[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6011889B2 - Passageable lymphokine-producing human T cell fusion line and method for obtaining the same - Google Patents

Passageable lymphokine-producing human T cell fusion line and method for obtaining the same

Info

Publication number
JPS6011889B2
JPS6011889B2 JP56171505A JP17150581A JPS6011889B2 JP S6011889 B2 JPS6011889 B2 JP S6011889B2 JP 56171505 A JP56171505 A JP 56171505A JP 17150581 A JP17150581 A JP 17150581A JP S6011889 B2 JPS6011889 B2 JP S6011889B2
Authority
JP
Japan
Prior art keywords
cells
human
lymphokine
cell
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56171505A
Other languages
Japanese (ja)
Other versions
JPS5872520A (en
Inventor
利昭 大澤
芳郎 小林
誠 浅田
昌宏 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP56171505A priority Critical patent/JPS6011889B2/en
Priority to CA000414159A priority patent/CA1202917A/en
Priority to GB08230526A priority patent/GB2108528B/en
Priority to DE19823239863 priority patent/DE3239863C2/en
Priority to FR8218007A priority patent/FR2515208B1/en
Publication of JPS5872520A publication Critical patent/JPS5872520A/en
Priority to US06/574,213 priority patent/US4675295A/en
Publication of JPS6011889B2 publication Critical patent/JPS6011889B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/525Tumour necrosis factor [TNF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • C12N5/163Animal cells one of the fusion partners being a B or a T lymphocyte
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は総代可能なりンホカィン産生ヒトT細胞融合株
及びその取得方法に関し「より詳しくはタンパク質合成
の阻害剤又はタンパク質合成の阻害剤とRNA合成阻害
剤で処理したヒト急性白血病細胞株と、マィトージェン
又は抗原で刺激されたヒトT細胞とを融合促進剤の存在
下で融合することによって誘導された継代可能なりンホ
カィン産生ヒトT細胞融合株及びその取得方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fusion line of human T cells capable of producing lymphokine and a method for obtaining the same. The present invention relates to a passable lymphokine-producing human T cell fusion line induced by fusing a leukemia cell line with mitogen- or antigen-stimulated human T cells in the presence of a fusion promoter, and a method for obtaining the same.

細胞融合の現象は、1958王に岡田によりセンダウィ
ルス〔HVJ〕を用いて見出され、体細胞遺伝学の領域
において飛躍的な発展をもたらした。
The phenomenon of cell fusion was discovered by Okada in 1958 using Sendavirus [HVJ], resulting in a dramatic development in the field of somatic cell genetics.

〔Y.0ka船、BikenJ.、1 103(195
8)〕1975年、K6hierとMilsteinは
、この細胞融合技術を免疫学の分野に応用することに成
功した。すなわち、免疫されたマウスから得た腰臓細胞
と、HAT(ヒポキサンチン、アミノプテリン、チミジ
ン)感受性マウス骨髄腫(ミェローマ)細胞との融合に
より、モノクローナルな抗原特異的抗体を、永久に生産
しつづける細胞融合株を得ることを初めて証明した。〔
GK6hieで andC.Mistein、Nat町
e 256 495(1975)〕ヒト及び動物の免疫
系に含まれるリンパ球は、胸線由来の細胞(T細胞)と
、骨髄由来の細胞(B細胞)とに大別される。B細胞は
、抗体を分泌する細胞であり、Kohlerらの細胞融
合は、マウス由釆B細胞とHAT感受性マウス骨髄腫細
胞との間で行われたものである。
[Y. 0ka ship, BikenJ. , 1 103 (195
8)] In 1975, K6hier and Milstein successfully applied this cell fusion technology to the field of immunology. In other words, by fusion of lumbar cells obtained from immunized mice with HAT (hypoxanthine, aminopterin, thymidine) sensitive mouse myeloma cells, monoclonal antigen-specific antibodies are produced permanently. This was the first proof that cell fusion strains could be obtained. [
GK6hie andC. [Mistein, Natcho E 256 495 (1975)] Lymphocytes included in the immune system of humans and animals are broadly classified into cells derived from the thymus (T cells) and cells derived from the bone marrow (B cells). B cells are cells that secrete antibodies, and the cell fusion of Kohler et al. was performed between mouse-derived B cells and HAT-sensitive mouse myeloma cells.

一方、T細胞は、骨髄中の幹細胞(Stemcell)
が胸腺内で分化成熟し、抹消の器官(例えばリンパ節、
藤臓)及び皿流の中を循環する。T細胞は、生体におけ
る応答の調節制御に重要な役割を担っている。このT細
胞の調節制御機能が、T細胞より遊離されるリンホカィ
ン(Limphokines)と総称される可溶性メデ
ィェ−ターにより推進されることは良く知られている。
On the other hand, T cells are stem cells in the bone marrow.
differentiates and matures within the thymus and develops into peripheral organs (e.g. lymph nodes,
wisteria viscera) and circulates in the dish stream. T cells play an important role in regulating responses in living organisms. It is well known that this regulatory control function of T cells is promoted by soluble mediators, collectively called lymphokines, released by T cells.

〔日.○.Kunkel and F.J.Dixon
、Advances mlmmunology29 5
6(1980)AcademicPress発行〕従来
、生体の免疫応答を制御することにより、癌、アレルギ
ー、感染症など種々の疾病を治療する試みがなされてい
るが、免疫系細胞を含む種々の細胞にそれぞれ特異性の
あるリンホカィンは、更に有効な免疫治療剤として応用
可能である他、臨床診断薬として広く医療分野への応用
が期待されている等、医学的にきわめて重要な物質であ
る。
〔Day. ○. Kunkel and F. J. Dixon
,Advances mlmmunology29 5
6 (1980) Published by Academic Press] Conventionally, attempts have been made to treat various diseases such as cancer, allergies, and infectious diseases by controlling the body's immune response. Lymphokines are medically extremely important substances, as they can be applied as more effective immunotherapeutic agents and are expected to be widely applied in the medical field as clinical diagnostic agents.

しかしながら通常の方法では、リンホカィンは充分量得
られず、またその純度の低さなどの点が医療分野への応
用の大きな妨げとなっている。リンホカィンは、抗原特
異的な刺激やマィトージェン刺激などにより、リンパ球
によって産生される非抗体性の蛋白因子群であり、リン
パ球の中でも主にT細胞によって産生される。主なリン
パ球とその作用を以下に示す。‘11 マクロフアージ
に作用するりンホカィン■ Migrationinh
ibitoひfactor(以下MIFと略す。
However, with conventional methods, lymphokines cannot be obtained in sufficient quantities, and their low purity is a major impediment to their application in the medical field. Lymphokines are a group of non-antibody protein factors produced by lymphocytes in response to antigen-specific stimulation, mitogen stimulation, etc., and among lymphocytes, they are mainly produced by T cells. The main lymphocytes and their functions are shown below. '11 Lymphokine that acts on macrophage■ Migrationinh
ibito factor (hereinafter abbreviated as MIF).

