[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6011605A - Steam turbine control - Google Patents

Steam turbine control

Info

Publication number
JPS6011605A
JPS6011605A JP11796283A JP11796283A JPS6011605A JP S6011605 A JPS6011605 A JP S6011605A JP 11796283 A JP11796283 A JP 11796283A JP 11796283 A JP11796283 A JP 11796283A JP S6011605 A JPS6011605 A JP S6011605A
Authority
JP
Japan
Prior art keywords
valve
steam
steam turbine
signal
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11796283A
Other languages
Japanese (ja)
Inventor
Akira Katayama
昭 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11796283A priority Critical patent/JPS6011605A/en
Publication of JPS6011605A publication Critical patent/JPS6011605A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To curb abrupt uprise of a turbine rotation, by providing two normally closed valves which are arranged in series in steaming systems leading to the steam turbine, in order to let the second valve start turbine control, as well as the first valve is fully opened, when the second valve becomes ready to operate. CONSTITUTION:Initial opening of a motor driven valve 1 is established through function generators 12-14, based on each output signal from a main steam pressure detector 10 and feed-water hydrometer 11 when the cooling system of a nuclear reactor in an atomic power station of boiling water model starts at a time of atomic segregation. Rotational frequency of a steam turbine 4 is controlled by letting a governing valve 3 start closing from its full opening when the steam turbine 4 is started and rotational frequency is raised up to specified level. On the other hand, a motor driven valve 1 is fully opened as per the output of full opening signal generator 15, after exciting a relay 19 via logic circuit 16 according to a control oil pressure establishment signal 23a, rotational frequency signal 21a denoting that turbine frequency goes beyond the specified level and an opening signal 22a indicating start of closing of governing valve 3.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は蒸気タービン制御方法に係り、特に沸騰水型原
子力発電所に於いて原子炉補助系を構成する原子炉隔離
時冷却系(以下、RaIc系と称する)で用いるポンプ
駆動用蒸気タービンの起動制御を行うに好適な蒸気ター
ビン制御方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a steam turbine control method, and in particular to a reactor isolation cooling system (hereinafter referred to as RaIc) that constitutes a reactor auxiliary system in a boiling water nuclear power plant. The present invention relates to a steam turbine control method suitable for controlling the start-up of a pump-driving steam turbine used in a pump-driving steam turbine system.

〔発明の技術的背景〕[Technical background of the invention]

沸騰水型原子力発電所におけるRaIc系は燃料取扱設
備、燃料プール冷却浄化系、原子炉冷却材浄化系、残留
熱除去系等とともに原子炉の補助設備である原子炉補助
系に属する。このRaIc系は原子炉の停止後、何らか
の原因で原子炉への給水系が停止した場合、原子炉内の
水位を維持するために炉内蒸気を一部使用して蒸気ター
ビンを駆動し、これに直結する給水ポンプにより残留熱
除去系の蒸気凝縮水または復水貯蔵タンク水等を炉心に
注入する設備である。このため、かかる設備に要求され
る信頼性は非常に高いものとなっている。
The RaIc system in a boiling water nuclear power plant belongs to the reactor auxiliary system, which is auxiliary equipment for the reactor, along with fuel handling equipment, fuel pool cooling purification system, reactor coolant purification system, residual heat removal system, etc. This RaIc system uses some of the steam in the reactor to drive the steam turbine in order to maintain the water level in the reactor if the water supply system to the reactor stops for some reason after the reactor is shut down. This equipment injects steam condensed water from the residual heat removal system or condensate storage tank water, etc. into the reactor core using a water supply pump directly connected to the reactor core. For this reason, the reliability required of such equipment is extremely high.

第1図は周知のRaIc系の概略系統図を示すものであ
る。同図からも明らかな如<、ReIC系はポンプ駆動
用蒸気タービン+、R(l工Oポンプよ、コンデンサ6
から成る主要系統機器の他に。
FIG. 1 shows a schematic systematic diagram of the well-known RaIc system. As is clear from the figure, the ReIC system consists of a pump-driving steam turbine +
In addition to the main system equipment consisting of.

原子炉7と蒸気タービンダを連結する蒸気管ラインg、
蒸気管ラインgに設備される電動弁/、主蒸気止め弁コ
、調速弁3およびこれらをとシまく給水管等の主要配管
、主蒸気隔離弁9等の弁類によ多構成されるのが一般的
である。
a steam pipe line g connecting the nuclear reactor 7 and the steam turbine;
It is composed of many valves such as the electric valve installed in the steam pipe line g, the main steam stop valve, the speed regulating valve 3, the main piping such as the water supply pipe that connects these, and the main steam isolation valve 9. is common.

