[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60102878A - Parallel redundancy synchronous operation type inverter - Google Patents

Parallel redundancy synchronous operation type inverter

Info

Publication number
JPS60102878A
JPS60102878A JP58208499A JP20849983A JPS60102878A JP S60102878 A JPS60102878 A JP S60102878A JP 58208499 A JP58208499 A JP 58208499A JP 20849983 A JP20849983 A JP 20849983A JP S60102878 A JPS60102878 A JP S60102878A
Authority
JP
Japan
Prior art keywords
inverter
switch
power source
line
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58208499A
Other languages
Japanese (ja)
Inventor
Toyohisa Sugiyama
杉山 豊久
Teruo Arizono
有園 輝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Industry Co Ltd
Original Assignee
Nippon Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Industry Co Ltd filed Critical Nippon Electric Industry Co Ltd
Priority to JP58208499A priority Critical patent/JPS60102878A/en
Publication of JPS60102878A publication Critical patent/JPS60102878A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To improve the reliability of an inverter by disconnecting only the inverter when a defect occurs in any of inverters, and switching to a standby inverter. CONSTITUTION:If a malfunction occurs in any of three inverters when the inverters are operated in parallel, the selecting breakage switch 2 of the defective inverter is immediately opened to disconnect the defective inverter. When the inverter of # or # is disconnected, the inverter of #1 is continued in the synchronous operation with a preliminary power source as it is. When the inverter of #1 is disconnected, the synchronous command switch SW1 of the inverter #2 is rapidly switched to the preliminary power source side, and the inverter of #2 is synchronously operated with the preliminary power source. The inverter of # is followed to the synchronization of the inverter of #2.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は並列冗長システム構成したインバータ装置に関
するもので、特に予備電源(商用周波電源又は回転機電
源)からの電力直送回路を有し、その予備電源と同期を
とりながら複数台のインバータ装置を並列運転するいわ
ゆる並列冗長同WJ運転方式のインバータ装置に関する
ものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an inverter device configured as a parallel redundant system, and in particular, it has a power direct transmission circuit from a backup power source (commercial frequency power source or rotating machine power source), and is connected to the backup power source. This invention relates to an inverter device using a so-called parallel redundant WJ operation method in which a plurality of inverter devices are operated in parallel while maintaining synchronization.

(背景技術) 従来、例えば放送設備1通信装置、コンピュータ等の電
源として用いられる無停電電源装置では、一般に並列冗
長運転方式のインバータ装置が採用されている。そして
、特に信頼性を高く要求される並列冗長同期運転方式に
113いては、複数台のインバータ装置のそれぞれを構
成する半導体スイッチング素子(例えばトランジスタ、
サイリスタ)等に故障が生じたような場合には、負荷へ
の給電を停止することなくバイパス回路く予備通電線路
)を介して同期のとれている商用電源又は回転機雷m(
予4@電源)からの電力を直送覆るとか、故障したイン
バータ装置を選択遮断し予備の電源装置(待機中のイン
バータ装置)との切替えを行なう等の対策がとられてい
る。
(Background Art) Conventionally, in an uninterruptible power supply device used as a power source for, for example, a communication device of broadcasting equipment 1, a computer, etc., an inverter device of a parallel redundant operation type is generally employed. In the parallel redundant synchronous operation system 113, which requires particularly high reliability, semiconductor switching elements (for example, transistors,
If a failure occurs in a thyristor, etc., a synchronized commercial power supply or a rotating mine m(
Countermeasures have been taken, such as directly discharging power from the power supply (preliminary power source) or selectively shutting off the failed inverter and switching to a backup power supply (inverter on standby).

