JPS60103533A - Information recording medium - Google Patents
Information recording mediumInfo
- Publication number
- JPS60103533A JPS60103533A JP58210379A JP21037983A JPS60103533A JP S60103533 A JPS60103533 A JP S60103533A JP 58210379 A JP58210379 A JP 58210379A JP 21037983 A JP21037983 A JP 21037983A JP S60103533 A JPS60103533 A JP S60103533A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- metal
- recording
- thickness
- recording layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24314—Metals or metalloids group 15 elements (e.g. Sb, Bi)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
- G11B2007/25705—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
- G11B2007/25706—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
- G11B2007/25705—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
- G11B2007/25708—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 13 elements (B, Al, Ga)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
- G11B2007/25705—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
- G11B2007/2571—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 14 elements except carbon (Si, Ge, Sn, Pb)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
- G11B2007/25705—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
- G11B2007/25715—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing oxygen
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2533—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2533—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
- G11B7/2535—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polyesters, e.g. PET, PETG or PEN
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はヒートモード記録用として適した情報記録媒体
、さらに詳しくいえば、透明な基板側からレーザー光を
照射した場合でも安定性の優れた記録が可能な情報記録
媒体に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides an information recording medium suitable for heat mode recording, more specifically, an information recording medium capable of recording with excellent stability even when laser light is irradiated from the transparent substrate side. It is related to.
従来、レーザー光線などの高密度エネルギーをスポット
に集光させて記録媒体に照射し、媒体の一部を融解させ
るか、あるいは蒸発させることによシ、これを変形又は
除去して記録を行う方法は、いわゆるヒートモード記録
法として知られている。Conventionally, recording is performed by focusing high-density energy such as a laser beam onto a recording medium, melting or evaporating part of the medium, and deforming or removing it. This is known as the so-called heat mode recording method.
そして、とのヒートモード記録法は、薬品などの処理液
を必要としないドライタイプであること、−リアルタイ
ム記録法であること、高速かつ冒コントラストで大容量
記録が可能なこと及び情報の追加書き込みが可能なこと
など多くの利点を有しているので、例えば文書ファイル
、静止画ファイル、動画ファイル、あるいはコンピュー
ターメモリやデーターベースメモリなど広い用途を有し
ている。The heat mode recording method is a dry type that does not require processing liquids such as chemicals, is a real-time recording method, is capable of high-speed, low-contrast, and large-capacity recording, and is capable of recording additional information. Because it has many advantages such as being able to store data, it has a wide range of uses, such as document files, still image files, video files, computer memory, and database memory.
ところで、前記のヒートモード記録法を具体的−に用い
る場合には、円形のガラスや合成樹脂などの基板に記録
材を形成したディスクを高速回転させなからレー、ザー
光を集光し、記録材に短径約1μm程度のだ円孔を形成
することにより情報を記録する方法が採られている。こ
の際の孔の位置及び大きさは、パルス変調したレーザー
光の出力波形に依存し、レーザーに入力した情報に対応
して形成される。記録材に記録された信号の読み出しは
、高速回転させた記録材に記録しきい値を超えない程度
の弱い出力のレーザーを集光し、その反射光の変化を検
出することにより行うことができる。By the way, when the heat mode recording method described above is specifically used, a disk with a recording material formed on a circular substrate such as glass or synthetic resin is rotated at high speed, and a laser beam is focused to record the disk. A method is used to record information by forming an elliptical hole with a short diameter of about 1 μm in the material. The position and size of the hole at this time depend on the output waveform of the pulse-modulated laser light and are formed in accordance with the information input to the laser. Signals recorded on a recording material can be read out by focusing a laser with a weak output that does not exceed the recording threshold on the recording material that is rotating at high speed, and detecting changes in the reflected light. .
前記の方法でヒートモード記録を行う相料として、多く
の材料が提案されてきたが、レーザー光に対する感度、
再生信号のS/N比、及び安定性の点で満足できるもの
はなかった。Many materials have been proposed as phase materials for heat mode recording using the above method, but they lack sensitivity to laser light,
None of them were satisfactory in terms of the S/N ratio and stability of the reproduced signal.
本発明者らは、このような従来のヒートモード記録材料
のもつ欠点を克服するために種々の研究を重ねて、先に
基板上にアンチモン含有ビスマス金属記録層を設け、こ
の記録層上層に金属化合物安定化層を、そして該金属記
録層と前記基板との間にクロム層を設けることによシ、
記録材料を形成したディスクを回転数450 rpmで
回転させ、発1μm1長径1.6μmはどの孔を形成し
て信号を記録した場合の再生信号品質としてC/N比5
2dEを達成した。In order to overcome the drawbacks of such conventional heat mode recording materials, the present inventors have conducted various studies and first provided an antimony-containing bismuth metal recording layer on a substrate, and then added a metal layer to the upper layer of this recording layer. By providing a compound stabilizing layer and a chromium layer between the metal recording layer and the substrate,
The disk on which the recording material was formed was rotated at a rotational speed of 450 rpm, and the C/N ratio was 5 as the quality of the reproduced signal when a hole of 1 μm in diameter and 1.6 μm in major diameter was formed to record the signal.
Achieved 2dE.
しかしながら、よ)高密度に記録を行うために、例えば
ディスク回転数900 rpm、半導体レーザーの記録
変調周波数3.1MH2,パルス幅160 n sec
で記録を行ったところ、(1)ディスク最内周部におい
て、記録に要する最小パワーで書き込みを行っても大き
めの孔が開孔されて、実用再生信号に値する160 n
secのパルス幅が得られない、(2)書き込み後の
ノイズ上昇を生じ、CZN比の低下を生じる、などの問
題が生じた。However, in order to perform high-density recording, for example, the disk rotation speed is 900 rpm, the recording modulation frequency of the semiconductor laser is 3.1 MH2, and the pulse width is 160 n sec.
(1) At the innermost circumference of the disc, even when writing was performed using the minimum power required for recording, a large hole was created, which was 160 nm, which is equivalent to a practical reproduction signal.
Problems arose, such as not being able to obtain a pulse width of sec, and (2) increasing noise after writing, resulting in a decrease in the CZN ratio.
本発明者らは、前記(1)及び(2)の問題を解決すべ
く鋭意研究を重ねた結果、記録ピットの短径が約1μm
で、長径が約1.5μm程度以下になるように記録する
場合は、金属記録層が膜厚にして100〜220″Aの
範囲の薄い領域で良好なピットを形成しうろこと、及び
ビスマスを主体とする該金属記録層がアンチモンを換算
厚にして30〜70Aの範囲で含むことが記録特性上好
ましいことを見出し、この知見に基づいて本発明をなす
に至った。As a result of intensive research to solve the problems (1) and (2) above, the inventors of the present invention found that the short axis of the recording pit was approximately 1 μm.
When recording so that the major axis is approximately 1.5 μm or less, it is necessary to form good pits in a thin region where the metal recording layer has a film thickness of 100 to 220 inches. It has been found that it is preferable from the viewpoint of recording properties that the metal recording layer, which is the main component, contains antimony in an equivalent thickness range of 30 to 70A, and based on this knowledge, the present invention has been accomplished.
すなわち、本発明は、エネルギービームの照射によりピ
ットを形成させて情報を記録する情報記録媒体の構造が
、基板上にビスマスを主体とする金属記録層及び金属化
合物安定化層を積層したG’/7造を有し、かつ前記基
板と前記金属記録層との間にクロム層を介在させた構造
である情報記録媒体において、該金属記録層が膜厚にし
て100〜220Xの範囲であシ、かつ換算厚で30〜
70′Aの範囲(密度6.69y/adとして換算)の
アンチモンを含有することを特徴とする情報記録媒体を
提供するものである。That is, the present invention provides an information recording medium in which information is recorded by forming pits by irradiation with an energy beam. 7 structure and has a structure in which a chromium layer is interposed between the substrate and the metal recording layer, the metal recording layer has a thickness in the range of 100 to 220X, And the equivalent thickness is 30~
The present invention provides an information recording medium characterized by containing antimony in the range of 70'A (calculated as a density of 6.69 y/ad).