マクロファージ遊送阻止因子)作用:invitroで
マクロフアージの遊送を阻止する。
Macrophage migration inhibitory factor) Action: Prevents macrophage migration in vitro.

■ Macropha群 activatingfac
tor(以下MAFと略す。
■ Macropha group activatingfac
tor (hereinafter abbreviated as MAF).

マクロフアージ活性化因子)作用:マクロフアージの食
作用、殺菌作用などを促進させる。■ Monoc匁
e一Macrophage Chemotact;cね
ctor(MCF、単球−マクロファージ走化性因子)
作用:invitmで単球、マクロフアージの走化性(
chemoね×is)を惹起する。
Macrophage activator) Action: Promotes phagocytosis, bactericidal action, etc. of macrophages. ■ Monoc Macrophage Chemotact (MCF, monocyte-macrophage chemotactic factor)
Action: Chemotaxis of monocytes and macrophages in vitro (
chemone×is).

‘21 多形核白血球(Polymorphonuc
learle此ocyに)に作用するりンホカイン■
白血球(遊送)阻止因子(leucocyte−Mig
rationi油ibitoryfactor.LIF
)作用:invitroで多形核白血球の遊走を阻止す
る。
'21 Polymorphonuclear leukocytes
Lymphokine that acts on realle (this ocy)■
Leukocyte (migration) inhibitory factor (leucocyte-Mig)
rationi oil ibitoryfactor. LIF
) Action: Prevents migration of polymorphonuclear leukocytes in vitro.

■ 走化性因子(Chemoねcticfactor)
作用:invitmで好中球、好酸球、好塩基球の走化
性を惹起する。
■ Chemotactic factor
Action: induces chemotaxis of neutrophils, eosinophils, and basophils in vitro.

剛 リンパ球に作用するりンホカィン ■ インターロイキンロ(Interleukin0、
IL−□)作用:抗原またはマィトージェンの刺激をう
けたT細胞の分裂、増殖を促進する。
Tsuyoshi Lymphokines that act on lymphocytes■ Interleukinro (Interleukin0,
IL-□) Action: Promotes division and proliferation of T cells stimulated by antigen or mitogen.

‘41 その他の細胞に作用するりンホカィン■ リン
ホトキシソ(Lymphotoxin、LT)作用:j
nvMoでL細胞、Hera細胞を傷害、剥離させる。
'41 Lymphokine that acts on other cells■ Lymphotoxin (LT) action: j
Injury and detach L cells and Hera cells with nvMo.

■ yーインターフ工ロン(y一1nにheron、m
F一y)作用:ウイルス病源性に干渉する。
■ y-interface (heron, m to y-1n)
Fy) Action: Interfering with virus pathogenesis.

■ ColonyStimulatingねctor(
CSF)作用:骨髄白血球前駆細胞(CPU−C)に作
用して、この細胞の額粒球又はマクロフアージへの分化
増殖を促進する。
■ Colony Stimulating vector (
CSF) Action: Acts on bone marrow leukocyte progenitor cells (CPU-C) to promote differentiation and proliferation of these cells into forehead granulocytes or macrophages.

上記りンホカィンの活性はinvjUo(生体外)で測
定されるが、invivo(生体内)との対応が認めら
れるリンホカィンも報告されている。
The activity of the above-mentioned lymphokines is measured in vitro (in vitro), but lymphokines that are found to correspond to in vivo (in vivo) activities have also been reported.

例えばツベルクリン反応の場においてchemical
mediaのrによる血管拡張浮腫に加えて多数のマク
ロフアージの集積がみられる。これは感作T細胞由来の
走化因子(MCF)により遊走集合したマクロフアージ
が更にMIFによって固定されたものであり、MCF「
MIFがマクロフアージを効率良く集積、活性化して異
物処理を有効に進める生体防禦に関連していることが示
されている。MCF、MIF以外に将来医薬として期待
されるリンホカインとしてはMAP、リンホトキシン「
インターロイキンロ、WF−y、CSFがあげられる。
これらリンホカィンを生産する方法として‘11 抗原
感作された抹消血リンパ球を、その抗原と共に培養する
方法。
For example, in the tuberculin reaction, chemical
In addition to vasodilatory edema due to media r, accumulation of numerous macrophages is observed. This is a macrophage migrated and assembled by sensitized T cell-derived chemotactic factor (MCF), which is further immobilized by MIF.
It has been shown that MIF is involved in biological defense that efficiently accumulates and activates macrophages and effectively promotes the disposal of foreign substances. In addition to MCF and MIF, lymphokines that are expected to be used as medicines in the future include MAP and lymphotoxin.
Examples include interleukinro, WF-y, and CSF.
As a method for producing these lymphokines, '11 antigen-sensitized peripheral blood lymphocytes are cultured together with the antigen.

【21 抹消血ljンパ球又は藤臓細胞をマィトージェ
ンと共に培養する方法。
[21. Method for culturing peripheral blood LJ lymphocytes or Fuji viscera cells with mitogen.

t31 T細胞増殖因子(IL−0)を用いて抗原特異
的T細胞クローンを確立し、培養する方法。
A method of establishing and culturing antigen-specific T cell clones using t31 T cell growth factor (IL-0).

等が知られているが、Q)、【2’の方法では大量の血
液を必要とするうえに生産されるリンホカィンの量が極
めて僅かであり、高純度の製品を大量に入手することが
困難であること、‘3ーの方法では、IL一Dの存在下
で特定のリンホカィンを生産することはできるが、T細
胞からの生産性が悪く、又ヒト山一0の入手が困難(高
価)であることなどの問題点を有する。これらはリンホ
カィン産性T細胞が継代できないこと、増殖性が小さい
こと、IL−0等増殖因子の存在下で培養してもなお増
殖性が小さいことに起因している。
Q), Method 2' requires a large amount of blood and the amount of lymphokine produced is extremely small, making it difficult to obtain large quantities of highly purified products. In the method of '3-, specific lymphokines can be produced in the presence of IL-1D, but the productivity from T cells is poor, and it is difficult (and expensive) to obtain human antibodies. It has problems such as being These are caused by the fact that lymphokine-producing T cells cannot be passaged, have low proliferative properties, and have low proliferative properties even when cultured in the presence of growth factors such as IL-0.