第1図は上記バイパス回路を備えた電源システムの主要
部の一構成例を示すもので、図において1 (1−+ 
、 1−2 、・・・・・・1−n)は並列運転を行な
うインバータ装置、2 (2−+ 、 2−2 、・・
・・・・2−n)はインバータ装@1の並列運転選択遮
断用スイッチ、3は並列運転インバータ装置の共通出力
線路(以下「主通電線路」と言う。)、4は予備電源電
圧の入力端子、5は予備通電線路、6は予備電源に同期
追従し並列運転インバータ装はのそれぞれを制御する共
通発振器、7(7−+。
Figure 1 shows an example of the configuration of the main part of a power supply system equipped with the bypass circuit.
, 1-2,...1-n) are inverter devices that perform parallel operation, and 2 (2-+, 2-2,...
...2-n) is the parallel operation selection/cutoff switch for the inverter device @1, 3 is the common output line for the parallel operation inverter device (hereinafter referred to as the "main conduction line"), and 4 is the input of the backup power supply voltage. terminals; 5, a standby energizing line; 6, a common oscillator that synchronizes with the standby power source and controls each of the parallel-operated inverter units; 7 (7-+);

7−2)はそれぞれ主通電線路3と予備通電線路5に設
けた通電線路切替用スイッチ、8は負荷接続用の出力端
子である。
7-2) are energizing line switching switches provided on the main energizing line 3 and the auxiliary energizing line 5, respectively, and 8 is an output terminal for connecting a load.

上記並列運転選択遮断用スイッチ2(2−+。The above-mentioned parallel operation selection/cutoff switch 2 (2-+).

2−2.・・・・・・2−n)及び通電線路切替用スイ
ッチ7、、(7−+ 、 7−2 >はいずれも例えば
サイリスタを用いて構成したスタティックスイッチで、
スイッチ制御回路(図示せず)からの指令信号によって
開・閉動作を行なう。
2-2. ...2-n) and the energized line switching switches 7, (7-+, 7-2>) are static switches configured using, for example, thyristors,
Opening and closing operations are performed by command signals from a switch control circuit (not shown).

また、上記共通発振器6は予備電源と同期をとり、イン
バータ装置を構成する半導体スイッチング素子(例えば
サイリスタ、トランジスタ等)を制御する信号を発生す
るいわゆる同期運転ゲートコントロール回路である。
Further, the common oscillator 6 is a so-called synchronous operation gate control circuit that is synchronized with the backup power supply and generates a signal for controlling semiconductor switching elements (eg, thyristors, transistors, etc.) constituting the inverter device.

このように(3成された従来の電源システムにおいては
、通常、最大許容出力電流を監視する許容出力電流監視
回路とインバータの故障を検出する故障検出回路を備え
た保護装@(図示せず)を備え、並列運転インバータ装
@(以下「主電源」と言う。)に過負荷状態や事故が発
生し1=時に直ちに必要な対策がとられるようになって
いる。しかしながら、第1図から分るように並列運転し
ている各インバータ装置1−1.1−2.・・・・・・
i −nは一つの共通発振器(ゲートコン]・ロール回
路)6により制御されているので、この共通発振器6に
故障が生じた場合にはインバータ装置が全部−斉にダウ
ンして正常な動作を維持できなくなってしまい、止むを
えず予備電源からの通電に切替えていた。従って、過負
荷の場合やいずれかのインバータ装置が故障した場合に
備えて予備のインバータ装置を設け、信頼性の向上をは
かった電源システムにとって大きな弱点になっていた。
In conventional power supply systems that are configured in this way, a protective device (not shown) that includes an allowable output current monitoring circuit that monitors the maximum allowable output current and a failure detection circuit that detects inverter failure is normally installed. When an overload condition or an accident occurs in the parallel operation inverter system (hereinafter referred to as the "main power supply"), necessary measures can be taken immediately.However, as can be seen from Figure 1, Each inverter device 1-1.1-2 is operated in parallel so that
Since i-n are controlled by one common oscillator (gate control/roll circuit) 6, if a failure occurs in this common oscillator 6, all the inverters will go down simultaneously to maintain normal operation. It became impossible to do so, so I had no choice but to switch to using the backup power source. Therefore, this has been a major weakness in a power supply system that aims to improve reliability by providing a spare inverter device in case of overload or failure of one of the inverter devices.