かかる構成に於いて、原子炉7のスクラム時に主蒸気隔
離弁9が閉じられると、原子炉系が図示しない蒸気ター
ビン系から隔離された状態となり、原子炉給水系が停止
する。その結果、原子炉り内の圧力が上昇し、図示しな
い逃し安全弁を作動させる。一方、給水が喪失している
ため原子炉りの崩壊熱による蒸気発生は続行されるため
、炉水位は低下し続ける事となる。かかる状態で原子炉
りの水位が降下し、ある規定値になると、RO工0系の
自動起動信号が発生し、蒸気タービンダの蒸気管ライン
It/C設げられた電動弁lを全開させる。
In this configuration, when the main steam isolation valve 9 is closed during a scram of the nuclear reactor 7, the reactor system becomes isolated from the steam turbine system (not shown), and the reactor water supply system is stopped. As a result, the pressure inside the reactor rises, causing a safety relief valve (not shown) to operate. On the other hand, due to the loss of water supply, the reactor's decay heat continues to generate steam, so the reactor water level continues to fall. In this state, when the water level in the reactor falls and reaches a certain specified value, an automatic start signal for the RO system 0 is generated, and the electric valve l provided in the steam pipe line It/C of the steam turbine is fully opened.

一方、主蒸気止め弁コ、調速弁Jは蒸気タービンtの起
動前に予め機械的に全開させられているため、電動弁/
を通過した蒸気は主蒸気止め弁コ。
On the other hand, the main steam stop valve J and the speed governor J are mechanically fully opened in advance before starting the steam turbine t.
The steam that has passed through the main steam stop valve.

調速弁3を経て蒸気タービンlに流入し、蒸気ターピン
クを起動する。
It flows into the steam turbine 1 through the governor valve 3 and starts the steam turbine.

ところで、一般的な蒸気タービンの起動時においては、
先ず調速弁3を全閉状態から開状態とする事によりター
ビンを回転させるのに対し、RCIC系の蒸気タービン
lでは先にも述べた様に調速弁3を起動前に全開させて
おく訳であるが、これはこの種の蒸気ターピングが非常
用のものであり。
By the way, when starting a typical steam turbine,
First, the turbine is rotated by changing the governor valve 3 from a fully closed state to an open state, whereas in the case of an RCIC steam turbine, the governor valve 3 is fully opened before starting, as mentioned earlier. However, this type of steam tarping is only for emergency use.

蒸気タービンlの制御用電源および調速弁3の駆動源で
ある制御油圧が確立されていない条件下でも蒸気タービ
ンlを起動させなければならないとの理由による。つま
り、ノ々ヅテリ等から供給される直流電源で駆動される
電動弁lをまず開き、蒸気ターピングを起動させて、蒸
気タービンlの回転によって得られる制御電源および蒸
気タービンダに直結した図示しないポンプにより発生さ
せられる油圧を確立した後1通常の調速弁3による運転
動作に入らせるためである。このようにして、蒸気ター
ビンqを起動した後は、その回転上昇に伴い、これに直
結するRO工Cポンプ5から原子炉りに対して冷却水が
送出され、原子炉7の炉心の冷却および炉水位の回復が
可能となる。
This is because the steam turbine 1 must be started even under conditions where the control oil pressure, which is the power source for controlling the steam turbine 1 and the driving source for the governor valve 3, is not established. In other words, the electric valve l driven by the DC power supplied from a Nonozuteri etc. is first opened, the steam tarping is started, and the control power obtained by the rotation of the steam turbine l and a pump (not shown) directly connected to the steam turbine are used. This is to allow normal operation by the regulating valve 3 to begin after the hydraulic pressure to be generated is established. In this way, after starting the steam turbine q, as its rotation increases, cooling water is sent to the reactor from the RO work C pump 5 directly connected to it, cooling the core of the reactor 7 and Recovering the reactor water level becomes possible.

第2図は従来の蒸気タービン制御方法によシ蒸気タービ
ンダな起動する場合における電動弁l。
FIG. 2 shows an electrically operated valve 1 when a steam turbine is manually started using a conventional steam turbine control method.

調速弁3の各々の弁開度/A、、?A及び蒸気ターピン
グの回転数!IAの関係を示す特性図である。
The opening degree of each of the regulating valves 3/A, ? A and the rotation speed of steam tarping! It is a characteristic diagram showing the relationship of IA.

第一図に示す如く、時刻T1にRO工0系の自動起動信
号が発生したとすると、まず電動弁lに全開信号が入り
、電動弁開度/Aは全閉状態開度/ から全開状態開度
10へ向っである時間を以って変化する。電動弁/から
の蒸気は全開状態にある主蒸気止め弁コおよび調速弁3
を介して蒸気タービンlに流入する。蒸気ターピングは
時刻T1からある時間遅れΔTIを以って初めて回転し
始めるが、この場合電動弁lを経た多量の蒸気が直接蒸
気タービンl内に流入するため、その回転数gAの上昇
は非常に急激なものとなる。ところで。
As shown in Figure 1, when an automatic start signal for the RO system 0 system is generated at time T1, a fully open signal is first input to the electric valve l, and the electric valve opening /A changes from the fully closed state to the fully open state. The opening degree changes over a certain period of time toward 10. The steam from the electric valve is fully open to the main steam stop valve and the regulating valve 3.
into the steam turbine l. The steam tarping starts to rotate for the first time after a certain time delay ΔTI from time T1, but in this case, a large amount of steam passes through the electric valve l and directly flows into the steam turbine l, so the increase in the rotational speed gA is very large. It becomes sudden. by the way.