従来、ビスマスを記録用金属として用いることは知られ
ているが、本発明においては、アンチモ/を30〜70
久の範囲の換算厚で含み、かつ膜厚にして100〜22
0大の範囲(バルク密度を仮定して)のビスマスを主体
とする金属記録層を用い、最上層に金属化合物安定化層
を設け、かつ該金属記録層と基板との間にクロム層を介
在させることが特徴である。Conventionally, it has been known to use bismuth as a recording metal, but in the present invention, antimony/
Contains the equivalent thickness in the range of 100 to 22 in film thickness.
A metal recording layer mainly composed of bismuth in the range of 0 (assuming a bulk density) is used, a metal compound stabilizing layer is provided as the top layer, and a chromium layer is interposed between the metal recording layer and the substrate. It is characterized by letting people do things.
本発明でいうアンチモンの換算厚とは、アンチモンを含
む金属記録層中の単位面積当りのアンチモ/重量をアン
チモンの密度で除した値である。The equivalent thickness of antimony in the present invention is the value obtained by dividing antimony/weight per unit area in a metal recording layer containing antimony by the density of antimony.
本発明において、ビスマスを主体とする金属記録層を膜
厚にして100〜220″Aの範囲に設け、かつ換算厚
で30〜70久の範囲のアンチモンを存在させた場合に
、開孔径を小さくでき、C/N比の向上を達成しうる理
由は必ずしも明らかでないが、ヒートモードの開孔過程
に関与する要因すなわち(1)金属溶融時の粘度、(2
)金属溶融分散時に生じる表面張力及び濡れ特性、(3
)金属の溶融変形に影響する金属に接する層の物理的剛
性、(4)金属の固化時に作用する周囲への熱の逸散、
(5)金属の結晶サイズと粒界の酸化状態、(6)孔形
成後局辺部に生じる結晶サイズなどにおいて、前記(2
)の要因が該金属記録層を、従来のものよシ薄い100
〜220Aの膜厚範囲に形成することによって低下し、
長径1.5μm以下の記録孔まで安定に形成することが
可能になるため、及びアンチモンを30〜70Aの換算
厚範囲に含有させることにより、前記(1)、(2)、
(5)及び(6)の要因の相乗作用をもたらし、エツジ
の乱れの少ない良好な記録孔が形成されるものと考えら
れる。In the present invention, when a metal recording layer mainly composed of bismuth is provided with a thickness in the range of 100 to 220''A, and antimony is present in the equivalent thickness range of 30 to 70'', the aperture diameter can be reduced. The reason why the C/N ratio can be improved is not necessarily clear, but the factors involved in the heat mode pore opening process are (1) viscosity during metal melting, (2)
) Surface tension and wetting properties that occur during metal melting and dispersion, (3
) the physical rigidity of the layer in contact with the metal, which affects the melting and deformation of the metal; (4) the dissipation of heat to the surroundings, which acts when the metal solidifies;
(5) Metal crystal size and grain boundary oxidation state, (6) Crystal size generated in local areas after pore formation, etc.
) factors make the metal recording layer 100% thinner than conventional ones.
It decreases by forming the film in a thickness range of ~220A,
Since it becomes possible to stably form recording holes with a major diameter of 1.5 μm or less, and by containing antimony in the equivalent thickness range of 30 to 70 A, the above (1), (2),
It is thought that a synergistic effect of the factors (5) and (6) results in the formation of good recording holes with less edge disturbance.
前記金属記録層の膜厚が100Aよシも薄い場合は、レ
ーザー光の透過光lが増すだめに、開孔のための有効々
エネルギー吸収ができず感度が低下し、またC/N比も
低下する。一方膜厚が220人よpも厚くなると、孔の
最小径が大きくな9、最内周部において実用パルス−幅
160 n secの再生信号が得られず、さらにc
/ N比の低下も生じる。If the thickness of the metal recording layer is as thin as 100A, as the amount of transmitted laser light increases, the energy for opening the holes cannot be effectively absorbed, resulting in a decrease in sensitivity and a decrease in C/N ratio. descend. On the other hand, when the film thickness becomes as thick as 220 nm, the minimum diameter of the pores becomes large9, and a reproduced signal with a practical pulse width of 160 n sec cannot be obtained at the innermost circumference, and furthermore, c
/ A decrease in the N ratio also occurs.
本発明における金属記録層のよシ好ましい膜厚範囲は1
30〜180Aである。A more preferable thickness range of the metal recording layer in the present invention is 1
It is 30-180A.
さらに、該金属記録層中のアンチモンの換算厚が30A
よシ薄い場合は、記録孔形状の乱れによるC/N比の低
下を生じ、また70′Aよシ厚い場合は、孔形状の乱れ
によるC/N比の低下とともに、記録感度の低下を生じ
る。本発明における金属記録層中に含有するアンチモン
の換算厚のより好ましい範囲は40〜50久である。Furthermore, the equivalent thickness of antimony in the metal recording layer is 30A.
If it is too thin, the C/N ratio will decrease due to the disturbance in the shape of the recording hole, and if it is thicker than 70'A, the C/N ratio will decrease due to the disturbance in the hole shape, and the recording sensitivity will also decrease. . A more preferable range of the equivalent thickness of antimony contained in the metal recording layer in the present invention is 40 to 50 mm.
なお、前記の膜厚範囲は、すべて密度を原子が密に詰っ
た状態のバルク値とした場合の値の範囲であシ、低真空
下における蒸着のようにガスの巻き込みなどによって、
密度が低下する場合は、金属記録層のバルク密度、実際
の薄膜の密度及び膜厚をそれぞれDBXDA及びT1ま
たアンチモノのバルク、密度、実際の薄膜の密度及び膜
厚をそれぞチモ/の換算厚範囲は30 ’p、 x a
B/aA≦tくハ0AXdB/dAで表わされる範囲と
なる。Note that the film thickness ranges mentioned above are all values when the density is taken as the bulk value in a state in which atoms are densely packed.
When the density decreases, the bulk density of the metal recording layer, the actual thin film density and film thickness are calculated as DBXDA and T1, respectively, and the anti-mono bulk density, the actual thin film density and film thickness are calculated as the equivalent thickness of Timo/T1, respectively. The range is 30'p, x a
B/aA≦t is in the range expressed by 0AXdB/dA.
本発明においては、前記金属記録層には、ビスマス及び
アンチモンの他に、必要に応じ安定性改良及び記録特性
向上を目的として、他の第三元素を添加してもよい。こ
のような第三元素としては、5eXTeXAsX[)e
、 5nXPb、 InXTlXCd及びZnの中から
選ばれた少なくとも1種の金属又は半金属が好適である
。また、ビスマス、アンチモン及び前記第三元素の割合
は、それぞれの原子数比をX、y及び2とし、第三元素
をAとした場合、該記録層の1jl成が
(Bi)X(Sb)y(A)z
の形で表わされ、式
%式%
を71:4足するような範囲が好適である。原子数比が
これらの範囲を逸脱すると、安定性及び記録特性−に好
−走しい結果が得られない。より好ましい原子数比の範
囲は、
0.50 (x < 0.70.0.30 (y< 0
.40、O<Z<0.20である。In the present invention, in addition to bismuth and antimony, other third elements may be added to the metal recording layer for the purpose of improving stability and recording characteristics, if necessary. As such a third element, 5eXTeXAsX[)e
, 5nXPb, InXTlXCd, and Zn. At least one metal or semimetal is suitable. Further, regarding the proportions of bismuth, antimony, and the third element, when the respective atomic ratios are X, y, and 2, and the third element is A, the 1jl composition of the recording layer is (Bi)X(Sb). It is preferably expressed in the form y(A)z, and the range is such that the formula % is added to 71:4. If the atomic ratio deviates from these ranges, favorable results in terms of stability and recording properties cannot be obtained. A more preferable range of atomic ratio is 0.50 (x < 0.70.0.30 (y < 0
.. 40, O<Z<0.20.