以上の理由で、現状では臨床応用に必要な量のIJンホ
カィンを確保することは極めて困難である。これらの問
題を解決する一つの方策として細胞融合の技術が用いら
れ、マウスではすでにT細胞融合株が樹立され、その細
胞の生産するりンホカィンに関する解析が可能となって
いる。
For the above reasons, it is currently extremely difficult to secure the amount of IJ protein necessary for clinical application. Cell fusion technology is used as one way to solve these problems, and T cell fusion lines have already been established in mice, making it possible to analyze the lymphokines produced by these cells.

しかし、マウスT細胞融合株により生産されたりンホカ
ィンをヒトに対して臨床応用することはできない。ヒト
免疫学、臨床応用の必要性から継代可能なりンホカィン
産・性ヒトT細胞融合株の確立が期待されている。ヒト
T細胞の融合においても、マウスT細胞融合と同様の方
法で行うことは充分考えられるところである。
However, lymphokines produced by mouse T cell fusion lines cannot be clinically applied to humans. Due to the necessity of human immunology and clinical applications, it is expected to establish a fusion line of lymphokine-producing human T cells that can be passaged. It is highly conceivable that human T cell fusion may be carried out in the same manner as mouse T cell fusion.

すなわち、リンホカィン産生T細胞(継代できない)と
HAT(ヒポキサンチン、アミノプテリン、チミジン)
感受性T系腫場細胞(継代できる)とを融合促進剤の存
在下で融合した後、HAT塔地にても増殖できる細胞の
みを選別し、クローン化して目的のリンホカインを産出
するT細胞融合株を選び出す方法である。
namely, lymphokine-producing T cells (which cannot be passaged) and HATs (hypoxanthine, aminopterin, thymidine).
T cell fusion involves fusion of sensitive T-lineage tumor cells (which can be passaged) in the presence of a fusion promoter, and then selecting only cells that can proliferate in HAT cells, which are then cloned to produce the target lymphokine. This is a method of selecting stocks.

〔○.Cathenne他「Natme」第292葦、
842頁、1981年〕しかし、ヒトT系腫湯細胞にH
AT感受性をもたせることは極めて煩雑な操作を必要と
し、かつ樹立が困難である。本発明者らは継代可能なり
ンホカィン産・性ヒトT細胞融合株の取得方法を種々検
討した結果、タンパク質合成の阻害剤又はタンパク費合
成の阻害剤とRNA合成の阻害剤とで処理したヒト急性
白血病細胞株と、マィトージェン又は抗原で刺激された
ヒトT細胞とを融合促進剤の存在下に融合することによ
り「継代可能なりンホカイン産性ヒトT細胞融合株の取
得に成功し、本発明を完成するに至った。
[○. Cathenne et al. “Natme” No. 292 Reed,
p. 842, 1981] However, H
Providing AT sensitivity requires extremely complicated operations and is difficult to establish. The present inventors investigated various methods for obtaining a passable, lymphokine-producing human T cell fusion line, and found that human T cells treated with a protein synthesis inhibitor or a protein synthesis inhibitor and an RNA synthesis inhibitor By fusing an acute leukemia cell line with human T cells stimulated with mitogen or antigen in the presence of a fusion promoter, we succeeded in obtaining a ``passageable lymphokine-producing human T cell fusion line,'' and the present invention I was able to complete it.

本発明は一般に次の工程からなる。The invention generally consists of the following steps.

A ヒト抹消血及び手術により無菌的に摘出した隅臓又
は胸腺より分離したりンパ球をマィト−ジェン又は抗原
で刺激した後、細胞に結合したマィトージェン又は抗原
を可及的に除去する。
A. After stimulating lymphocytes isolated from human peripheral blood and the cornea or thymus aseptically removed by surgery with mitogen or antigen, the mitogen or antigen bound to the cells is removed as much as possible.

使用する抗原またはマイトージェンとしては、ヒトT細
胞に対して形質転換を誘導する物質であれば良く、目的
とするりンホカィンに応じて適宜選択して使用する。
The antigen or mitogen used may be any substance that induces transformation of human T cells, and is appropriately selected and used depending on the target lymphokine.

マィトージェンとしてはフイトヘムアグルチニン−P(
PHA−Pと略す)、コンナカバリンA(ConA)等
が挙げられる。B ヒト急性白血病細胞をタンパク質合
成の阻害剤又はこれとRNA合成の阻害剤とで処理した
後、培養液中の阻害剤を遠心除去する。
As a mitogen, phytohemagglutinin-P (
(abbreviated as PHA-P), connacabalin A (ConA), and the like. B. After treating human acute leukemia cells with an inhibitor of protein synthesis or both an inhibitor of RNA synthesis, the inhibitor in the culture medium is removed by centrifugation.

ヒト急性白血病細胞株としては、T細胞系の腫湯細胞例
えばCEM、TALL、MOLT一4株などが使用でき
る。
As human acute leukemia cell lines, T-cell tumor cells such as CEM, TALL, and MOLT-14 strains can be used.

タンパク質合成の阻害剤としては、公知の真核細胞のタ
ンパク質合成阻害剤が用いられるが、ェメチン塩酸塩、
パクタマィシン等不可逆的なタンパク質合成阻害剤が好
ましい。
Known eukaryotic protein synthesis inhibitors are used as protein synthesis inhibitors, including emetine hydrochloride,
Irreversible protein synthesis inhibitors such as pactamycin are preferred.

これらタンパク質合成阻害剤のみを用いる他、RNA合
成の阻害剤を併用することが望ましい。RNA合成の阻
害剤としてはアクチノマィシンDが好ましいが、この他
Q−アマンチン、ェチジウムブロマイド、リフアンピシ
ン、アドリアマィシンなどが挙げられる。
In addition to using only these protein synthesis inhibitors, it is desirable to use RNA synthesis inhibitors in combination. Actinomycin D is preferred as an inhibitor of RNA synthesis, but other examples include Q-amantine, ethidium bromide, rifampicin, and adriamycin.