蒸気ターピングの回転数lIAはRO工0ポンプよの吐
出量の要求値によシ決定される回転数に到達した時点で
整定するのが望ましい。ところが、実際には調速弁、3
の弁開度3Aが起動前には全開状態開度3゜であること
、また蒸気タービン回転数+Aの上昇に伴い確保される
調速弁3の駆動源となる油圧が遅れをもっていること等
の理由により。
It is desirable that the rotational speed lIA of the steam tarping is stabilized when it reaches the rotational speed determined by the required value of the discharge amount from the RO pump. However, in reality, the regulating valve, 3
The valve opening degree of 3A is fully open at 3 degrees before startup, and there is a delay in the hydraulic pressure that is the drive source for the governor valve 3, which is secured as the steam turbine rotation speed +A increases. For a reason.

タービン回転数lIAを直ちには整定できず、目標回転
数を上まわってオーツ々シーートを伴ってしまう。この
オーツ々シーートはその後確立された油圧により駆動さ
れる調速弁3を急激に全閉近くまで閉鎖することにより
停止させることが出来るが。
The turbine rotational speed IIA cannot be immediately stabilized, and exceeds the target rotational speed, resulting in an irregular seat. This automatic seat can then be stopped by rapidly closing the regulating valve 3, which is driven by the established oil pressure, to nearly fully closed.

逆に蒸気ターピングは回転数降下を始めることとなる。On the other hand, steam tarping will start to reduce the rotational speed.

その結果、蒸気ターーングの回転数lIAは目標回転数
を下まわってアンダーシュートとなり調速弁3の作用に
よシ再び回転数lIAは上昇に転じる。このように、オ
ーツマシュート、アンダーシュートを数回繰り返した後
、RO工Cポンプ3の要求吐出量に見合った回転数に蒸
気タービンダを調速することが可能となる。
As a result, the rotational speed lIA of the steam turning becomes lower than the target rotational speed and undershoots, and due to the action of the regulating valve 3, the rotational speed lIA starts to rise again. In this way, after repeating automatic shoot and undershoot several times, it becomes possible to control the speed of the steam turbine to a rotational speed commensurate with the required discharge amount of the RO work C pump 3.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、起動時における蒸気タービンlの回転数
lIAの挙動は以下に述べるような問題点を含んでいる
。第1に、調速弁3の駆動源である油圧の立上がりが遅
い場合、オーツマシュートによる回転数’7Aのピーク
値が、蒸気ターピングの保護装置として設置されている
図示しない過回転防止用非常調速機を作動させ、その結
果としてタービンをトリップさせてしまう可能性がある
事である。第コには、蒸気ターピンクの急激な回転数上
昇が、蒸気タービンtの本体はもちろんの事、タービン
軸受部や歯車部等に大きな衡撃力を与え、その寿命や信
頼性に重大な影響を与える事である。
However, the behavior of the rotational speed lIA of the steam turbine l at the time of startup includes the following problems. First, when the rise of the oil pressure, which is the drive source for the regulating valve 3, is slow, the peak value of the rotational speed of 7 A caused by the automatic chute is caused by an over-speed prevention emergency (not shown) installed as a steam tarping protection device. This could cause the governor to operate, potentially causing the turbine to trip. First, the rapid increase in the rotational speed of the steam turbine exerts a large impact force on not only the main body of the steam turbine, but also the turbine bearings, gears, etc., which has a serious impact on its lifespan and reliability. It's about giving.

更に第3には、蒸気ターピングの起動後、調速点に至る
までの間の回転数不安定が振動発生の原因となり、監視
装置、保護装置等の他の機器の誤動作を誘導する原因と
なる可能性がある事である。
Thirdly, after the steam tarping is started, the rotational speed is unstable until it reaches the regulating point, which causes vibrations and induces malfunctions of other equipment such as monitoring devices and protection devices. It is a possibility.

以上述べたように、RCIC系に対して要求される信頼
性が非常に高いものであるにもかかわらず、従来のター
ビン制御方法に於いては、特に起動時においてその信頼
性に問題があり、何らかの対策が必要とされてきた。
As mentioned above, although the reliability required for the RCIC system is extremely high, conventional turbine control methods have problems with reliability, especially during startup. Some kind of countermeasures were needed.