また、該金属記録層には、本発明の目的を損わない限り
、用いた金属の酸化物、特に低級酸化物を少量含ませる
ことができる。Further, the metal recording layer may contain a small amount of an oxide, particularly a lower oxide, of the metal used, as long as the object of the present invention is not impaired.
この金属記録層は、他の層と同様に真空蒸着、スパッタ
リング、イオンブレーティング、電気メっき、無電解め
っき、プラズマ蒸着などの薄膜形成技術によって形成し
うる。This metal recording layer, like other layers, can be formed by thin film forming techniques such as vacuum deposition, sputtering, ion blating, electroplating, electroless plating, and plasma deposition.
これらの金属記録層の形成方法のうち、真空蒸着法が簡
単でかつ再現性がよいので好ましいが、金属記録層の高
温高湿下での安定性及び感度の点から、高真空下、特に
10”−5Torr以下での蒸着がよシ好ましい。Among these methods for forming the metal recording layer, the vacuum evaporation method is preferred because it is simple and has good reproducibility. ``Vapor deposition at −5 Torr or less is more preferable.
該金属記録層は、前記方法によって形成されるが、その
全体の膜厚が100〜220Aの範囲であシ、かつ含有
されるアンチモンの換算厚が30〜70Aの範囲内であ
シさえすれば、一様な単一層であってもよいし、複数層
であってもよい。また、2種以上の合金から成る単一層
であっても、数種類の単一金属層が積層され合金化した
ものであってもよいし、合金層と単一金属層が積層され
合金化したもので、あってもよく、特に再現性の点から
は、数種類の単一金属層を積層した構造のものが有利で
ある。The metal recording layer is formed by the method described above, as long as the total film thickness is in the range of 100 to 220A, and the equivalent thickness of the antimony contained is in the range of 30 to 70A. , may be a uniform single layer or may be a plurality of layers. In addition, it may be a single layer consisting of two or more types of alloys, it may be an alloyed layer of several types of single metal layers, or it may be an alloyed layer of an alloy layer and a single metal layer. In particular, from the viewpoint of reproducibility, a structure in which several types of single metal layers are laminated is advantageous.
マタ、前記ビスマスの含有原子数比、アンチモンの含有
原子数比及び第三元素の含有原子数比が、それぞれ該金
属記録層全体に対して前記の好ましい範囲内にあれば、
構造については特に制限されない。If the atomic ratio of the bismuth, the atomic ratio of antimony, and the atomic ratio of the third element are within the preferable ranges for the entire metal recording layer,
There are no particular restrictions on the structure.
本発明においては、金属記録層と基板との間にクロム層
を介在させるが、該クロム層は記録特性、特にc /
N比の向上に対して効果があり、その好ましい膜厚は1
0〜220 A % より好ましくは20〜60Aの範
囲である。この膜厚がtoX未満ではクロム特有のc
/ N比を向上させる。記録後に生じるノイズの低減効
果が得られず、また200 Nを超えるとクロムが連続
層を形成して、レーザー記録光を遮断し感度の低下を引
き起す。In the present invention, a chromium layer is interposed between the metal recording layer and the substrate, and the chromium layer has recording properties, particularly c/
It is effective in improving the N ratio, and the preferred film thickness is 1
The range is 0 to 220 A%, more preferably 20 to 60 A%. If this film thickness is less than toX, c
/ Improve the N ratio. The effect of reducing noise generated after recording cannot be obtained, and if the pressure exceeds 200 N, chromium forms a continuous layer that blocks laser recording light and causes a decrease in sensitivity.
前記クロム層は安定性の点において、クロムの酸化物や
低級酸化物を少量含むことができる。このクロム層は、
真空蒸着、−スパッタリング、イオンブレーティング、
電気めっき、無電解めっき、プラズマ蒸着などの薄膜形
成技術によって形成することができ、そのうちでも真空
蒸着法が簡単でかつ再現性がよいので好ましい。The chromium layer may contain a small amount of chromium oxide or lower oxide from the viewpoint of stability. This chromium layer is
Vacuum deposition, - sputtering, ion blasting,
It can be formed by thin film forming techniques such as electroplating, electroless plating, and plasma deposition, among which vacuum deposition is preferred because it is simple and has good reproducibility.
また、本発明においては、金属記録層と基板との間に、
高感度化及び長期保存性の向上の目的で、金属化合物層
を前記クロム層と組み合わせて複合層として介在させる
ことが好ましい。この場合、該金属化合物層は金属記録
層とクロム層との間若しくはクロム層と基板との間、い
ずれでも介在させてよいが、特にクロム層と積層構造と
し、かつ該クロム層を基板に接するように設けることが
有利である。Further, in the present invention, between the metal recording layer and the substrate,
For the purpose of increasing sensitivity and improving long-term storage stability, it is preferable to interpose a metal compound layer in combination with the chromium layer as a composite layer. In this case, the metal compound layer may be interposed between the metal recording layer and the chromium layer or between the chromium layer and the substrate, but in particular it has a laminated structure with the chromium layer, and the chromium layer is in contact with the substrate. It is advantageous to provide this.
前記金属化合物層としては、例えばBe、 Li。Examples of the metal compound layer include Be and Li.
Br Mg+ A11Sit Ca+ Set ’ri
l L Cr、 Mn+Fe、 C!o、 Ni+ C
u、 Zn、 Ga、 Ge、 As、 Sr、 Zr
。Br Mg+ A11Sit Ca+ Set 'ri
l L Cr, Mn+Fe, C! o, Ni+C
u, Zn, Ga, Ge, As, Sr, Zr
.
Nb、 Tc、 Ru、 Rh、 Ag、■n、Sn+
Sb+ Ba1If。Nb, Tc, Ru, Rh, Ag, ■n, Sn+
Sb+ Ba1If.
Ta、I(e、工r、TI、Pb’、Bit Y+ L
a、Ce、Pr+罰+ Pm、 Sm、 C)d、 E
ut Tb+ Dy+ Hot Err Tm。Ta, I (e, engineering r, TI, Pb', Bit Y+ L
a, Ce, Pr + Punishment + Pm, Sm, C) d, E
ut Tb+ Dy+ Hot Err Tm.
Yb、及びLuなどの酸化物、窒化物及びフッ化物など
が好1しく用いられる。本発明においては。Oxides, nitrides, and fluorides of Yb and Lu are preferably used. In the present invention.
特に高感度化を達成するためには、記録媒体におけるレ
ーザー光入射側の反射率を下げることが有効であって、
透明基板側よシレーブー光を入射させる場合は、介在さ
せる層の構造をクロムと希土類酸化物との積層構造とす
ることにょシ、ビスマスを主体とした金属記録層の透明
基板側の反射率を効果的に低下させ、大幅に記録感度を
向上させることができる。この希土類酸化物としては、
Y。In particular, in order to achieve high sensitivity, it is effective to lower the reflectance on the laser beam incident side of the recording medium.
When the laser beam is incident on the transparent substrate side, the structure of the intervening layer should be a laminated structure of chromium and rare earth oxide, and the reflectance of the metal recording layer mainly composed of bismuth on the transparent substrate side can be It is possible to significantly improve the recording sensitivity. As this rare earth oxide,
Y.
La+ Ca+ Pr+ Nd+’ Pm、 Sm、
Ca+ Eu、 ’rb、 Dy+Ho+ Er、 T
m、 yb及び猟などの酸化物が挙げられ、丑だ、これ
らの酸化物は高C/N比化の点でも有利である。La+ Ca+ Pr+ Nd+' Pm, Sm,
Ca+ Eu, 'rb, Dy+Ho+ Er, T
Oxides such as M, YB and hunting are listed, and ox, these oxides, are also advantageous in terms of high C / n comparison.
