and the uneven shape of the sample through simple signal processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の構成を示す説明図、第2図に1、干渉
縞の波形を示す説明図、第3図は本発明の形状検出装置
の実施例を示す説明図、第4図は本発明の第1の実施例
における制御装置を示すブロック図、第5図は干渉縞の
濃淡レベルを示す説明図、第6図a、bは干渉縞の濃淡
レベルの変化を示す説明〉j1第7図は本発明の第2の
実施例の制御j装置を示寸ブロック図である。 21・・・・試別、22・・・・・顕微鏡、23−・・
5’el、24・−・−ビームスプリッタ、25・・・
・参照光ミラ−、26・・・・・・対物レンズ、27・
・−・・ガルバノミラ−128・・・・・スリット、2
9・・・・・・光電子増倍管。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2図 第4図 第5図 第6図
FIG. 1 is an explanatory diagram showing the configuration of a conventional example, FIG. 2 is an explanatory diagram showing waveforms of interference fringes, FIG. 3 is an explanatory diagram showing an embodiment of the shape detection device of the present invention, and FIG. A block diagram showing the control device in the first embodiment of the present invention, FIG. 5 is an explanatory diagram showing the shading level of interference fringes, and FIGS. 6 a and b are explanatory diagrams showing changes in the shading level of interference fringes. FIG. 7 is a dimensional block diagram of a control device according to a second embodiment of the present invention. 21... Trial, 22... Microscope, 23-...
5'el, 24...-beam splitter, 25...
・Reference light mirror, 26... Objective lens, 27.
... Galvano mirror 128 ... Slit, 2
9...Photomultiplier tube. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2 Figure 4 Figure 5 Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1)干渉縞発生手段を有する顕微鏡と、前記顕微鏡の
実像面近傍に設けた裸像装置あるいは光電変換装置と、
前記撮像装置あるいは光電変換装置より得られる干渉縞
濃淡レベル値を判定する判定手段と、試料と前記顕微鏡
との相対位置を検出する位置検出手段よりなり、前記試
料表面の複数箇所で、干渉縞a淡しベル値を判定し、前
記判定手段の信号に基づき前記試料と前記顕微鏡との相
対位置を検出する形状検出装置。
(1) a microscope having an interference fringe generating means; a naked image device or a photoelectric conversion device provided near the real image plane of the microscope;
It consists of a determining means for determining the interference fringe density level value obtained from the imaging device or the photoelectric conversion device, and a position detecting means for detecting the relative position of the sample and the microscope, and the interference fringe a is detected at a plurality of locations on the sample surface. A shape detection device that determines a lightening value and detects a relative position between the sample and the microscope based on a signal from the determination means.
(2)前記判定手段が、干渉縞濃淡レベル値の周期毎の
ピーク値を検出し、前記濃淡レベル値の周期毎のピーク
値が最大値となる周期近傍での前記試料と前記顕微鏡と
の相対位置を検出する特許請求の範囲第1項記載の形状
検出装置。
(2) The determination means detects the peak value of the interference fringe density level value for each cycle, and the relative relationship between the sample and the microscope in the vicinity of the cycle in which the peak value of the density level value for each cycle becomes the maximum value. A shape detection device according to claim 1, which detects a position.
(3)前記判定手段が、前記干渉縞濃淡レベル値の周期
毎のピーク値を検出するピーク値検出回路と前記ピーク
値検出回路によって検出されたピーク値を保持し、−周
期前のピーク値を出力する保持回路と、前記ピーク値検
出回路より出力される濃淡レベルピーク値と前記保持回
路よシ出力される一周期前のピークとを比較する比較回
路よりなり、前記ピーク値検出回路から出力されるピー
ク値が前記保持回路から出力される一周期前のピーク値
より小さくなった時の前記試別と前記顕微鏡どの相対位
置を検出する特許請求の範囲第1項記載の形状検出装置
(3) The determination means holds a peak value detection circuit that detects the peak value of the interference fringe density level value for each cycle and the peak value detected by the peak value detection circuit, and stores the peak value detected by the peak value detection circuit -cycle before. The peak value outputted from the peak value detection circuit includes a holding circuit that outputs the output, and a comparison circuit that compares the gray level peak value outputted from the peak value detection circuit with the peak value outputted from the holding circuit one cycle before. 2. A shape detecting device according to claim 1, which detects the relative position of said sample and said microscope when a peak value of said sample becomes smaller than a peak value of one cycle before outputted from said holding circuit.
(4)前記判定手段か、前記干渉縞濃淡レベル値がDテ
定のレベル値以上になった時の前記試料と前記顕微鏡と
の相対位置を検出する特許請求の範囲第1項記載の形状
検出装置。
(4) Shape detection according to claim 1, wherein the determining means detects a relative position between the sample and the microscope when the interference fringe density level value becomes equal to or higher than a D-test level value. Device.
(5)前記判定手段か前記干渉縞濃淡レベル値を検出す
る検出回路と、前記検出回路の出力値と所定の値とを比
較する比較回路よりなり、前記干渉縞濃淡レベル値が所
定の値以上になったことを示す前記比較回路の信号によ
り前記試料と前記顕微鏡との相対位置を検出する特許請
求の範囲第1項記載の形状検出装置。
(5) The determination means comprises a detection circuit that detects the interference fringe density level value, and a comparison circuit that compares the output value of the detection circuit with a predetermined value, and the interference fringe density level value is equal to or greater than a predetermined value. 2. The shape detection device according to claim 1, wherein the relative position between the sample and the microscope is detected by a signal from the comparison circuit indicating that the shape has become .
JP11972383A 1983-06-30 1983-06-30 Shape detecting device Granted JPS6011106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11972383A JPS6011106A (en) 1983-06-30 1983-06-30 Shape detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11972383A JPS6011106A (en) 1983-06-30 1983-06-30 Shape detecting device