また、この弱点を補うため、第2図に示すようにインバ
ータのゲートコントロール回路用発振器9(9−,9−
2,・・・・・・9−n)をそれぞれ独立に設けたもの
もあるが、各インバータ装置間の連携動作が必ずしもう
まくとれておらず、いずれかのインバータ装置が故障し
た場合には健全なインバータ装置が過負荷となり、それ
を保護するために急速な出力電圧垂下を行なわせるので
、負荷への定常状態での給電が不能になる等の問題があ
った。
In order to compensate for this weakness, as shown in Fig. 2, an oscillator 9 (9-, 9-
2,...9-n) are installed independently, but the coordination between each inverter device is not necessarily well-coordinated, and if one of the inverter devices breaks down, the system may be damaged. The inverter device becomes overloaded, and in order to protect it, the output voltage drops rapidly, resulting in problems such as the inability to supply power to the load in a steady state.

〔発明の開示〕[Disclosure of the invention]

本発明の目的は上記従来の問題点を解浦し、いずれかの
インバータ装置が故障した時には、その故障した装置の
み切離して予備の装置への切替を可能にし、過負荷で並
列配置したインバータ装置では対処できなくなった時に
のみ予備電源による給電に切替えるように構成した信頼
度の高い電源システムを提供することにある。
The purpose of the present invention is to solve the above-mentioned conventional problems, and when one of the inverter devices fails, it is possible to disconnect only the failed device and switch to a spare device, so that inverter devices arranged in parallel due to overload can be disconnected. Therefore, it is an object of the present invention to provide a highly reliable power supply system configured to switch to power supply from a standby power supply only when the situation becomes impossible.

上記の目的を達成するために、本発明の装置は並列運転
するインバータ装置の各々が、直送する予備電源又は他
のインバータ装置の出力に同期化する能力を持つインバ
ータのゲートコントロール回路を備え、かつそれぞれの
ゲートコントロール回路は、同期コマンドスイッチと電
子スイッチを備えた検出切替器からの信号を受けて各イ
ンバータが予備電源に同期追従運転又は他のインバータ
装置と同期する平衡並列運転又は自走発振による運転が
可能なように構成した。
In order to achieve the above object, the device of the present invention is such that each of the inverter devices operated in parallel is provided with an inverter gate control circuit having the ability to synchronize with the directly supplied standby power supply or the output of another inverter device, and Each gate control circuit receives a signal from a detection switch equipped with a synchronous command switch and an electronic switch, and each inverter operates in synchronized follow-up operation with the standby power supply, in balanced parallel operation in synchronization with other inverter devices, or in free-running oscillation. It was configured to be operable.

そして、検出切替器は、各インバータ装置の動作が健全
か異常かを相互にi’fi #8シあいその状況に応じ
て最適な運転を行なう制御指令信号を発生するインバー
タ制御回路からの信号で切替動作を行ない、いずれかの
インバータ装置が故障して選択遮断用スイッチにより選
択遮断が<jなわれた場合は、並列運転中のインバータ
装置に負荷電流を分担させたり予備(待機中)のインバ
ータ装置を並列運転に加える等の対策を行なうとともに
、その時の同期方式を決める。
The detection switch uses a signal from the inverter control circuit to mutually determine whether the operation of each inverter device is healthy or abnormal, and generates a control command signal to perform optimal operation according to the situation. If one of the inverters fails and selective cutoff is performed by the selective cutoff switch during switching operation, the load current may be shared with the inverter running in parallel, or the spare (standby) inverter may be Take measures such as adding devices to parallel operation, and decide on the synchronization method at that time.

また、負荷系で異常が発生し全インバータ装置が過負荷
状態になった時には、それぞれの出力電流検出回路から
の過電流を知らせる信号の論理積(AND)に基づき、
切替信号を発生するスイッチ制御回路からの出力で通電
線路切替用スイッチが動作し、予備電源による給電に切
替える。
In addition, when an abnormality occurs in the load system and all inverter devices become overloaded, the
The output from the switch control circuit that generates the switching signal operates the energized line switching switch, which switches to the backup power supply.