前記金属化合物はそれぞれ単独で用いてもよいし、2種
以上組み合わせて用いてもJ:<、また複数種を多層構
造、あるいは混合構造としてもよいが、出現性及び蒸着
工程の簡便さの点から、それぞれ単独で用いることが有
利である。Each of the metal compounds may be used alone or in combination of two or more types, and multiple types may be used in a multilayer structure or a mixed structure, but from the viewpoint of appearance and simplicity of the vapor deposition process. Therefore, it is advantageous to use each alone.
前記金属化合物の好ましい膜厚は使用する該化合物の種
類によって異なるが、厚すぎるとクランクを生じやすく
なったシ、特に希土類酸化物を用いる場合は極度の反射
率の低下を招いたシするので、lO〜20oAの範囲、
特に20〜80′Aの範囲内にあることが望ましい。The preferred thickness of the metal compound varies depending on the type of compound used, but if it is too thick, it tends to cause cranking, and especially when rare earth oxides are used, it causes an extreme decrease in reflectance. Range of lO to 20oA,
In particular, it is desirable that it be within the range of 20 to 80'A.
また、希土類酸化物はクロムとの相乗効果によって、媒
体の反射率の低減効果があり、該クロムと希土類酸化物
の膜厚を調節することにょシ、反射率を10〜60%の
範囲で任意に選定することが可能である。In addition, rare earth oxides have the effect of reducing the reflectance of the medium due to their synergistic effect with chromium, and by adjusting the film thickness of the chromium and rare earth oxides, the reflectance can be adjusted arbitrarily within the range of 10 to 60%. It is possible to select
また、積層構造における金属化合物の層を形成する方法
としては、真空蒸着法、スパッタリング法、イオンブレ
ーティング法、プラズマ蒸着法などの薄膜形成技術を適
用することができる。特に真空蒸着法を用いる場合はお
いては、金属化合物をそのまま蒸着源として、抵抗加熱
法やエレクトロンビーム蒸着法を用いて蒸着させてもよ
いし、金属化合物そのものを蒸着源として用いて、ペル
/ヤー内の閃′囲気と反応させながら前記方/去により
金属化合物層を形成することもできる。この薄膜の形成
において、金属化合物が酸化物の場合例えば高真空下で
の電子ビーム蒸着法では、還ノヒや不冗全酸化が生じ、
金属酸化物に、低級酸化物が含まれる場合があるが、そ
れらの混入(ri本発明の目的を妨げない範囲において
差し支えない。Furthermore, as a method for forming the metal compound layer in the laminated structure, thin film forming techniques such as a vacuum evaporation method, a sputtering method, an ion blasting method, and a plasma evaporation method can be applied. Particularly when using the vacuum evaporation method, the metal compound itself may be used as the evaporation source for evaporation using resistance heating or electron beam evaporation, or the metal compound itself may be used as the evaporation source for pel/layer deposition. It is also possible to form a metal compound layer by the above-mentioned removal/removal while reacting with the ambient air inside. In forming this thin film, if the metal compound is an oxide, for example, in electron beam evaporation under high vacuum, reduction or non-redundant oxidation may occur.
Metal oxides may contain lower oxides, but they may be mixed in as long as they do not interfere with the purpose of the present invention.
本発明の記録媒体において、金属記録層の上層に設ける
金属化合物安定化層としては、例えばBet L]、*
B、 Mg、Al+ Sit Ca、 Set Ti
n LCr+ Mn+ Far’ Co+ Ni+ C
tt+ Zn+ Get Get AgISr、 Zr
+ Nb、 Tar Rut Rh+ AgI 工n、
Sn、 Sb。In the recording medium of the present invention, examples of the metal compound stabilizing layer provided above the metal recording layer include Bet L], *
B, Mg, Al+ Sit Ca, Set Ti
n LCr+ Mn+ Far' Co+ Ni+ C
tt+ Zn+ Get Get AgISr, Zr
+ Nb, Tar Rut Rh+ AgI Engn,
Sn, Sb.
Ba、1if+ Ta、Rez 工r+ Tl、Pb、
Bit Y+ La。Ba, 1if+ Ta, Rez + Tl, Pb,
Bit Y+ La.
Co、 Pr、 Nd、 Pm、 Sm、 Gd、 E
u、 Tb、 Dy、 Ho。Co, Pr, Nd, Pm, Sm, Gd, E
u, Tb, Dy, Ho.
Er、Tm+ yb及びLuなどの酸化物、窒化物、フ
ッ化物などが挙げられ、これらの中で特にSi。Examples include oxides, nitrides, fluorides, etc. of Er, Tm+ yb, and Lu, among which Si.
A1+ Get Zr、 Tar Bit Lit M
g、 ’ri、 La+ Ce+Y、 Dy、 Er、
Gd+ Hf、 Sm、 Or+ Nctl Pr+
Pm。A1+ Get Zr, Tar Bit Lit M
g, 'ri, La+Ce+Y, Dy, Er,
Gd+ Hf, Sm, Or+ Nctl Pr+
Pm.
ICu+ Tb+ Ho、 Tm+ Tb+ Luなど
の金属の酸化物が好適である。Metal oxides such as ICu+Tb+Ho and Tm+Tb+Lu are suitable.
前記金属化合物安定化層は、これらの金属化合物の2種
類以上を用いて、異種金属化合物の2層構造にすること
が情報記録と−して形成される孔の形状を整え、その安
定性を図る上で好ましい。The metal compound stabilizing layer uses two or more of these metal compounds to form a two-layer structure of different metal compounds, which adjusts the shape of the pores formed as information recording and improves its stability. It is preferable for the purpose of
この金属化合物安定化層を形成する方法としては、真空
蒸着法、スパッタリング法、イオンプレーティング法、
プラズマ蒸着法などの薄膜形成技術を適用することがで
きる。また、異なる単一金属から成るターゲットの複数
個や、2種以上の金属を含むターゲットを用い、空気、
酸素、酸素−アルゴンなどの気体による反応性スパッタ
リングによっても形成することができる。Methods for forming this metal compound stabilizing layer include vacuum evaporation, sputtering, ion plating,
Thin film formation techniques such as plasma deposition can be applied. In addition, using multiple targets made of different single metals or targets containing two or more types of metals, air,
It can also be formed by reactive sputtering using a gas such as oxygen or oxygen-argon.
これらの薄膜の形成方法において、特に金属化合物が酸
化物の場合、例えば高真空下での電子ビーム蒸着などに
おいて、1tOx(ただしMは金属元素、Xは1又は2
である)のような低級酸化物が金属化合物安定化層に含
まれる場合があるが、本発明の目的を妨げない範囲にお
いて差し支えない。In the method of forming these thin films, especially when the metal compound is an oxide, for example, in electron beam evaporation under high vacuum, 1tOx (where M is a metal element and X is 1 or 2
The metal compound stabilizing layer may contain lower oxides such as those below, but this may be included as long as it does not impede the object of the present invention.
このような低級酸化物の生成を防止するためには、例え
ば酸素、空気、酸素−アルゴンなどの気体をリークして
低真空下で蒸着する方法などが好ましく用いられる。In order to prevent the formation of such lower oxides, a method is preferably used in which a gas such as oxygen, air, or oxygen-argon is leaked and vapor deposition is performed under a low vacuum.
該金属化合物安定化層の膜厚は、用いる化合物の種類に
もよるが、厚すぎるとクランクを生じたりすルノテ、1
0〜10000 A、特に20〜30oAの範囲が好ま
しい。The thickness of the metal compound stabilizing layer depends on the type of compound used, but if it is too thick, it may cause cranking.
A range of 0 to 10,000 A, especially 20 to 30 oA is preferred.