これら阻害剤による処理条件はヒト急性白血病細胞株の
分裂増殖を完全に防止できる条件から選択される。例え
ばCEM(2×1ぴ)/泌をェメチン塩酸塩単独で処理
する場合、その濃度は10‐4〜10‐5M、アクチノ
マィシンDを併用する場合、ェメチン塩酸塩10‐4〜
10‐5M、アクチノマィシンDO.05〜0.2メタ
/磯(処理温度37℃、処理時間2時間)の範囲が望ま
しい。C 以上のように調整したりンホカィン産生ヒト
T細胞とタンパク質合成の阻害剤又はタンパク質合成の
阻害剤とRNA合成の阻害剤との併用によって増殖を停
止したヒト急性白血病細胞株を適当な融合促進剤の在存
下に融合する。
Conditions for treatment with these inhibitors are selected from conditions that can completely prevent division and proliferation of human acute leukemia cell lines. For example, when CEM (2×1 pi)/secretion is treated with emetine hydrochloride alone, the concentration is 10-4 to 10-5M, and when actinomycin D is used together, the concentration is 10-4 to 10-5M.
10-5M, actinomycin DO. A range of 0.05 to 0.2 meta/iso (processing temperature: 37°C, processing time: 2 hours) is desirable. C. A human acute leukemia cell line whose proliferation has been stopped by adjusting as above or by combining lymphokine-producing human T cells with a protein synthesis inhibitor or a protein synthesis inhibitor and an RNA synthesis inhibitor is treated with an appropriate fusion promoter. merge in the presence of

ヒトT細胞と、ヒト急性白血病細胞株の混合比は1:1
〜20:1の範囲好ましくは2:1〜15:1である。
Mixing ratio of human T cells and human acute leukemia cell line is 1:1
The range is from 2:1 to 15:1, preferably from 2:1 to 15:1.

融合促進剤としては、ポリエチレングリコール(以下P
EGと略す)、ポリビニルアルコール、細胞融合館を有
するウイルス、中でもセンダイウイルス(HVJ)の属
するparamyxovlms及びその活性化物などが
用いられるが、一般的にはPEG(分子量1000〜4
000)を使用する。D 融合細胞株の生細砲濃度を1
ぴ〜2×1ぴ/の‘とし、フィーダーレィャーを添加し
た栄養培地を含む96ウェルカルチャープレートで培養
した。フィダーレィャーとしては、抗生物質又はX線線
照射等により増殖を止めたヒト細胞が用いられる。
As a fusion promoter, polyethylene glycol (hereinafter referred to as P
(abbreviated as EG), polyvinyl alcohol, viruses with cell fusion complexes, especially paramyxovlms to which Sendai virus (HVJ) belongs and its activated products, but generally PEG (molecular weight 1000-4
000) is used. D The live cell concentration of the fused cell line is 1
The cells were cultured in 96-well culture plates containing nutrient medium supplemented with feeder layers. Human cells whose growth has been stopped by antibiotics or X-ray irradiation are used as the feeder layer.

栄養塔地としては、ヒト急性白血病細胞株が増殖できる
培地であればいずれも使用できる。
Any medium that can proliferate human acute leukemia cell lines can be used as the nutrient medium.

例えばRPMI−1640に牛胎児血清(FCS)10
%、2一メルカプトエタノール5×10‐5ML グル
タミン2mMを添加した培地が好適に用いられる。培養
後1週間で、これら阻害剤で処理したヒト急性白血病細
胞株及びフイーダーレィャーは完全に死滅し、融合細胞
のみが増殖した。
For example, RPMI-1640 with 10 ml of fetal calf serum (FCS)
%, 2-mercaptoethanol, 5 x 10-5 mL, and a medium supplemented with 2 mM glutamine is preferably used. One week after culturing, the human acute leukemia cell line and feeder layer treated with these inhibitors were completely killed, and only the fused cells proliferated.

尚、融合株が取得できたことの確認は■細胞表面抗原の
解析、■核型の解析により行った。
It should be noted that confirmation that the fusion strain was obtained was carried out by (1) analysis of cell surface antigen and (2) analysis of karyotype.

E 融合細胞の増殖したウェルの培養上清を、分析し、
目的のリンホカィン産生性を確認する。以上の方法によ
って得た融合細胞株は、リンホカィン活性を保持したま
ま長期継代が可能であり更に、クローニングにより、リ
ンホカィンを効率良く産生するサブラィンを得ることが
できる。そのサブラィンを生体外或いは生体内で培養す
ることにより、リンホカィンを製造することができる。
これら培養方法は公知の方法を使用すれば良い。例えば
、生体外培養法としては、蝿梓培養法や、シャーレ、ル
ーびん内での静瞳培養法が含まれる。生体内培養法とし
ては、ヌードマウス、ヌードラットまたはヒト以外でヒ
トの腰湯細胞を移植可能な動物に融合細胞を接種し、固
体状腫傷又は腹水腫湯を形成させ、適当な増殖期間後、
当該分野の常套法によって腹水及び/又は血液を採取す
る方法、又特開昭54−98307に示される免疫反応
を弱めたハムスターを用いる方法などが含まれる。
E. Analyzing the culture supernatant of the wells in which the fused cells grew,
Confirm target lymphokine production. The fused cell line obtained by the above method can be passaged for a long period of time while retaining lymphokine activity, and furthermore, by cloning, a subline that efficiently produces lymphokines can be obtained. By culturing the subline in vitro or in vivo, lymphokines can be produced.
For these culturing methods, known methods may be used. For example, in vitro culture methods include the fly azure culture method and the static pupil culture method in a Petri dish or Lou bottle. For the in vivo culture method, the fused cells are inoculated into nude mice, nude rats, or non-human animals to which human Koshito cells can be transplanted, solid tumors or ascites are formed, and after an appropriate growth period,
Examples include a method of collecting ascitic fluid and/or blood using a conventional method in the field, and a method of using hamsters with weakened immune responses as described in JP-A-54-98307.

継代可能なりンホカィン産性ヒトT細胞融合株はリンホ
カインの大量生産に有用なばかりでなく、目的のリンホ
カィン産生細胞を大量に入手できることから、細胞中の
ljンホカィン産性関量遺伝子(メッセンジャーRNA
など)の抽出源としても利用できる。抽出したメッセン
ジャーRNAより逆転写酵素により相補的にDNA(c
DNA)を作製した後、遺伝子組換えの常法に従ってリ
ンホカィンを微生物(細菌、酵母、放射菌、カビ)に作
らせることも可能である。次に実施例を挙げた本発明を
具体的に説明する。
The passageable lymphokine-producing human T cell fusion line is not only useful for mass production of lymphokines, but also enables the acquisition of large quantities of target lymphokine-producing cells.
) can also be used as an extraction source. DNA (c) is complementary to the extracted messenger RNA using reverse transcriptase.
After producing DNA), it is also possible to make lymphokines in microorganisms (bacteria, yeast, actinobacteria, molds) using conventional genetic recombination methods. Next, the present invention will be specifically described with reference to examples.