〔発明の目的〕[Purpose of the invention]

従って1本発明の目的は上記従来技術の問題点を解消し
、RCIC系に用いられる蒸気タービンの起動時に、蒸
気タービン入口に設けられた電動弁の開度を主蒸気圧力
および給水要求量により決定づけられる開度まで開け、
一時的に蒸気タービンへの流入蒸気量を制限し、タービ
ンの急激な回転数上列やこれに伴い発生する衝撃や振動
等を抑制し、信頼性の高いROIC系を実現する事を可
能ならしめた蒸気タービン制御方法を提供するにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to determine the opening degree of the electric valve provided at the inlet of the steam turbine based on the main steam pressure and the required amount of water supply at the time of startup of the steam turbine used in the RCIC system. Open it to the desired opening,
Temporarily restricts the amount of steam flowing into the steam turbine, suppresses the sudden increase in the rotational speed of the turbine and the accompanying shocks and vibrations, making it possible to realize a highly reliable ROIC system. The present invention provides a method for controlling a steam turbine.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明は蒸気タービンに至
る蒸気系統に設けられた常閉の第1の弁を蒸気タービン
を所要回転数にするに必要な開度に演算制御し、蒸気タ
ービンの回転数を制御するべく第1の弁に直列に接続さ
れた常閉の第ユの弁が動作可能な状態になった事を検出
し、次に第7の弁を全開にすると共に第2の弁による蒸
気タービンの制御を行なわせる蒸気タービン制御方法を
提供するものである。
In order to achieve the above object, the present invention computationally controls a normally closed first valve provided in a steam system leading to a steam turbine to the degree of opening required to bring the steam turbine to the required rotational speed. It detects that the normally closed 7th valve connected in series with the 1st valve to control the rotation speed is ready for operation, and then fully opens the 7th valve and A steam turbine control method is provided in which a steam turbine is controlled by a valve.

〔発明の実施例〕[Embodiments of the invention]

以下2図面を参照しながら本発明の詳細な説明する。 The present invention will be described in detail below with reference to two drawings.

第3図は本発明の一実施例に係る蒸気タービン制御方法
の基本的な考え方を示すブロック図である。同図に於い
て、主蒸気圧力検出器lθは蒸気管ラインtの主蒸気圧
力を検出して検出信号P□を出力する。給水流量設定器
tiは流量設定信号QRを発生する。関数発生器12は
圧力検出信号P1に補正信号ΔPを加えた信号並びに流
量設定信号QRK基いてRC工CポンプSの流量対回転
数特性(以下、 Q−H特性と称する)を関数演算し回
転信号N□を発生する。関数発生器73に土圧力検出信
号P 及び回転数信号N1に基いてタービン回転数対必
要蒸気量特性(以下、N−G特性と称する)を関数演算
し蒸気量信号G□を発生する。関数発生器/lIは圧力
検出信号P 並びに蒸気量信号G1に基いて電動弁流量
対開度特性(以下、G−IJ特性と称する)を関数演算
し弁開度信号L□を発生する。全開信号発生器/には電
動弁lの全開信号を発生する。論理回路/6は蒸気ター
ピングの回転数信号211!L、調速弁3の開度信号コ
λ4、制御油正確(9) りり 車信号naの論理和条件に基いて信号を発生し、リレー
19を動作させる。加算回路/りは弁開度信号L□とリ
レー19の接点を介して与えられる全開信号発生器/3
からの全開信号を加算して弁開度調節器/gに送出する
。弁開度調節器7gは電動弁/の開度調節を行なう。な
お、起動回路〃はRO工0系の起動信号を発生する。
FIG. 3 is a block diagram showing the basic concept of a steam turbine control method according to an embodiment of the present invention. In the figure, the main steam pressure detector lθ detects the main steam pressure of the steam pipe line t and outputs a detection signal P□. The water supply flow rate setter ti generates a flow rate setting signal QR. The function generator 12 performs a function calculation on the flow rate vs. rotation speed characteristic (hereinafter referred to as Q-H characteristic) of the RC pump S based on the signal obtained by adding the correction signal ΔP to the pressure detection signal P1 and the flow rate setting signal QRK, and calculates the rotation speed. Generates signal N□. The function generator 73 performs a function calculation on the turbine rotation speed versus required steam amount characteristic (hereinafter referred to as NG characteristic) based on the earth pressure detection signal P and the rotation speed signal N1 to generate a steam amount signal G□. The function generator /lI performs a function calculation on the electric valve flow rate versus opening characteristic (hereinafter referred to as G-IJ characteristic) based on the pressure detection signal P and the steam amount signal G1 to generate a valve opening signal L□. A full open signal generator/generates a full open signal for the electric valve l. Logic circuit/6 is the steam tarping rotation speed signal 211! A signal is generated based on the logical sum condition of L, the opening degree signal of the governor valve 3, λ4, and the control oil accuracy (9), and the truck signal na, and the relay 19 is operated. Addition circuit/Full open signal generator/3 given via valve opening signal L□ and contact of relay 19
The full open signal from the valve is added and sent to the valve opening controller/g. The valve opening adjuster 7g adjusts the opening of the electric valve. Note that the startup circuit generates a startup signal for the RO system 0 system.