本発明の記録媒体において、記録材料を支持する役割を
果す基板としては、レーザー光を基板側より入射させる
意味では透明であることが必要である0
一般Vこ、物質の透明性は入射光線の波長によって相違
することが知られているが、本発明の記録媒体に情報全
記録する場合には、半導体レーザーやアルゴンガスレー
ザー、He−NGレーザー、その他の可視領域あるいは
近赤外領域に発振波長をもつ各種のレーザーやキセノン
フラッシュランプなど光波特性を異にする多棟類の光源
を用いることかできる。(7かし、特定の光源の使用を
所望する場合i/Cは、その光源がもつ)°a波4も性
に適した透明−1/l:4−イi’−4−:A、↓、t
7iノF+7’+d、θ)スーツ;l:JFrJ−−)
Z、7L−A:Ph感度の向上をはかるうえで好ましい
。そして、透明性については、入射光の約90%以上の
透過率を示すことを一応の目安とすることができる。In the recording medium of the present invention, the substrate that plays the role of supporting the recording material must be transparent in the sense that the laser beam is incident from the substrate side. Although it is known that the wavelength differs depending on the wavelength, when recording all information on the recording medium of the present invention, the oscillation wavelength is in the visible region or near infrared region of semiconductor laser, argon gas laser, He-NG laser, etc. It is possible to use multiple light sources with different light wave characteristics, such as various types of lasers and xenon flash lamps. (7) If you wish to use a specific light source, the i/C should be determined by that light source. ↓、t
7i no F+7'+d, θ) suit; l:JFrJ--)
Z, 7L-A: Preferable for improving Ph sensitivity. As for transparency, it can be assumed that the material exhibits a transmittance of approximately 90% or more of incident light.
前記の光源のいずれに対しても、十分な透過率をもつ基
板としては、ガラスなどの無機材料又はポリエステル、
ポリプロピレン、ポリカーボネート、ポリ塩化ビニル、
ポリアミド、ポリスチレン、ポリメチルメタクリレート
などのポリマー、あるいはこれらの変性ポリマー、コポ
リマー、ブレンド物などの有機材料から成るフィルム又
はシートを挙げることができる。ビデオディスクなどの
ように基板自体の表面平滑性が信号のS/N比に大きな
影響を与える場合には、別の基板上に前記の材料をスピ
ンコードなどで均一に塗布した基板を用いることが好ま
しい。For any of the above light sources, substrates with sufficient transmittance include inorganic materials such as glass, polyester,
polypropylene, polycarbonate, polyvinyl chloride,
Mention may be made of films or sheets made of organic materials such as polymers such as polyamide, polystyrene, polymethyl methacrylate, or modified polymers, copolymers and blends thereof. In cases where the surface smoothness of the substrate itself has a large effect on the signal-to-noise ratio, such as in the case of video discs, it is possible to use a substrate on which the above-mentioned material is evenly coated using a spin cord or the like on another substrate. preferable.
特に好ましく用いられる基板としては、ポリエステル又
はポリメチルメタクリレートから成るフィルム及びシー
トを挙げることができる。Particularly preferably used substrates include films and sheets made of polyester or polymethyl methacrylate.
1だ、ランダムアクセス読み取シ及びランダムアクセス
書き込みを行う場合、一般に基板にあらかじめレーサー
光をガイドする案内溝及びアドレスを基板表面にしIJ
−フ状に設ける方法がとられる。これらは通常射出成
形法や2・P法(phOtO−po:tymer法)な
どにより形成されるが、量産性の点においては射出成形
法が好ましく用いられる。1. When performing random access reading and random access writing, generally speaking, guide grooves and addresses to guide the laser beam are placed on the board surface in advance and IJ is used.
- A method of providing it in a flat shape is used. These are usually formed by the injection molding method, the 2.P method (phOtO-po:timer method), etc., but the injection molding method is preferably used in terms of mass production.
この射出成形に適した基板材料としては、ポリメチルメ
タクリレートやポリカーボネート及びポリメチルメタク
リレートとスチレンとの共重合物などがある。Substrate materials suitable for this injection molding include polymethyl methacrylate, polycarbonate, and copolymers of polymethyl methacrylate and styrene.
本発明の記録媒体は、その最上層部に、安定性の向上、
物体との接触による損傷防止、汚染防止などのために保
護層を形成させることもできる。The recording medium of the present invention has improved stability,
A protective layer can also be formed to prevent damage from contact with objects, contamination, and the like.
この保護層は、有機高分子化合物全主体とした層で形成
され、用いられる有機高分子化合物としては、例えばポ
リ塩化ビニリデン、塩化ビニリデンとアクリロニトリル
との共重合体、ポリ酢酸ビニル、ポリイミド、ポリビニ
ルシンナメート、ポリインプレン、ポリブタジェン、ポ
リスチレン、ポリメチルメタクリレート、ポリウレタン
、ポリビニルブチラール、フッ素ゴム、フッ素系ポリマ
ー、ハリレン、ポリアミド、ポリエステル、エポキシ樹
脂、酢酸セルロースなどのポリマー、これらの変成ポリ
マー、コ梁すマーなどを挙げることができ、これらは単
独で又は混合物として用いられる。This protective layer is formed entirely of an organic polymer compound, and the organic polymer compounds used include, for example, polyvinylidene chloride, a copolymer of vinylidene chloride and acrylonitrile, polyvinyl acetate, polyimide, and polyvinyl thinner. Polymers such as mate, polyimprene, polybutadiene, polystyrene, polymethyl methacrylate, polyurethane, polyvinyl butyral, fluororubber, fluorine-based polymers, arylene, polyamide, polyester, epoxy resin, cellulose acetate, modified polymers of these, polymers such as polymers These can be used alone or as a mixture.
特ニ、ポリエステル、フッ素ゴノ4、ポリ酢酸ビニル−
ポリビニルブチラール−ポリビニルアルコールの三元コ
ポリマーが好ましく用いられる。Special Ni, Polyester, Fluorine Gono 4, Polyvinyl acetate
A polyvinyl butyral-polyvinyl alcohol ternary copolymer is preferably used.
このような有機高分子化合物にシリコーンオイル、帯電
防止剤、架橋剤などを添加することは、膜強度、帯電防
止性能の改良の点で好ましい。It is preferable to add silicone oil, an antistatic agent, a crosslinking agent, etc. to such an organic polymer compound from the viewpoint of improving film strength and antistatic performance.
また、保護層として、このような有機高分子化合物を主
体とする層f:2層以層重上て用いてもよい0
該保護層は、例えは有機化合物を主体とする成分を適当
な溶媒に溶解して塗布する方法、真空蒸着法、スパッタ
リング法、プラズマ真空重合法、あるいは薄いフィルム
としてラミネートする方法などにより形成される。その
膜厚は0.01〜10μmの範囲が適当である。In addition, as a protective layer, a layer f mainly composed of such an organic polymer compound may be used in a stack of two or more layers. It is formed by a method of dissolving and coating the material, a vacuum evaporation method, a sputtering method, a plasma vacuum polymerization method, or a method of laminating it as a thin film. The film thickness is suitably in the range of 0.01 to 10 μm.
次に本発明の・ti’iル記録媒体を添伺図面により。Next, the recording medium of the present invention will be described with reference to accompanying drawings.
さらに基体的に説明する。第1図〜第3図は、いずれも
本発明の記録媒体のそれぞれ異なった構造例を示す断面
図である・
本発明の情報記録媒体の基本構造は、第1図に示すよう
VC,基板1の上にクロム層3を設け、その上に順次ビ
スマスを主体とする金属記録層2及び金属化合物安定化
層4を設けた構造である。A more basic explanation will be provided. 1 to 3 are cross-sectional views showing different structural examples of the recording medium of the present invention. The basic structure of the information recording medium of the present invention is as shown in FIG. It has a structure in which a chromium layer 3 is provided thereon, and a metal recording layer 2 mainly made of bismuth and a metal compound stabilizing layer 4 are sequentially provided thereon.