本発明の並列冗長同期運転方式インバータ装置では、上
述したようにいずれかのインバータ装置に故障が生じた
場合には、そのインバータ装置のみ切離して、待機中の
インバータ装置へ切替える等の対策がとられ、健全なイ
ンバータ装置は継続して動作可能であり、信頼性が向上
する。
In the parallel redundant synchronous operation type inverter device of the present invention, if a failure occurs in any of the inverter devices as described above, measures are taken such as disconnecting only that inverter device and switching to a standby inverter device. , a healthy inverter device can continue to operate, improving reliability.

〔発明を実施するための最良の形態〕[Best mode for carrying out the invention]

以下、本発明を実施例によって詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第3図は本発明の並列冗長同期運転方式インバータ装置
の一実施例の構成を示すブロック図である。図面と説明
を簡明にするために、並列運転するインバータ装置の台
数を3台(#1.92.#3)とした場合を示すが、並
置するインバータ装置の台数は特に制限はなく、通常は
2〜6台が一般によく使われている。
FIG. 3 is a block diagram showing the configuration of an embodiment of the parallel redundant synchronous operation type inverter device of the present invention. In order to simplify the drawing and explanation, the case is shown in which the number of inverter devices operated in parallel is three (#1.92.#3), but there is no particular limit to the number of inverter devices to be installed in parallel, and usually 2 to 6 units are commonly used.

本発明の主電源を構成するインバータ装置(#1、#2
.#3)10はそれぞれインバータ11と、予備電源又
は並列運転する他のインバータ装置の出力に同期発振で
きかつ自走発振することができる発振器を備えたゲート
コントロール回路12と、同期コマンドスイッチSW+
(一つの接点を予備電源(予備通電線路5)に接続)及
び電子スイッチS W 2を備えた検出切替器13と、
その検出切替器13に制御指令信号を与えるインバータ
制御回路14を有している。
Inverter devices (#1, #2) constituting the main power supply of the present invention
.. #3) 10 each includes an inverter 11, a gate control circuit 12 equipped with an oscillator that can oscillate in synchronization with the output of a standby power supply or another inverter device operated in parallel, and can perform free-running oscillation, and a synchronous command switch SW+
(one contact is connected to a backup power supply (standby energized line 5)) and a detection switch 13 equipped with an electronic switch SW 2;
It has an inverter control circuit 14 that provides a control command signal to the detection switch 13.

上記インバータ制御回路14はそれぞれ他のインバータ
装置からの動作状況を知らせる信号を入力し、その状況
に応じて上記検出切替器13のスイッチSW+、SW2
の接続を制御する指令信号を発生ずる。
The inverter control circuit 14 inputs signals informing the operating status from other inverter devices, and depending on the status, switches SW+ and SW2 of the detection switch 13 are input.
Generates a command signal to control the connection.

また、各インバータ装@10は、その出力側に変流器C
T+を有する出力電流検出回路15を備え、負荷接続用
の出力端子8との間に(まそれぞれ選択遮断用スイッチ
(スタティックスイッチ)2を設けている。このスイッ
チ2を制御llるスイッチ制御回路16は、出力電流検
出回路15の検出信号と、各インバータ装置の出力線路
及び予備通電線路5を共通に接続した総合出力線路17
に設けた変流器CT2を有する総合出力電流検出回路1
8からの検出信号を入力して制御信号を発生する。
In addition, each inverter unit @10 has a current transformer C on its output side.
An output current detection circuit 15 having T+ is provided, and a selection cutoff switch (static switch) 2 is provided between the output terminal 8 for load connection and a switch control circuit 16 for controlling this switch 2. is a general output line 17 that commonly connects the detection signal of the output current detection circuit 15, the output line of each inverter device, and the preliminary energization line 5.
Comprehensive output current detection circuit 1 having a current transformer CT2 provided in
A control signal is generated by inputting the detection signal from 8.