ちなみに、関数発生器lコは給水流量設定器//により
設定される給水流量が流量設定信号Q3として与えられ
、一方主蒸気圧力検出器IOからの圧力検出信号P□に
対応する原子炉7の内圧が与えられると、システムヘラ
r曲線およびポンプ回転数特性2つまりRO工Oポンプ
3のQ−H特性に基いて必要なポンプ回転数を回転数信
号N1として出力する。
Incidentally, the function generator 1 is given the feed water flow rate set by the feed water flow rate setting device // as the flow rate setting signal Q3, while the feed water flow rate of the reactor 7 corresponding to the pressure detection signal P□ from the main steam pressure detector IO is When the internal pressure is given, the required pump rotation speed is output as the rotation speed signal N1 based on the system hella r curve and the pump rotation speed characteristic 2, that is, the QH characteristic of the RO pump 3.

なお、関数発生器13に設定されるN−G特性は。Note that the N-G characteristics set in the function generator 13 are as follows.

回転数信号N□で与えられる蒸気ターピングの回転数が
タービン軸動力”KWに関係づけられ、さらに軸動力K
Wが蒸気タービンダへの流入蒸気量によって決まるとい
う関係に基いて決定されるもの(to) である。但し、蒸気ターピングの入口での蒸気条件が異
なれば、同軸動力を得る場合流入蒸気量も異なシ、従っ
て一般的には蒸気圧力が高ければ蒸気ターピングへの流
入蒸気量は少なくてすむ傾向にある。ちなみに、RaI
a系の蒸気管ラインgの蒸気は飽和蒸気に近い状態であ
り、圧力がまれば蒸気の保有するエネルギーは一義的に
決定される。
The rotation speed of the steam tarping given by the rotation speed signal N□ is related to the turbine shaft power "KW", and further the shaft power K
(to) is determined based on the relationship that W is determined by the amount of steam flowing into the steam turbine. However, if the steam conditions at the inlet of the steam tarping differ, the amount of steam flowing into the steam tarping will also differ when obtaining coaxial power.Therefore, in general, the higher the steam pressure, the smaller the amount of steam flowing into the steam tarping tends to be. . By the way, RaI
The steam in the steam pipe line g of system a is in a state close to saturated steam, and once the pressure is reduced, the energy held by the steam is uniquely determined.

更に、関数発生器lllに於いて設定される電動弁/の
G−L特性は、弁入口側の蒸気条件、具体的には主蒸気
圧力が定まれば弁通過蒸気量と弁リフト間には一定の関
係があるという事実に基いて設定されるものである。
Furthermore, the G-L characteristic of the electric valve set in the function generator 11 is such that if the steam condition on the valve inlet side, specifically the main steam pressure, is determined, the amount of steam passing through the valve and the valve lift will be It is established based on the fact that there is a certain relationship.

かかる構成に於いて、原子炉7のスクラム等により起動
回路JよりROIO系への起動信号が入力されると、ま
ず主蒸気圧力検出器10は主蒸気圧力を検出し、圧力検
出信号P□を関数発生器/2゜/3 、 /4’に送出
する。圧力検出信号P□を与えられた関数発生器/コは
この圧力検出信号P□に補正信号ΔPを加えた信号と給
水流量設定器//からの流量設定信号QRを入力とし、
RC工Cポンプkに ・必要ガ回転数を回転数信号N□
として出力する。
In this configuration, when a startup signal is input from the startup circuit J to the ROIO system due to scram etc. of the reactor 7, the main steam pressure detector 10 first detects the main steam pressure and outputs the pressure detection signal P□. Send to function generator /2°/3, /4'. The function generator/co which is given the pressure detection signal P□ inputs the signal obtained by adding the correction signal ΔP to this pressure detection signal P□ and the flow rate setting signal QR from the water supply flow rate setting device//,
To the RC engineering C pump k ・Set the required number of revolutions to the number of revolutions signal N□
Output as .

ちなみに、補正信号ΔPを加えろ理由は、RO工0ボン
ゾ左の吐出圧力を炉内圧にポンプ吐出口と原子炉間の配
管損失を加えた圧力とする必要がある為である。なお、
補正信号ΔPは配管損失が流量により影響を受けろ事か
ら、給水流量設定器//からの流量信号QRに基いて発
生させている。この回転数信号N工は圧力検出信号P工
と共に関数発生器13に入力されることとなるが、ここ
では蒸気ターピングの必要蒸気量が計算され蒸気量信号
G□として出力される。この蒸気量信号G1は関数発生
器/Qに送出されるが、関数発生器llIばこの蒸気量
信号G□および圧力検出信号P□を入力として必要な弁
開度を算出し、弁開度信号L□として出力する。
Incidentally, the reason for adding the correction signal ΔP is that the discharge pressure of the RO work 0 bonzo left must be set to the pressure in the reactor plus the piping loss between the pump discharge port and the reactor. In addition,
The correction signal ΔP is generated based on the flow rate signal QR from the water supply flow rate setting device //, since the piping loss is affected by the flow rate. This rotational speed signal N is inputted together with the pressure detection signal P to the function generator 13, where the required amount of steam for steam tarping is calculated and output as the amount of steam signal G□. This steam amount signal G1 is sent to the function generator/Q, which calculates the required valve opening by inputting the steam amount signal G□ and pressure detection signal P□ of the function generator Output as L□.