実施例 1 ○’リンホカィン産生ヒトT細胞融合株の調製ヒト抹消
血リンパ球(以下PBLと略す)(HLA−A2、一A
w24、一B7、一Bw35、一Cw入 −Cw7)1
び個ノの‘を、RPMI−164庇者地〔10%牛胎児
血清、5×10‐5M2−メルカプトェタノール、2m
Mグルタミン含有〕(以下RPMI培地と略す)中、P
HA−P5仏タ′地により2日間刺激後、N−アセチル
ガラクトサミン0.1Mによって細胞に結合したPHA
−Pを可及的に除去した。
Example 1 ○' Preparation of lymphokine-producing human T cell fusion line Human peripheral blood lymphocytes (hereinafter abbreviated as PBL) (HLA-A2, -A
w24, 1B7, 1Bw35, 1Cw included -Cw7) 1
RPMI-164 evacuation site [10% fetal bovine serum, 5 x 10-5 M2-mercaptoethanol, 2 m
M glutamine-containing] (hereinafter abbreviated as RPMI medium), P
After stimulation with HA-P5 for 2 days, PHA bound to cells by N-acetylgalactosamine 0.1 M
- P was removed as much as possible.

他方、RPMI−164の者地(10%新生牛血清含有
)中で増殖したヒト急性白血病細胞株CEM(HLA−
AI、一Aw30、一B8、一B40)2×1ぴ個/地
にヱメチン塩酸塩105Mを添加し、37002時間処
理した後、培養液中のェメチン塩酸塩を遠心除去した。
以上のように調製したPBLとCEMを10:1の比で
混合後、遠心分離して得た細胞べレットに、0.5の上
の46%ポリエチレングリコール(PEG−1540)
、15%ジメチルスルホキサイド、5山タ′の‘ポリL
−ァルギニンを加え遠心した。融合後、融合細胞中の生
細胞数を2×1び個ノの‘とし、フィーダーレイヤーと
してマィトマイシンC処理(マイトマィシンC濃度25
山タ′の‘、3700、30分)したCEM8×1ぴ個
/叫を含む96ウェルカルチャープレートでC25%「
空気95%の雰囲気下37q0で培養した。
On the other hand, human acute leukemia cell line CEM (HLA-
Emetine hydrochloride (105 M) was added to 2 x 1 cells/field of AI, -Aw30, -Aw30, -B8, -B40, and after treatment for 37,002 hours, emetine hydrochloride in the culture solution was removed by centrifugation.
After mixing the PBL and CEM prepared above at a ratio of 10:1, the cell pellet obtained by centrifugation was added with 0.5 to 46% polyethylene glycol (PEG-1540).
, 15% dimethyl sulfoxide, 5-yamata' poly-L
-Add arginine and centrifuge. After fusion, the number of living cells in the fused cells was adjusted to 2 × 1 cells, and the feeder layer was treated with mitomycin C (mitomycin C concentration 25%).
C25% in a 96-well culture plate containing CEM8
The cells were cultured at 37q0 in an atmosphere of 95% air.

(以下の実施例に示す培養条件は特にことわらない限り
、C025%、空気95%の雰囲気下37q0である。
)培養後1週間は死んでいくCEMより放出される薬剤
の影響を緩和するため、毎日培養液を1/2づっ交換し
た。融合細胞の増殖が認められたウェル中の細胞を用い
「t2’に示す方法でリンホカィン活性を測定した。
(Unless otherwise specified, the culture conditions shown in the following examples are 37q0 in an atmosphere of 25% CO and 95% air.
) For one week after culturing, half of the culture medium was replaced every day to alleviate the effects of drugs released from dying CEM. Lymphokine activity was measured using the cells in the wells in which proliferation of the fused cells was observed by the method shown in "t2'.

この間に対照として培養したェチメン処理CEM及びマ
ィトマィシンC処理CEMは完全に死滅した。
During this period, the CEM treated with Etchimen and the CEM treated with mitomycin C, which were cultured as a control, were completely killed.

t2’ 融合細胞の培養とりンホトキシン活性‘1}に
より得た融合細胞を、PHA一P20仏タ′叫の存在下
、RPMI培地中で1日間培養し、培養上清のりンホト
キシン活性をL−P3(L細胞の亜株)を標的細胞とし
て測定した結果、2つの融合株(B−10、F−8)に
活性が認められた。
Culture of t2' fused cells Lymphotoxin activity The fused cells obtained by '1' were cultured in RPMI medium for 1 day in the presence of PHA-P20, and the lymphotoxin activity of the culture supernatant was determined by L-P3 ( As a result of measuring the target cells (sub-line of L cell), activity was observed in two fusion strains (B-10 and F-8).

この活性は3ケ月以上保持されている。尚リソホトキシ
ン清曲ま次の小林らの方法により測定した。すなわち、
あらかじめマイクロプレートに形成させたL−P3、5
0山そ(細胞数2×1ぴ個)に被検体25A夕及びアク
チノマイシンD(4メタ′の上)25仏夕を加え、37
00、20〜2岬寺間培養後、細胞をグルタルアルデヒ
ドで固定、染色し、形態上正常な細胞数を計測する方法
により行った。〔Y.Kobayashietal−、
J.lmmunology 122 791(1979
)〕t3ー 融合株E−10及びF−8の特性【1ー
細胞表面抗原の解析 ■ CEMは、蟹光活性化セルソーター (FluorescenCe Activaにd Ce
ll Soner)による分析から、モノクローナル抗
体OKT3と反応しないことが知られており、一方ヒト
T細胞がOKT3と反応することを利用して、ヒトT細
胞融合株(E−10及びF−8)のOKT3反応性を1
251−ProteinAを用いたtwo−sにpbi
ndingassay及びlmmunoHuoresc
enceで調べた。
This activity is maintained for more than 3 months. Lysophotoxin was measured according to the method of Kobayashi et al. by Manji Seikoku. That is,
L-P3, 5 formed in advance on a microplate
Add 25 samples of test substance and actinomycin D (4 meta′ above) to 0 samples (2 x 1 cells), add 37 samples.
After culturing between 00 and 20 to 2 capes, cells were fixed and stained with glutaraldehyde, and the number of morphologically normal cells was counted. [Y. Kobayashietal-,
J. lmmunology 122 791 (1979
)]t3- Characteristics of fusion strains E-10 and F-8 [1-
Analysis of cell surface antigens■ CEM is performed using a fluorescent cell sorter (FluorescenCe Activa).
It is known that the monoclonal antibody OKT3 does not react with the monoclonal antibody OKT3, based on the analysis conducted by Ill Soner. OKT3 reactivity to 1
pbi to two-s using 251-ProteinA
ndingassay and lmmunoHuoresc
I checked with ence.