一方、予備電源からの電力を直送する予備通電線路5に
は、並列冗長同期運転しているインバータ装置の最大許
容出力電流(負荷電流)値を越え各インバータ装置が−
せいに遮断された場合に通電線路を無瞬断に切替える通
電線路切替用スイッチ(スタティックスイッチ)7が設
けである。この切替用スイッチ7のスイッチ制御回路1
9は論理積(AND)回路を有し、総合出力電流検出回
路18の検出信号及び各インバータ装置の出力側に設け
た出力電流検出回路15の検出信号を入力し、それらの
検出信号の論理積<AND>をとり、すべてのインバー
タ装置が過負荷であると判断したときにスイッチ制御信
号を出力し通電線路の切替を行なわせる。
On the other hand, on the standby energized line 5 that directly transmits power from the standby power supply, each inverter unit is in a state where the maximum allowable output current (load current) of the inverter units operating in parallel redundant synchronous operation is exceeded.
A current-carrying line switching switch (static switch) 7 is provided which switches the current-carrying line without momentary interruption when the line is cut off due to a fault. Switch control circuit 1 of this changeover switch 7
9 has a logical product (AND) circuit, which inputs the detection signal of the general output current detection circuit 18 and the detection signal of the output current detection circuit 15 provided on the output side of each inverter device, and performs the logical product of these detection signals. <AND> is performed, and when it is determined that all inverter devices are overloaded, a switch control signal is output to switch the energized lines.

次に上記本発明の電源システムの動作を種々の場合に分
けて説明する。なお、検出切替器13の同期コマンドス
イッチS W +は動作開始時に手動で投入するもので
、例えばトグルスイッチを用いる。そして、スイッチS
 W +とS W 2が第3図に示した接続状態にある
時には#1インバータ装置は予備電源と同期運転、#2
.#3インバータ装置はそれぞれ他のインバータ装置と
同期のとれた平衡並列運転を行ない、スイッチS〜v2
接続が開かれるとそのインバータ装置のゲートコントロ
ール回路12が自走発振による制御動作を行なう。
Next, the operation of the power supply system of the present invention will be explained in various cases. Note that the synchronization command switch S W + of the detection switch 13 is manually turned on at the start of operation, and uses, for example, a toggle switch. And switch S
When W + and SW 2 are connected as shown in Figure 3, #1 inverter operates synchronously with the standby power supply, #2
.. Each #3 inverter device performs balanced parallel operation synchronized with other inverter devices, and switches S to v2
When the connection is opened, the gate control circuit 12 of the inverter device performs a control operation by free-running oscillation.

(1〉予備電源と同期並列運転動作: #1インバータ装置の同1し1コマンドスイツチSW1
を予備電源側に選択して接続する(第3図に示した状態
)と、#1インバータ装置はゲートコントロール回路1
2により周波数を制御しつつ予備電源に同期追従運転を
する。
(1> Backup power supply and synchronous parallel operation operation: #1 inverter device same 1 and 1 command switch SW1
When selected and connected to the standby power supply side (the state shown in Figure 3), the #1 inverter device connects to the gate control circuit 1.
2 performs synchronized follow-up operation to the standby power source while controlling the frequency.

一方、#’2.#3インバータ装置は同期コマンドスイ
ッチS W +をそれぞれ#1.#2インバータ装置の
出力側に接続すると、#1.#2.インバータ装置と同
期運転をする。
On the other hand, #'2. The #3 inverter device connects the synchronous command switch SW+ to #1, respectively. #2 When connected to the output side of the inverter device, #1. #2. Performs synchronized operation with the inverter device.

このようにすると、3台のインバータ装置が同期のとれ
た安定な平衡並列運転を行なうことができる。
In this way, the three inverter devices can perform synchronized and stable balanced parallel operation.

3台のインバータ装置を並列運転している時に、いずれ
かの号機に異常が生じた場合はいちはやく異常機の選択
遮断用スイッチ2を開放し、異常機を解列する。
When three inverter devices are operated in parallel, if an abnormality occurs in any of the machines, the selective cutoff switch 2 of the abnormal machine is immediately opened to disconnect the abnormal machine from the series.

#2又は#3のインバータ装置を解列した時は、#1イ
ンバータ装置はそのまま予備電源と同期運転を続行する
When the #2 or #3 inverter device is disconnected from the series, the #1 inverter device continues to operate synchronously with the backup power source.