Publications (2)

Publication Number Publication Date
JPS6011106A true JPS6011106A (en) 1985-01-21
JPH0129401B2 JPH0129401B2 (en) 1989-06-09

Family

ID=14768523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11972383A Granted JPS6011106A (en) 1983-06-30 1983-06-30 Shape detecting device

Country Status (1)

Country Link
JP (1) JPS6011106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485238A (en) * 1981-12-16 1984-11-27 The Dow Chemical Company Preparation of ((6-substituted phenoxy-2-pyridinyl)-methyl)-3-(2,2-bis(trifluoromethyl)-1-ethenyl)-2,2-dimethylcyclopropane carboxylates
JPS62225904A (en) * 1986-02-28 1987-10-03 ポラロイド コ−ポレ−シヨン Method and device for forming picture of fine interval between transparent body surface and another surface
EP0342289A2 (en) * 1988-05-17 1989-11-23 Nkk Corporation Method and apparatus for measuring a three-dimensional curved surface shape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485238A (en) * 1981-12-16 1984-11-27 The Dow Chemical Company Preparation of ((6-substituted phenoxy-2-pyridinyl)-methyl)-3-(2,2-bis(trifluoromethyl)-1-ethenyl)-2,2-dimethylcyclopropane carboxylates
JPS62225904A (en) * 1986-02-28 1987-10-03 ポラロイド コ−ポレ−シヨン Method and device for forming picture of fine interval between transparent body surface and another surface
EP0342289A2 (en) * 1988-05-17 1989-11-23 Nkk Corporation Method and apparatus for measuring a three-dimensional curved surface shape

Also Published As

Publication number Publication date
JPH0129401B2 (en) 1989-06-09

Similar Documents

Publication Publication Date Title
JPH0428005Y2 (en)
KR960038659A (en) Method and system for describing surface contour of object using large equivalent wavelength
JP5592763B2 (en) Method and apparatus for determining height map of object surface
JP4090860B2 (en) 3D shape measuring device
NL1006378C2 (en) Method and device for inspecting an object with respect to disturbances.
US20110255097A1 (en) Method and system for evaluating a height of structures
EP0035720A1 (en) Apparatus for inspecting an object by light
JP2947513B1 (en) Pattern inspection equipment
JPS6011106A (en) Shape detecting device
HU203595B (en) Process and apparatus for contactless definition of diameter of thin wires
JPH11230912A (en) Apparatus and method for detection of surface defect
JP2626611B2 (en) Object shape measurement method
EP0235941B1 (en) Surface measurement
JPS6280507A (en) Measuring method for cracking on road surface
JP3556324B2 (en) Hologram inspection apparatus and method
JP2913855B2 (en) Semiconductor device alignment error analyzer
JPH08220001A (en) Surface-flam inspecting method
JP2502851B2 (en) Measuring device for object shape and position
JPH0555332A (en) Foreign matter inspecting device
JPH0795040B2 (en) Micro foreign matter inspection device
JP3183477B2 (en) Two-dimensional phase information detection device
JPH1123229A (en) Measuring method for film thickness
JPS5952378B2 (en) Defect determination method for sheet materials
JPH0540026A (en) Pattern reading device
JPS61281904A (en) Pattern recognizing device