その結果、CEMの反応性がないのに対し、E−10は
PBL−T細胞と比較して同程度、F−8は50%程度
の反応性が認められた。
As a result, while there was no reactivity with CEM, the reactivity of E-10 was found to be similar to that of PBL-T cells, and the reactivity of F-8 was found to be about 50%.

■ 1251−Protein Aを用いたtwo−s
tepbindingassayによってE−10及び
F一8のHLA抗原を調べた。
■ two-s using 1251-Protein A
HLA antigens of E-10 and F-18 were examined by tepbinding assay.

PBLはHLA−A2、一BW35pOS;tiVeC
EMはHLA−AI、一B8positiveであるの
に対し、E‐10、F−8共にHLA−AI、一A2、
一B8positiveであつた。■ 核型の解析 CEM及びE−10、F−8の洗色体数を各々50〜8
0のmetaphase核について調べた。
PBL is HLA-A2, -BW35pOS; tiVeC
While EM is HLA-AI, -B8 positive, both E-10 and F-8 are HLA-AI, -A2,
It was one B8 positive. ■ Karyotype analysis CEM, E-10, and F-8 color washings number of 50 to 8 each.
The metaphase nucleus of No. 0 was investigated.

その結果CEMは84.3土0.9(平均値士S.E.
)〔85〕(median)であるのに対し、E−10
は95.土1.7〔94〕、F一8は91.5±1.6
〔93〕であり、約10の染色体増加を観察した。実施
例 2 実施例1で得られたりンホカィン産生細胞融合株E−1
0を1ぴ個ノの‘含むRPMI塔地で1日間培養して得
た培養上情の4倍希釈液のMIF活性をハリントンの方
法〔J.Thanington、Jr.et al、J
.lmmunologyll0 752、(1983)
〕に従って測定した結果、マクロファージ遊走阻止率は
29.9%であり、同条件下で培養したCEMの培養上
清に活性は認められなかった。
As a result, CEM is 84.3 Sat 0.9 (average value S.E.
) [85] (median), whereas E-10
is 95. Sat 1.7 [94], F-8 91.5 ± 1.6
[93], and approximately 10 chromosome gains were observed. Example 2 Inhokine-producing cell fusion strain E-1 obtained in Example 1
The MIF activity of a 4-fold dilution of the culture obtained by culturing for 1 day in an RPMI column containing 1 pg of 0 was determined by Harrington's method [J. Thanington, Jr. et al., J.
.. lmmunologyll0 752, (1983)
], the macrophage migration inhibition rate was 29.9%, and no activity was observed in the culture supernatant of CEM cultured under the same conditions.

尚、PBLI07個/私をConA(10A夕/机上)
を含むHEPES含有MEM培地で1日間培養して得た
培養上清は25.2%のマクロファージ遊走阻止率を示
した。E−10のMIF活性は6ケ月以上保持されてい
る。実施例 3 CEMにェチメン塩酸塩5×10‐5M、アクチノマイ
シンDO.1ムタ′の‘を添加し、37℃、2時間処理
したものを実施例1と同様に作製したPBLと融合させ
、実施例1の方法で培養した結果、対照として培養した
ヱメチン塩酸塩及びァクチノマィシンD処理CEMは完
全に死滅し、融合細胞のみ増殖が認められた。
In addition, 07 PBLI / ConA (10A evening / desk)
The culture supernatant obtained by culturing for 1 day in HEPES-containing MEM medium showed a macrophage migration inhibition rate of 25.2%. The MIF activity of E-10 is maintained for more than 6 months. Example 3 Echimene hydrochloride 5x10-5M, actinomycin DO. 1 Muta' was added and treated at 37°C for 2 hours, which was fused with PBL prepared in the same manner as in Example 1, and cultured according to the method of Example 1. As a result, Emetine hydrochloride and actinomycin cultured as controls The D-treated CEM was completely killed, and only the fused cells were observed to proliferate.

この融合株を実施例1、‘2)の方法と同様に培養して
得た培養上清についてリンホトキシン活性を測定した結
果、2つの融合株(C−5、D−9)に活性が認められ
た。
Lymphotoxin activity was measured in the culture supernatant obtained by culturing this fusion strain in the same manner as in Example 1, '2). As a result, two fusion strains (C-5 and D-9) were found to have activity. Ta.

実施例 4 実施例1で得られたりンホカィン産生ヒトT細胞融合株
E−10をフイーダーレイャ−としてマィトマイシンC
処理(処理条件は実施例1と同じ)したCEM2×1び
/泌及び20%のConA一括性化PBL上情を含むR
PMI培地中で限界希釈法(細胞0‐乳固/ウエル)に
よりクローン化してサブラインEIO一20を得た。
Example 4 Using mitomycin C as a feeder layer, the lymphokine-producing human T cell fusion strain E-10 obtained in Example 1 was used.
R containing treated (processing conditions are the same as in Example 1) CEM2×1 culture/secretion and 20% ConA bulk sexed PBL
The subline EIO-20 was obtained by cloning by limiting dilution method (0 cells - milk solids/well) in PMI medium.

次いでEIO‐20を1び個/泌を含むRP肌培地で1
日間培養して得た培養上清を硫安分画(50〜100%
飽和)、P既に対して透析して得た試料につき、肌F活
性を測定した結果、マクロファージ遊走阻止率は32%
であった。
Then, 1 piece of EIO-20 was added to the RP skin medium containing secretion.
The culture supernatant obtained by culturing for days was subjected to ammonium sulfate fractionation (50-100%
As a result of measuring the skin F activity of the sample obtained by dialyzing against P (saturated), the macrophage migration inhibition rate was 32%.
Met.

更にMAF活性を日.W.Mmrayらの方法〔J.E
xp.Med.、153 1690(1981)〕の変
法により測定した。
Furthermore, MAF activity was determined on a daily basis. W. The method of Mmray et al. [J. E
xp. Med. , 153 1690 (1981)].