ここで得られた弁開度信号L□は、検出された主蒸気圧
力下でRf:!ICポンプ5の必要回転数を得るに必要
な蒸気ターピングの流入蒸気量を流し得る電動弁/の弁
開度を要求する信号である。この弁開度信号L1は加算
器/7を介して弁開度調節器/gに与えられるが、その
結果電動弁lは必要な弁開度まで弁開度調節器/ざによ
り開けられる。電動弁/の開動作に伴い蒸気タービンq
は回転数上昇を生じ、併せてRO工aylンプ3も原子
炉に対する給水を始める。
The valve opening signal L□ obtained here is Rf:! under the detected main steam pressure. This is a signal requesting the valve opening degree of the electric valve that can flow the amount of incoming steam from the steam tarping necessary to obtain the required rotational speed of the IC pump 5. This valve opening signal L1 is applied to the valve opening regulator /g via an adder /7, and as a result, the motor-operated valve 1 is opened by the valve opening regulator /g to the required valve opening. Steam turbine q due to opening operation of electric valve /
The rotational speed increases, and at the same time, the RO pump 3 also starts supplying water to the reactor.

一方、蒸気タービンダの回転数上昇に伴い、蒸気タービ
ンlに直結された調速弁3の駆動源である図示しない制
御油圧用ポンプがその本来の機能を果たす事となり、蒸
気ターピングへの蒸気流量制御しま電動弁lから調速弁
3へ移行可能となる。
On the other hand, as the rotational speed of the steam turbine increases, the control hydraulic pump (not shown), which is the drive source for the governor valve 3 directly connected to the steam turbine 1, begins to perform its original function, controlling the steam flow rate to the steam tarping. It becomes possible to shift from the striped electric valve 1 to the speed regulating valve 3.

この時点で、電動弁/を初期弁開度に保持しておく必要
性がなくなり、電動弁lを全開させる必要が出て来る。
At this point, there is no longer a need to maintain the electric valve / at the initial valve opening degree, and it becomes necessary to fully open the electric valve l.

この場合、タービン制御系に本来の機能が備わった事が
確認できる条件、つまり、蒸気タービン回転数がある回
転数に達した事を示す回転数信号2/a、調速弁3の実
開変が一定値を超えた事を示す開度信号ユ2a、制御油
圧が所定値に達した事を示す制御油圧確立信号Ua等を
論理回路/6を介して検出し、リレー79を動作させる
ことにより全開信号発生器/左からの全開信号を加算器
/7を介して弁開度調節器/gに送出させ、電動弁/を
全開状態とする。
In this case, the conditions under which it can be confirmed that the turbine control system is equipped with the original function are required: the rotational speed signal 2/a indicating that the steam turbine rotational speed has reached a certain rotational speed, and the actual opening change of the governor valve 3. By detecting the opening signal U2a indicating that the control hydraulic pressure has exceeded a certain value, the control oil pressure establishment signal Ua indicating that the control oil pressure has reached a predetermined value, etc. through the logic circuit/6, and operating the relay 79. A full open signal from the full open signal generator/left is sent to the valve opening regulator/g via an adder/7, and the electric valve/ is brought into a fully open state.

次に1本実施例の蒸気タービン制御方法を適用した場合
のRoIO系の起動時における蒸気タービン回転数IA
、電動弁lの開度/A、調速弁3の開度3Aの推移およ
び相互の関係を第り図の特性図に従って説明する。ちな
みに、第を図では、第2図の特性図との相違点を明薙に
するため第2図に示した蒸気タービン回転数+A、電動
弁lの開度/A、調速弁3の開&、?Aを破線にて示す
Next, the steam turbine rotation speed IA at the time of startup of the RoIO system when the steam turbine control method of this embodiment is applied
, the opening degree/A of the electric valve I, and the opening degree 3A of the regulating valve 3, and their relationship will be explained with reference to the characteristic diagram shown in FIG. By the way, in order to clarify the differences from the characteristic diagram in Fig. 2, in Fig. &,? A is indicated by a broken line.

さて、ROIC系に対する起動信号が時刻TIに入力さ
れると、第3図の構成に基く演算系により初期の電動弁
/の開度が設定され開度信号L□として送出される。そ
の結果、電動弁/は開度/。
Now, when the activation signal to the ROIC system is inputted at time TI, the initial opening degree of the electric valve / is set by the calculation system based on the configuration shown in FIG. 3, and is sent out as the opening degree signal L□. As a result, the electric valve / is the opening degree /.