クロム層の構造としては、第1図に示すように、クロム
単独層3のみから成るものの外、第2図及び第3図に示
すように、クロム単独層:うと他の金属あるいは金属化
合物の層5との積層構造をとるものがある。In addition to the structure of the chromium layer, as shown in Fig. 1, it consists of only a chromium layer 3, and as shown in Figs. Some have a laminated structure with 5.
以上の第1図〜第3図“!トでの構造の中で、本発明の
目的を達成する上で最も好ましいもの(・ま第3図に示
す構造のものであり、特にクロム層と積層する金属化合
物として布上−fA酸化物を用いた場合である。Among the structures shown in FIGS. 1 to 3 above, the most preferable one for achieving the object of the present invention is the structure shown in FIG. This is a case where cloth-fA oxide is used as the metal compound.
第4図は本発明の記録媒1本に、レーザー光など内ニス
、ルキービームのl[(44;jにより〕杉1jνにた
記録層の断面図である。最上層に設けた金属fじ合物安
定1ヒ層4は残存することが好1しく、さらに図のよう
に一様に膨出状に残存することが好ましい。FIG. 4 is a cross-sectional view of a recording layer of one recording medium of the present invention, which has an internal varnish such as a laser beam, and a Luky beam. The material stabilizing layer 4 preferably remains, and more preferably remains in a uniformly bulging shape as shown in the figure.
本発明の情報記録媒体においては、ディスク回転数90
0 rpm、記録周波数3.1MHz(パルス幅160
n sec )で記録を行った場合、ディスク最内周
部において、記録ビットの太きさとして短径約1μm、
長径約1μm以下の記録が容易で、チューティ比50%
に対応する160 n seeのパルス幅を得ることが
できる。また、書き込み後のノイズ上昇も少なく、ディ
スク最内周部においても、C7N比にして54dB以上
の記録が可能である。In the information recording medium of the present invention, the number of disk rotations is 90
0 rpm, recording frequency 3.1 MHz (pulse width 160
n sec), the width of the recording bit at the innermost circumference of the disk is approximately 1 μm in width,
Easy to record lengths of approximately 1 μm or less, Tuteity ratio of 50%
A pulse width of 160 n see corresponding to . Further, there is little increase in noise after writing, and even at the innermost circumference of the disk, recording with a C7N ratio of 54 dB or more is possible.
次に実施例によって本発明をさらに詳細に説明するが、
本発明はこれらの例に何ら限定されるものではない。Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples in any way.
実施例1
キャスト法によシ作成した表向平滑性のよい厚さ1.2
mi、直径30cmのポリメチルメククリレ−1・板を
基板として用い、真空蒸着機槽内にセットする。Example 1 Thickness 1.2 with good surface smoothness made by casting method
A polymethylmethacrylate-1 plate with a diameter of 30 cm is used as a substrate and set in a vacuum evaporator tank.
ディスクは、装置内において回転できるようになってお
り、装置内には回転中心軸を中心にして複数の加熱蒸着
ボートと複数めるつぼをもつ電子ビーム装置を複数備え
ている。The disk can be rotated within the apparatus, and the apparatus is equipped with a plurality of electron beam apparatuses having a plurality of heated evaporation boats and a plurality of crucibles around a central axis of rotation.
膜厚のモニターは水晶振動子法で行い、順次自動的にプ
ログラムされた順序でコントロールを行う。基板の意図
的加熱は行わず、また蒸着による基板温度の上昇はほと
んどなかった。Film thickness is monitored using the crystal oscillator method, and control is performed automatically in a sequentially programmed order. No intentional heating of the substrate was performed, and there was almost no increase in substrate temperature due to vapor deposition.
蒸着槽内を10−5Torr 以下に真空引きしたのち
、基板上にまずOr層、次に金属化合物層としてSm2
01.層を設け、さらに金属記録層としてsb及びB1
を、最上層に金属化合物安定化層としてSm2O3層
を順次積層したサンプルを作成した。After evacuating the inside of the vapor deposition tank to 10-5 Torr or less, an Or layer was first formed on the substrate, and then an Sm2 layer was formed as a metal compound layer.
01. sb and B1 as metal recording layers.
A sample was prepared in which Sm2O3 layers were successively laminated as a metal compound stabilizing layer on the top layer.
Or 、 Sm2O3は電子ビーム蒸着法により、また
sb 及びB1は抵抗加熱法により蒸着を行った。Or and Sm2O3 were deposited by electron beam evaporation, and sb and B1 were deposited by resistance heating.
アンチモア(7)換算厚を40X(密度6.6997c
m5として換算)と固定して、ビスマスの膜厚を80X
〜t’s oX (密度9.80 y/ctn3− ト
I、−c換N ) (7)範囲で変化させ、金属記録層
の全体膜厚ff:120^〜220Aの範囲で変化させ
たサンプルA 、 B。Antimore (7) equivalent thickness is 40X (density 6.6997c)
(converted as m5), and the bismuth film thickness is 80X.
~t's oX (density 9.80 y/ctn3-tI, -c exchanged N) (7) Samples in which the overall film thickness of the metal recording layer was varied in the range ff: 120^~220A A, B.
0、Dを作成した。比較サンプルとして、ビスマスの膜
厚を50に、及び22oXとして金属記録層の全体膜厚
を90X、260AとしたサンプルA′及びB′を作成
した。0 and D were created. As comparative samples, samples A' and B' were prepared in which the bismuth film thickness was 50× and 220×, and the total thickness of the metal recording layer was 90× and 260×.
それぞれのサンプルの最下層クロムの膜厚は301、最
上層Sm2O3の膜厚は120Xと固定した。The film thickness of the bottom layer chromium of each sample was fixed at 301X, and the film thickness of the top layer Sm2O3 was fixed at 120X.
下層Sm205の膜厚は、金属膜厚が変わると反射率が
変化するので、レーザー光入射側の反射率をほぼ一定の
35%〜4of2の範囲内に調節するために、金属層膜
厚に応じて、30〜80Aの範囲で形成した。The film thickness of the lower layer Sm205 is adjusted according to the metal layer thickness in order to adjust the reflectance on the laser beam incident side to a nearly constant range of 35% to 4 of 2, since the reflectance changes when the metal film thickness changes. It was formed in the range of 30 to 80A.
以上のサンプルの記録特性の評価は、以下の手順で行っ
た。The recording characteristics of the samples described above were evaluated in the following manner.
まず、発振波長830nmの半導体レーザー光を厚さ1
.2關の透明基板越しに、記録膜上にN、A、 = 0
.6のレンズでビーム杼約1 /1m程度まで集光、オ
ートフォーカスをかけて照射する。First, a semiconductor laser beam with an oscillation wavelength of 830 nm was heated to a thickness of 1 mm.
.. N, A, = 0 on the recording film through two transparent substrates.
.. Use the No. 6 lens to focus the beam to a distance of approximately 1/1 meter, autofocus, and irradiate.
その時のディスクの回転数は90 Orpm で、1、
レーザー光は周波数3.1MHz (パルス幅 160
nSec )でon−off変調し、記録面上にディス
ク半径方向に記録hθadを移動させながら記録ピット
を形成する。レーザー光がonの時の発光出力は記録膜
上で0〜11mWまで可変である。The rotational speed of the disk at that time was 90 Orpm, 1,
The laser beam has a frequency of 3.1 MHz (pulse width 160
nSec), and recording pits are formed on the recording surface while moving the recording hθad in the radial direction of the disk. The light emission output when the laser beam is on is variable on the recording film from 0 to 11 mW.
以」二の操作でスパイラル状の記録ピット列が形成され
るが、そのピット列に1mW程度の新たに孔を形成しな
い程度の出力で連続発光している再生用半導体レーザー
光を、オートフォーカス及びオートトラッキング
サンプル面上からの反射光を光検出器により検出し再生
信号を得る。A spiral recording pit string is formed by the above two operations, and a reproducing semiconductor laser beam that is continuously emitted at an output of about 1 mW that does not form new holes is applied to the pit string using autofocus and A photodetector detects the reflected light from the auto-tracking sample surface to obtain a reproduced signal.