すなわち、ヒトマクロフアージ様細胞株U 937とM
APとの反応により生じる細胞内スーパーオキサイドア
ニオン(○夏)を、ニトロフルーテトラゾリウムの変色
(○夏の存在により細胞が青変する)により検知した。
その結果、全細胞数の30%が変色し、MAF活性が認
められた。同様にしてCEM株を培養して得た培養上情
を硫安分画(50〜100%飽和)、P既に対して透析
して得た試料につき、MIF活性を測定した結果、マク
ロファージ遊走阻止率は9.9%、ニトロフルーテトラ
ゾ1」ゥムにより変色した細胞は全細胞数の21%であ
った。実施例 5 実施例4で得たサブラィンEIO−20を1ぴ個/机と
を含むRPMI培地で1日間培養して得た培養上清を硫
安分画(50〜loo%飽和)、PBSに対し透析して
得た試料につき、腫湯細胞障害作用の増加を指標とした
MAF活性をCameronらの方法〔Cameron
、D.J.andW.日.Churchill;Jou
malofClinicalInvestigatio
n 63 977 (1979)〕を修正して測定した
That is, human macrophage-like cell lines U 937 and M
Intracellular superoxide anion (○ summer) generated by the reaction with AP was detected by color change of nitroflutetrazolium (cells turn blue due to the presence of ○ summer).
As a result, 30% of the total number of cells changed color and MAF activity was observed. The MIF activity was measured on samples obtained by culturing the CEM strain in the same manner and dialyzing the culture conditions against ammonium sulfate fraction (50-100% saturation) and P. 9.9%, and 21% of the total cells were discolored by nitroflutetrazolium. Example 5 The culture supernatant obtained by culturing the subline EIO-20 obtained in Example 4 for 1 day in RPMI medium containing 1 piece/table was subjected to ammonium sulfate fractionation (50 to 10% saturation) and to PBS. For samples obtained by dialysis, MAF activity was measured using the method of Cameron et al.
,D. J. andW. Day. Churchill; Jou
malofClinicalInvestigatio
n 63 977 (1979)] was modified.

〔腫傷細胞障害作用の増加を指標としたMAF活性−M
AF−C−の測定法〕ヒト抹消血よりフィコールーウロ
グラフィン法で分離したPBLを、20%ヒト血清含有
RPMI−164の者地で2.5×1ぴ個/泌に調整し
、その200仏夕を96ウェルカルチヤープレートに添
加し、37℃、0.5〜2時間インキュべ−トし、さら
にRPMI培地で3回洗浄し、マクロフアージをプレー
ト底面に張り付けた。
[MAF activity using increased tumor cell damage as an indicator-M
AF-C- measurement method] PBL separated from human peripheral blood by the Fico-urographin method was adjusted to 2.5 x 1 PBL/secretion in RPMI-164 containing 20% human serum, and then Macrophages were added to a 96-well culture plate, incubated at 37°C for 0.5 to 2 hours, and washed three times with RPMI medium, and the macrophages were attached to the bottom of the plate.

次いで20%ヒト血清含有RPMI164世宅地を各ウ
ェルに200仏そ添加し、1〜7日間洗浄した後、20
%ヒト血清含有RPMI−164の者地で100万倍に
希釈した試料200〃そを添加し、4〜2岬時間培養し
、マクロフアージを活性化した。1ウェル中のマクロフ
アージ数は2〜10×1ぴ個であった。
Next, 200 ml of RPMI 164 Sekenchi containing 20% human serum was added to each well, and after washing for 1 to 7 days, 20
200 samples diluted 1,000,000 times in RPMI-164 containing % human serum were added and cultured for 4 to 2 hours to activate macrophages. The number of macrophages in one well was 2 to 10×1.

一方、3日チミジン含有RPMI培地中で標的瞳湯細胞
(ヒト白血病性T細胞株TALL、ヒト前赤芽球細胞株
K562など)を2畑時間培養し、3日ラベル化標的腫
傷細胞を得た。
On the other hand, target Hititoyu cells (human leukemic T cell line TALL, human proerythroblast cell line K562, etc.) were cultured for 2 hours in thymidine-containing RPMI medium for 3 days to obtain labeled target tumor cells for 3 days. Ta.

次いで、、活性化マクロフアージ2〜10×1ぴ個含む
ウェルに、活性化マクロフアージ数(E)と3日ラベル
化嬢的腫嬢細胞(T)の比(E/T)が5〜10になる
ように、3日ラベル化標的腫場細胞及びRPMI培地を
添加し、37℃〜 2日間インキュベートした。
Next, in wells containing 2 to 10 x 1 activated macrophages, the ratio (E/T) of the number of activated macrophages (E) to 3-day labeled tumor cells (T) is 5 to 10. 3-day labeled target tumor cells and RPMI medium were added and incubated at 37°C for 2 days.

プレート遠心機で上清と細胞とを分離し、上清の放射活
性(cpm)を液体シンチレーションカウンタ−で測定
した。MAF−C活性値は次式により算出した。%。
The supernatant and cells were separated using a plate centrifuge, and the radioactivity (cpm) of the supernatant was measured using a liquid scintillation counter. The MAF-C activity value was calculated using the following formula. %.

fMAF−C:上雲霧蜜建種≧言≧≧言呈示菱蟹建鐘性
X・oo(注1)全放射活性:3日ラベル化標的腹湯細
胞5×1ぴ個の放射活性(cpm)(注2) コントロ
ール放射活性:3日ラベル化標的腫湯細胞1ぴ個を含む
RPMI塔地を3700、2日間培養した後、遠心分離
して得た上清の放射活性(cpm) 標的種湯細砲としてTALL株を用いたときの「試料(
100方情希釈)のMAF−C活性は88.1%であっ
た。
fMAF-C: Kamigumo Kirimitsuken species≧word≧≧word presentation rhombus crab Kensho sex (Note 2) Control radioactivity: Radioactivity (cpm) of the supernatant obtained by centrifugation after culturing the RPMI tower containing one 3-day labeled target tumor cell at 3700 nm for 2 days. “Sample (
MAF-C activity (100 dilution) was 88.1%.

Claims (1)