の状態から開度l工の状態まで開く。電動弁lの開方向
の動きにより蒸気ターピングに蒸気が供給されるため、
ある時間の遅れをもってタービン回転数ケAは上昇する
事となるが、この時の回転数上昇割合はターピングAへ
の流入蒸気量が電動弁/の開度/、により制限を受けて
いるため、従来に比較して緩慢なものとなる。蒸気ター
ピングの回転数QAの上昇に伴い、調速弁3の駆動源で
ある制御油圧が制御油圧用ポンプにより徐々に確立され
1時刻T2に於いてこれが蒸気タービンqのある回転数
lIa′にて確立されたとすると、調速弁3は全開開度
3゜より弁を閉め始め、蒸気タービンlの回転数制御を
担う事となる。一方、電動弁/は制御油圧確立信号3a
、タービン回転数がある一定回転以上に到達した事を示
す回転数信号2/a調速弁3が閉まり始めた事を示す開
度信号コべ等によシ、論理回路/6で検出される条件に
基いて開度を制御開度/、の状態から全開開度l。へ移
行させ、時刻T3で全開状態となる。一方、タービン回
転数+Aは電動弁/が弁開度l工から全開状態開度/。
It opens from the state to the state of opening degree l. Steam is supplied to the steam tarping by the movement of the electric valve l in the opening direction, so
The turbine rotation speed A will increase after a certain time delay, but the rate of increase in the rotation speed at this time is limited by the amount of steam flowing into the tarping A by the opening degree of the electric valve /. This will be slower than before. As the rotation speed QA of the steam tarping increases, the control oil pressure, which is the drive source for the governor valve 3, is gradually established by the control oil pressure pump, and at time T2, this reaches a certain rotation speed lIa' of the steam turbine q. If this is established, the governor valve 3 will begin to close from the full opening degree of 3 degrees, and will be responsible for controlling the rotational speed of the steam turbine 1. On the other hand, the electric valve / is the control oil pressure establishment signal 3a
, a rotational speed signal 2/a indicating that the turbine rotational speed has reached a certain level or higher, an opening signal indicating that the regulating valve 3 has begun to close, etc. are detected by the logic circuit/6. The opening degree is controlled based on the conditions from the opening degree /, to the fully open degree l. and becomes fully open at time T3. On the other hand, the turbine rotation speed +A is the electric valve opening from 1 to fully open.

へ移行し始めても、その回転数制御は調速弁3に移行し
ているため多少のオーツ々シュートが発生するとしても
急激な回転数上昇を発生することなく所要の目標回転数
に向ってほぼ安定に制御され1時刻T4に於いてほぼ安
定な制御状態に入る。
Even if the rotation speed starts to shift, the rotation speed control is transferred to the regulating valve 3, so even if some overshoot occurs, the rotation speed will not increase suddenly and will almost reach the required target rotation speed. It is controlled stably and enters a substantially stable control state at 1 time T4.

なお、RCIC系に要求される条件の1つとして、ター
ビン起動信号が入力された時刻T1よシ定格給水流量に
達するまでの時間はある規定時間内にある必要があるが
1本実施例によれば起動時における回転数上昇が比較的
緩慢であるにもかかわらず、オーツ々シュートやアンダ
ーシュートが小さいため整定までに要する時間は短く抑
える事が可能であり、従来の場合とほとんど変わらない
時刻T4に於いては、目標流量を達成することが可能で
ある。
Note that one of the conditions required for the RCIC system is that the time from the time T1 when the turbine start signal is input until the rated water supply flow rate is reached must be within a certain specified time. For example, even though the rotation speed increases relatively slowly at startup, the time required for stabilization can be kept short because the automatic shoot and undershoot are small, and the time T4 is almost the same as in the conventional case. In this case, it is possible to achieve the target flow rate.

ところで、上記実施例は、蒸気タービン起動に当って電
動弁を用いた場合を例示したが、他の電気−空気式調整
弁等においても同様な制御方法が適用可能であることは
云うまでもない。
By the way, although the above embodiment illustrates the case where an electric valve is used to start the steam turbine, it goes without saying that a similar control method can be applied to other electric-pneumatic regulating valves, etc. .