その再生信号をスペクトルアナライザーに人力し、ノイ
ズレベルとキャリアピークレベルを読み取りClN比を
得た。また、同時に記録レーザー光f:変調しているパ
ルスrl]( 1 6 0 nsec)と同じパルス1
]が再生信号について得られる時のレーザー記録pow
erを実用記録値pvとして測定した。OlN 比につ
いて実用記録値で記録した際の再生信号についてのOl
N 比を(OlN lvとして、記録パワーを変え最高
のcZN 比が得られた時のOlN 比を(C!/N)
MAXとして評価した。The reproduced signal was input to a spectrum analyzer, and the noise level and carrier peak level were read to obtain the ClN ratio. At the same time, the recording laser beam f: the same pulse 1 as the modulated pulse rl] (1 60 nsec)
] is obtained for the reproduced signal. Laser recording pow
er was measured as a practical recorded value pv. The OlN ratio of the reproduced signal when recorded with the practical recording value
The N ratio is (OlNlv), and the OlN ratio when the highest cZN ratio is obtained by changing the recording power is (C!/N).
It was evaluated as MAX.
サンプルA〜D,及び比較サンプルA’,B’の結果を
第1表に示す。Table 1 shows the results of samples A to D and comparative samples A' and B'.
また、金属記録層の膜厚が厚くなるに従い、最小記録パ
ワーで開孔する際の孔径が太きくなる傾向があり、最も
厚い比較サンプルDにおいては、記録しきい値で開孔し
た孔の大きさはすでに再生パルス巾160nsecに近
いパルス巾が得られるほどの孔径で1.160nsec
以下の再生パルス巾は得られないが、一方金属記録層の
膜厚が薄くなるほど小さな孔が得られやすくなる傾向が
あり、実施サンプルAについては、150nsecのパ
ルス巾の再生信号も安定して得られた。Additionally, as the thickness of the metal recording layer increases, the hole diameter when opened at the minimum recording power tends to become larger. The hole diameter is already 1.160 ns, which is enough to obtain a pulse width close to the reproduction pulse width of 160 ns.
Although the reproduction pulse width below cannot be obtained, on the other hand, as the film thickness of the metal recording layer becomes thinner, it becomes easier to obtain small holes, and for the implementation sample A, a reproduction signal with a pulse width of 150 nsec can also be stably obtained. It was done.
以上のことから、実用記録powerで記録した際のC
/N 比=(0/N)■、及び小さな開孔を得るという
特性面からは実施サンプルA、B、O。From the above, when recording with practical recording power, C
/N ratio=(0/N)■, and from the viewpoint of characteristics of obtaining small openings, samples A, B, and O were used.
D、が優れていることが明らかである。It is clear that D is superior.
実施例2
実施例1と同基板、同蒸着装置を用いて、sb有量の効
果を見るだめのサンプルを作成した。Example 2 Using the same substrate and the same vapor deposition apparatus as in Example 1, a sample was prepared to examine the effect of sb abundance.
記録材料の構成も実施例1と同様であり、基板上にまず
Or層、次に金属化合物層とじて511205層を設け
、さらに金属記録層としてsb及びBi 11う2.最
上層に金属化合物層として5rrQOs1+/iを順次
積層した構造である。The structure of the recording material is also the same as in Example 1, first an Or layer is provided on the substrate, then a 511205 layer as a metal compound layer, and further sb and Bi 11 as a metal recording layer. It has a structure in which 5rrQOs1+/i are sequentially laminated as a metal compound layer on the top layer.
記録材の膜厚組成は、実施例1の実施サンプルBを基本
組成とし、sb含有膜厚f:80’z。The film thickness composition of the recording material was based on the practical sample B of Example 1, and had an sb-containing film thickness f of 80'z.
5oX、6oX、、7oX、と変化させたサンプルE
、 F 、 G 、H+ k作成した。さらに比較例と
してsb含有膜厚を2oo、soXとした比較−リーン
プルcJ、 D′を作成した。Sample E changed to 5oX, 6oX, 7oX
, F, G, H+k were created. Furthermore, as a comparative example, comparative lean pull cJ and D' were prepared in which the sb-containing film thickness was 2oo and soX.
以上のサンプルの評価は、実施例1と同様な方法で行い
、第2表に示すような結果を得だ。The above samples were evaluated in the same manner as in Example 1, and the results shown in Table 2 were obtained.
以」二の結果より、C/N 特性の面から見て、サンプ
ルE、B、F、G、H,について好ましい結果が得られ
、特にサンプルB、Fが好ましい結果であった。From the above two results, favorable results were obtained for Samples E, B, F, G, and H from the viewpoint of C/N characteristics, and particularly favorable results were obtained for Samples B and F.
実施例3
実施例1と同基板、同蒸着装置を用いて、sb含有量の
効果を見るだめのサンプルを作成した。Example 3 Using the same substrate and the same vapor deposition apparatus as in Example 1, a sample was prepared to examine the effect of sb content.
記録材の構成も実施例1と同様であり、膜厚組成は実施
サンプルCを基本組成とし、sb含有膜厚f:80A、
50A、60A、70Xと変化させたザングルエ、J
、に、Lを作成した。さらに比較サンプルE/ 、 F
L としてsb換算厚を201、及び80Xとしたもの
を作成した。The configuration of the recording material is also the same as in Example 1, and the film thickness composition is based on the implementation sample C, and the sb-containing film thickness f: 80A,
Zanglue changed to 50A, 60A, 70X, J
, I created L. Furthermore, comparative samples E/, F
L was created with an sb equivalent thickness of 201 and 80X.
サンプルの評価は実施例1と同様な方法で行い、第3表
に示すような結果を得た。The samples were evaluated in the same manner as in Example 1, and the results shown in Table 3 were obtained.
以上より、C/N 特性の面から見て、サンプルI、J
、に、L、について好捷しい結果が得られ、特にサンプ
ル0.Jが良い結果であった。From the above, from the viewpoint of C/N characteristics, samples I and J
Good results were obtained for ,L, especially for sample 0. J had a good result.
実施例2及び3よりsb含有量の最適範囲1′riao
Z 〜roXで1>す、%に40X 〜5oAの範囲が
好ましいことが明らかとなった。From Examples 2 and 3, the optimal range of sb content 1'riao
It has become clear that a range of 40X to 5oA is preferable for Z to roX of 1>%.
実施例4
実施例1と同基板、同蒸着装置を用い、金属化合物とし
てLa2O3を用いたサンプルを作成した0
蒸着槽内を1O−5Torr以下に真空引きしたのち、
基鈑上にまずOr層、次に金属化合物層としてLa2O
5層を設け、さらに金属記録層としてsb及びBi層、
最上層に金属化合物安屋化層としてLa2O3層を順次
積層したサンプルに、Lを作成した。Or r La2
0s +は電子ビーム蒸着法により蒸着を行い、sb及
びBiは抵抗加熱法により蒸着を行った。Example 4 Using the same substrate and the same evaporation apparatus as in Example 1, a sample using La2O3 as the metal compound was created. After evacuating the inside of the evaporation tank to 1O-5 Torr or less,
First, an Or layer is formed on the substrate, and then a La2O layer is formed as a metal compound layer.
Five layers are provided, and further sb and Bi layers as metal recording layers,
L was created as a sample in which La2O3 layers were sequentially laminated as a metal compound Yasya layer on the top layer. Or r La2
0s+ was deposited by electron beam evaporation, and sb and Bi were deposited by resistance heating.
サンプルの評価は、実施例1と同様な方法で行った。そ
の結果を第4表に示す。The samples were evaluated in the same manner as in Example 1. The results are shown in Table 4.