【特許請求の範囲】 1 ヒト急性白血病細胞株とマイト−ジエン又は抗原で
刺激されたヒトT細胞とを融合させ、融合細胞だけを分
離して得られた継代可能なリンホカイン産生ヒトT細胞
融合株。 2 タンパク質合成阻害剤又はタンパク質合成阻害剤と
RNA合成阻害剤との併用により処理したヒト急性白血
病細胞株を用いる特許請求の範囲第1項の継代可能なリ
ンホカイン産生ヒトT細胞融合株。 3 ヒト急性白血病細胞株をタンパク質合成阻害剤又は
タンパク質合成阻害剤とPNA合成阻害剤との併用によ
り処理する一方、ヒトT細胞をマイト−ジエン又は抗原
で刺激し、両者を融合促進剤の存在下で融合させた後、
融合細胞だけを分離する継代可能なリンホカイン産生ヒ
トT細胞融合株の取得方法。
[Scope of Claims] 1. A passageable lymphokine-producing human T cell fusion obtained by fusing a human acute leukemia cell line with a mitogen- or antigen-stimulated human T cell and isolating only the fused cells. KK. 2. The passageable lymphokine-producing human T cell fusion line according to claim 1, which uses a human acute leukemia cell line treated with a protein synthesis inhibitor or a combination of a protein synthesis inhibitor and an RNA synthesis inhibitor. 3 Human acute leukemia cell lines are treated with a protein synthesis inhibitor or a combination of a protein synthesis inhibitor and a PNA synthesis inhibitor, while human T cells are stimulated with mitogenes or antigens, and both are treated in the presence of a fusion promoter. After merging with
A method for obtaining a passable lymphokine-producing human T cell fusion line by isolating only fused cells.
JP56171505A 1981-10-28 1981-10-28 Passageable lymphokine-producing human T cell fusion line and method for obtaining the same Expired JPS6011889B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56171505A JPS6011889B2 (en) 1981-10-28 1981-10-28 Passageable lymphokine-producing human T cell fusion line and method for obtaining the same
CA000414159A CA1202917A (en) 1981-10-28 1982-10-26 Process for producing subculturable lymphokine- producing human t cell hybridomas
GB08230526A GB2108528B (en) 1981-10-28 1982-10-26 Process for preparing sub-culturable lymphokine-producing human t cell hybridomas
DE19823239863 DE3239863C2 (en) 1981-10-28 1982-10-27 Process for the preparation of a subculturable lymphokine-producing human T-cell hybridoma
FR8218007A FR2515208B1 (en) 1981-10-28 1982-10-27 PROCESS FOR THE PRODUCTION OF SUB-CULTIVABLE HYBRIDOMAS OF LYMPHOKINE PRODUCING T CELLS
US06/574,213 US4675295A (en) 1981-10-28 1984-01-26 Process for producing subculturable lymphokine-producing human T cell hybridomas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56171505A JPS6011889B2 (en) 1981-10-28 1981-10-28 Passageable lymphokine-producing human T cell fusion line and method for obtaining the same

Publications (2)

Publication Number Publication Date
JPS5872520A JPS5872520A (en) 1983-04-30
JPS6011889B2 true JPS6011889B2 (en) 1985-03-28

Family

ID=15924347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56171505A Expired JPS6011889B2 (en) 1981-10-28 1981-10-28 Passageable lymphokine-producing human T cell fusion line and method for obtaining the same

Country Status (5)

Country Link
JP (1) JPS6011889B2 (en)
CA (1) CA1202917A (en)
DE (1) DE3239863C2 (en)
FR (1) FR2515208B1 (en)
GB (1) GB2108528B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1214123A (en) * 1983-01-20 1986-11-18 Masashi Matsui Cell lines for use in the preparation of hybridoma cells
JPS59169492A (en) * 1983-03-15 1984-09-25 Asahi Chem Ind Co Ltd Production of biologically active substance from human fused cells
EP0179127B1 (en) * 1984-04-13 1989-12-13 Akzo N.V. Leukoregulin, an antitumor lymphokine, and its therapeutic uses
US4843004A (en) * 1984-05-11 1989-06-27 Sloan-Kettering Institute For Cancer Research Method for the production of human T-T cell hybrids and production suppressor factor by human T-T cell hybrids
US4959457A (en) * 1984-05-31 1990-09-25 Genentech, Inc. Anti-lymphotoxin
US4665032A (en) * 1984-06-28 1987-05-12 Cornell Research Foundation, Inc. Human T cell hybridomas which produce immunosuppressive factors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO820248L (en) * 1981-01-28 1982-07-29 Coats Patons Plc PROCEDURE FOR MANUFACTURING MONOCLONE ANTIBODIES AND CELLS AFFECTED FOR AA PRODUCING SUCH ANTIBODIES

Also Published As

Publication number Publication date
FR2515208A1 (en) 1983-04-29
JPS5872520A (en) 1983-04-30
GB2108528A (en) 1983-05-18
DE3239863C2 (en) 1985-08-29
FR2515208B1 (en) 1985-07-19
GB2108528B (en) 1984-12-19
DE3239863A1 (en) 1983-05-05
CA1202917A (en) 1986-04-08

Similar Documents

Publication Publication Date Title
Miller et al. Regulated expression of the Mac-1, LFA-1, p150, 95 glycoprotein family during leukocyte differentiation.
Moore et al. Monoclonal antibodies specific for canine CD4 and CD8 define functional T‐lymphocyte subsets and high‐density expression of CD4 by canine neutrophils
Rocklin et al. Characterization of the human blood lymphocytes that produce a histamine-induced suppressor factor (HSF)
DE69334062T2 (en) In vitro activation of cytotoxic T cells
Pule et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma
Herrmann et al. In vitro regulation of human hematopoiesis by natural killer cells: analysis at a clonal level
Lake et al. Production and characterization of cytotoxic Thy‐1 antibody‐secreting hybrid cell lines Detection of T cell subsets
US4720459A (en) Myelomas for producing human/human hybridomas
Patel et al. Analysis of the functional capabilities of CD3+ CD4-CD8-and CD3+ CD4+ CD8+ human T cell clones.
US4434230A (en) Human nonsecretory plasmacytoid cell line
Huff et al. Formation of IgE-binding factors by human T-cell hybridomas.
JPH0159878B2 (en)
McLaughlin et al. Adoptive T Cell Therapy for Epstein–Barr Virus Complications in Patients With Primary Immunodeficiency Disorders
JPH02227096A (en) Antibody and preparation thereof
CA1193210A (en) Human hepatoma derived cell line, process for preparation thereof, and uses therefor
JPH06205671A (en) Extraction and cultivation of transformed cell and preparation of antibody thereagainst
Shrestha et al. Generation of antitumor T cells for adoptive cell therapy with artificial antigen presenting cells
Ishida et al. Expansion of natural killer cells but not T cells in human interleukin 2/interleukin 2 receptor (Tac) transgenic mice.
JP2005517440A (en) Method for producing γδT cells
Johannessen et al. Essential role for T cells in human B‐cell lymphoproliferative disease development in severe combined immunodeficient mice
JP2001149069A (en) Method for proliferating natural killer cell
Dorman et al. Genetic analysis of the human cell surface: antigenic marker for the human X chromosome in human-mouse hybrids.
JPS6011889B2 (en) Passageable lymphokine-producing human T cell fusion line and method for obtaining the same
DE3786673T2 (en) METHOD FOR REMOVING UNWANTED CELLS FROM HUMAN LYMPHOCYTE POPULATIONS, APPLICATION OF THE METHOD FOR PRODUCING MONOCLONAL ANTIBODIES AND A KIT SUITABLE FOR THIS.
US4675295A (en) Process for producing subculturable lymphokine-producing human T cell hybridomas