〔発明の効果〕〔Effect of the invention〕

以上述べた如(1本発明によれば、RC!■C系に用い
られるポンプ駆動用の蒸気タービンの起動に当って、急
激な回転数上昇により発生する機器へのストレスを軽減
すると共に機器の損傷を防止し1回転数上昇による非常
調速機の誤動作や制御不安定に起因する振動による監視
計器、検出器の誤動作を防止し、更に規定時間内に迅速
に必要給水量を確保する事を可能ならしめた。またRC
工C系の信頼性を高め原子力発電所の運用面で効果的な
蒸気タービン制御方法を得る事が出来るものである。
As described above (1) According to the present invention, when starting a steam turbine for driving a pump used in an RC! It prevents damage, prevents malfunction of the emergency governor due to an increase in the number of rotations, and malfunction of monitoring instruments and detectors due to vibration caused by unstable control, and further secures the required amount of water supply quickly within the specified time. I made it possible.Also RC
This makes it possible to improve the reliability of the engineering C system and obtain a steam turbine control method that is effective in the operation of nuclear power plants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は周知の原子炉隔離時冷却系の概略系統図。 第一図は従来の蒸気タービン制御方法によるReIC系
起動時のタービン回転数、電動弁開度。 調速弁開度の挙動を示す特性図。 第3図は本発明の一実施例に係る蒸気タービン制御方法
の基本的な考え方を示すブロック図。 第4図は第3図構成によるReIC系起動時のタービン
回転数、電動弁開度、調速弁開度の挙動を示す特性図で
ある。 l・・・電動弁、3・・・調速弁、t・・・蒸気タービ
ン。 左・・・RO工C?ンプ、7・・・原子炉、//・・・
給水流量設定器、/コ、 /3 、 /4’・・・関数
発生器。 出願人代理人 猪 股 清 区 へ 妊
Figure 1 is a schematic diagram of a well-known reactor isolation cooling system. Figure 1 shows the turbine rotation speed and electric valve opening when starting the ReIC system using the conventional steam turbine control method. A characteristic diagram showing the behavior of the governor valve opening. FIG. 3 is a block diagram showing the basic concept of a steam turbine control method according to an embodiment of the present invention. FIG. 4 is a characteristic diagram showing the behavior of the turbine rotational speed, the electric valve opening degree, and the regulating valve opening degree at the time of starting the ReIC system according to the configuration shown in FIG. l...Electric valve, 3...Governing valve, t...Steam turbine. Left...RO engineer C? pump, 7... nuclear reactor, //...
Water supply flow rate setting device, /ko, /3, /4'...Function generator. Applicant's representative Inomata Kiyo-ku is pregnant.

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービンに至る蒸気系統に設けられた常閉の第1の
弁を蒸気タービンを所要回転数にするに必要な開度に演
算制御し、蒸気タービンの回転数を制御するべく第1の
弁に直列に接続された常開の第ツの弁が動作可能な状態
にたった事を検出し、次に第1の弁を全開にすると共に
第一の弁による蒸気タービンの制御を行なわせる事を特
徴とする蒸気タービン制御方法。
A normally closed first valve provided in the steam system leading to the steam turbine is computationally controlled to the opening degree necessary to bring the steam turbine to the required rotation speed, and the first valve is operated to control the rotation speed of the steam turbine. It is characterized by detecting that the second normally open valve connected in series is ready for operation, then fully opening the first valve and causing the first valve to control the steam turbine. A steam turbine control method.
JP11796283A 1983-06-29 1983-06-29 Steam turbine control Pending JPS6011605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11796283A JPS6011605A (en) 1983-06-29 1983-06-29 Steam turbine control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11796283A JPS6011605A (en) 1983-06-29 1983-06-29 Steam turbine control

Publications (1)

Publication Number Publication Date
JPS6011605A true JPS6011605A (en) 1985-01-21

Family

ID=14724563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11796283A Pending JPS6011605A (en) 1983-06-29 1983-06-29 Steam turbine control

Country Status (1)

Country Link
JP (1) JPS6011605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355309A (en) * 1986-08-26 1988-03-09 Toshiba Corp Device for controlling steam turbine
CN102661177A (en) * 2010-10-15 2012-09-12 华东电力试验研究院有限公司 Method for realizing primary frequency regulation function of steam turbine by restricting opening degree of governor valve
CN103742207A (en) * 2014-01-24 2014-04-23 中国船舶重工集团公司第七�三研究所 Controller of marine main steam turbine gear unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355309A (en) * 1986-08-26 1988-03-09 Toshiba Corp Device for controlling steam turbine
CN102661177A (en) * 2010-10-15 2012-09-12 华东电力试验研究院有限公司 Method for realizing primary frequency regulation function of steam turbine by restricting opening degree of governor valve
CN103742207A (en) * 2014-01-24 2014-04-23 中国船舶重工集团公司第七�三研究所 Controller of marine main steam turbine gear unit

Similar Documents

Publication Publication Date Title
US5533337A (en) Feed water supply system of power plant
US4832898A (en) Variable delay reactor protection system
JPS6011605A (en) Steam turbine control
JP4155495B2 (en) Cooling equipment for reactor isolation
JP2014055808A (en) Nuclear reactor water injection system
JPS6232393A (en) Turbine controller for nuclear reactor plant
US3683620A (en) Arrangement for protecting a steam treatment device against excess pressure
JPH0222360B2 (en)
JPS648316B2 (en)
JPS6128881B2 (en)
JPH06186391A (en) Nuclear power plant
JPS63686B2 (en)
JPH0241720B2 (en)
JPS6050318B2 (en) Reactor control device
JPH0122521B2 (en)
JPS63201303A (en) Protection device for mixed pressure extraction turbine
JPS6041205B2 (en) Nuclear turbine plant control method and device
JPS6015917B2 (en) Nuclear reactor water supply control device
JP2001004790A (en) Water level controller of steam generating plant
JPH01193507A (en) Pressure and wafer level controller of aerator at the time of sudden decrease of load
JPS60108793A (en) Cooling device on isolation of nuclear reactor for nuclear power plant
JPS6317303A (en) Boiler feedwater flow controller
JPS63285495A (en) Controlling apparatus of reactor
JPH0331962B2 (en)
JPH045404A (en) Compound electric power generating plant and method and device for preventing overspeed thereof