この表より分るように、金属化合物としてLa2O5を
用いても金属記録層の組成を前記の値に設定することに
より、余裕をもって160 n5ecのパルス[IJの
μ1生信号が得られ、C/N モ高<て良い結果を1(
Iることかできた。As can be seen from this table, even if La2O5 is used as the metal compound, by setting the composition of the metal recording layer to the above value, a pulse of 160 n5ec [μ1 raw signal of IJ] can be obtained with a margin, and the C/N Mo high < good result 1 (
I was able to do something.
実施例5
実施例1と同基板、同蒸着装置を用い、金属化合物とし
てY2O6を用いたザンプルを作成し。Example 5 Using the same substrate and the same vapor deposition apparatus as in Example 1, a sample using Y2O6 as a metal compound was prepared.
た。Ta.
蒸/+’l槽内金10’Torr以下に真空引きしたの
ち、基4反上にまずCr層、次に金属化合物層としてY
2O5層を設け、さらに金属記録層としてsb及びBi
層、最上層に金属化合物安定化層としてY2O5層を順
次積層したザンプルM、Nを作成した。Or、 Y2O
3は電子ビーム蒸着法により蒸着を行い、sb及びBi
は抵抗加熱法により蒸着を行った。After evacuating the inside of the vapor/+'l tank to 10' Torr or less, a Cr layer was first formed on the base 4, and then a Y layer was formed as a metal compound layer.
A 2O5 layer is provided, and sb and Bi are further provided as a metal recording layer.
Samples M and N were prepared in which a Y2O5 layer was successively laminated as a metal compound stabilizing layer on the top layer. Or, Y2O
3, sb and Bi were deposited by electron beam evaporation method.
Vapor deposition was performed using a resistance heating method.
ザンプル評価は、実施例1と同様な方法で行つ/ζ。そ
の結果を第5表に示す。Sample evaluation is performed in the same manner as in Example 1/ζ. The results are shown in Table 5.
この表から分るように、金Aく化合物K Y203を用
いても金属記録層の組成を前記の値に設定することによ
り、余裕をもって160nsecのパルスrl」の再生
信号が得られ、C/N も高く良い結果を14すること
ができた。As can be seen from this table, by setting the composition of the metal recording layer to the above value even when using the gold-A compound K Y203, a reproduction signal of 160 nsec pulse rl can be obtained with a margin, and the C/N I was able to get a very good result.
第1図、第2図、及び第3図は本発明記録媒体のそれぞ
れ異った構造例を示す断面図である。
図中1は基板、2は金属記録層、3はクロム層、4は上
層に形成する金属化合物安定化層、5は■層に形成する
金属化合物層を示す。
第4図は、レーザーにより記録したのちに形成a;lす
る孔の断面図である。
肪許出願人 旭化成工業株式会社
代理人 阿 形 明
第1図FIGS. 1, 2, and 3 are cross-sectional views showing different structural examples of the recording medium of the present invention. In the figure, 1 is a substrate, 2 is a metal recording layer, 3 is a chromium layer, 4 is a metal compound stabilizing layer formed as an upper layer, and 5 is a metal compound layer formed as a layer. FIG. 4 is a cross-sectional view of a hole formed after being recorded by a laser. License applicant: Asahi Kasei Industries Co., Ltd. Agent: Akira Agata Figure 1
Claims (1)
情報を記録するだめの、基板上にビスマスを主体とする
金属記録層及び金属化合物安定化層を積層し、かつ前記
基板と前記金属記録層との間にクロム層を介在させた構
造を南する情報記録媒体において、該金属記録層が膜厚
にして100〜220 Aの範囲であシ、かつj奥算厚
30〜70Aの範囲(密度6.695’ /’c+ti
として換算)のアンチモンを含有することを特徴とする
情報記録媒体。 2 情報記録媒体の構造が、金属記録層とクロム層との
間若しくはクロム層と基板との間に金属化合物層を介在
させた構造である特許請求の範囲第1項記載の情報記録
媒体。 3 金属記録層を構成する金属が(Bi )x(Sb)
y(A)zの形で表わされ、かつAはS e XT e
、As、 Ge、 Sn、 Pb、工n、 TlXCd
及びZnの中から選ばれた少なくとも1種の金属又は半
金属であって、x、y及び2はそれぞれ原子数比にして
、式 %式% を満足する値である特許請求の範囲第1項又は第2項記
載の情報記録媒体。[Scope of Claims] 1. A metal recording layer mainly made of bismuth and a metal compound stabilizing layer are laminated on a substrate to record information by forming Sibits by irradiation with an energy beam, and In the information recording medium having a structure in which a chromium layer is interposed between the metal recording layer and the metal recording layer, the metal recording layer has a film thickness in the range of 100 to 220 A, and a total thickness of 30 to 70 A. range (density 6.695'/'c+ti
An information recording medium characterized by containing antimony (calculated as ). 2. The information recording medium according to claim 1, wherein the information recording medium has a structure in which a metal compound layer is interposed between a metal recording layer and a chromium layer or between a chromium layer and a substrate. 3 The metal constituting the metal recording layer is (Bi)x(Sb)
It is expressed in the form y(A)z, and A is S e XT e
, As, Ge, Sn, Pb, Eng, TlXCd
and Zn, and x, y, and 2 are each a value satisfying the formula % formula % in terms of atomic ratio. Or the information recording medium described in paragraph 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58210379A JPS60103533A (en) | 1983-11-09 | 1983-11-09 | Information recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58210379A JPS60103533A (en) | 1983-11-09 | 1983-11-09 | Information recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60103533A true JPS60103533A (en) | 1985-06-07 |
Family
ID=16588366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58210379A Pending JPS60103533A (en) | 1983-11-09 | 1983-11-09 | Information recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60103533A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0354528A2 (en) * | 1988-08-09 | 1990-02-14 | EASTMAN KODAK COMPANY (a New Jersey corporation) | Optical recording materials comprising antimony-tin alloys including a third element |
US6242157B1 (en) * | 1996-08-09 | 2001-06-05 | Tdk Corporation | Optical recording medium and method for making |
-
1983
- 1983-11-09 JP JP58210379A patent/JPS60103533A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0354528A2 (en) * | 1988-08-09 | 1990-02-14 | EASTMAN KODAK COMPANY (a New Jersey corporation) | Optical recording materials comprising antimony-tin alloys including a third element |
US6242157B1 (en) * | 1996-08-09 | 2001-06-05 | Tdk Corporation | Optical recording medium and method for making |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4370391A (en) | Recording material | |
US4461807A (en) | Recording material | |
EP0195532A1 (en) | An information recording medium | |
EP0045183B1 (en) | Recording material | |
US5124232A (en) | Optical recording medium | |
JPWO2003101750A1 (en) | Information recording medium and manufacturing method thereof | |
US4580146A (en) | Information recording material | |
US4973520A (en) | Optical recording medium | |
US5013635A (en) | Information storage medium | |
JPS60103533A (en) | Information recording medium | |
JPS5885945A (en) | Information recording member | |
JPS59225992A (en) | Optical recording medium | |
JP2679995B2 (en) | Thin film for information recording | |
JP2001035014A (en) | Optical information recording medium, manufacture of the same and sputtering device used for production of the same | |
JPS58100250A (en) | Information recording material | |
US5164290A (en) | Optical recording medium | |
JP2003030899A (en) | Information recording medium, information recording and reproducing method, and information recording and reproducing device | |
JPH0829616B2 (en) | Information recording member | |
JPS6059551A (en) | Laser recording material | |
JPS60103534A (en) | Member for recording information | |
JPH05262040A (en) | Optical data recording medium | |
JPH02217289A (en) | Optical recording medium | |
JPH02249687A (en) | Optical recording medium and preparation thereof | |
JPH06223408A (en) | Optical information recording medium | |
JPH06103546B2 (en) | Optical recording medium |