#1インバータ装置を解列した時は、速かに#2インバ
ータ装置の同期コマンドスイッチS W +を予備電源
側に切替えて接続し、#2インバータ装置が予備電源と
の同期運転に入る。#3インバータ装置は#2インバー
タ装置に同期追従運転をする。
When the #1 inverter device is disconnected from the series, the synchronization command switch S W + of the #2 inverter device is immediately switched to the backup power source side and connected, and the #2 inverter device enters synchronous operation with the backup power source. #3 inverter device performs synchronous follow-up operation to #2 inverter device.

なお、例えば#3インバータ装置を予備として待機させ
、#1.#2インバータ装置のみ動作させている時に、
いずれかのインバータ装置に異常が発生した場合には、
#3インバータ装置を動作させるようにインバータ制御
回路14からインバータゲートコントロール回路12に
起動指令信号が与えられる。
Note that, for example, #3 inverter device is kept on standby as a spare, and #1. #2 When only the inverter device is operating,
If an abnormality occurs in any of the inverter devices,
A start command signal is given from the inverter control circuit 14 to the inverter gate control circuit 12 to operate the #3 inverter device.

(2)予備電源と非同期の並列運転動作:#1インバー
タ装置の同期コマンドスイッチSW1を開放側に選択す
ると、#1インバータ装置は自走発振の安定した定周波
定電圧運転を行なう。
(2) Asynchronous parallel operation with backup power source: When the synchronous command switch SW1 of the #1 inverter device is selected to the open side, the #1 inverter device performs stable constant frequency constant voltage operation with free-running oscillation.

$2.#3インバータ装置の同期コマンドスイッチS 
W +をそれぞれ#1.#2−1’ンバータ装置の出力
側に接続すると、#1.L2インバータ装置に同期追従
した運転をづる。
$2. #3 Inverter device synchronous command switch S
W + respectively #1. #2-1' When connected to the output side of the inverter device, #1. Describe the operation synchronously following the L2 inverter device.

従って3台の平衡並列運転となる。なお、この場合にも
、負荷が軽ければ一台を予備として侍はさせておく運転
方法をとることができる。
Therefore, three units are operated in balanced parallel. In this case as well, if the load is light, it is possible to use one operating method as a spare for the Samurai.

いずれかの号機に異常が生じた場合には、異常殿を選択
;α所用スイッチ2によって解列し、健全磯は自走発振
で相互に同期をとった運転を続行づる。
If an abnormality occurs in any of the units, select the abnormality; the α-required switch 2 is used to disconnect the line, and the healthy Iso continue to operate in synchronization with each other through self-running oscillation.

(3)予備電源と同期並列運転時に出力過電流が生じた
場合の動作: 出力過電流が発生すると、各インバータ装置の出力電流
検出回路15及び総合出力電流検出回路18が出力過電
流を検出し、検出信号を各スイッチ制陣回路16及び1
9に送出する。各スイッチ制御回路16は選択遮断用ス
イッチ2を駆動し、それぞれ自号機のインバータ装置を
遮断し、無負荷運転を行なわせる。この時の各号機の運
転は、#1インバータ装置が予備電源に同期した無負荷
運転であり、#2.#3インバータ装置がそれぞれ#1
.#2インバータ装置に同期した無負荷運転である。
(3) Operation when an output overcurrent occurs during synchronous parallel operation with a standby power source: When an output overcurrent occurs, the output current detection circuit 15 and the general output current detection circuit 18 of each inverter device detect the output overcurrent. , the detection signal is sent to each switch control circuit 16 and 1.
Send on 9th. Each switch control circuit 16 drives the selective cutoff switch 2 to cut off the inverter device of its own machine and perform no-load operation. The operation of each unit at this time is a no-load operation in which the #1 inverter device is synchronized with the backup power source, and the #2. #3 inverter devices are each #1
.. #2 This is no-load operation synchronized with the inverter device.

一方、通電線路切替用スイッチ7を駆動するスッチ制御
回路1つは、各号機の出力電流検出回路15からの過電
流検出信号及び総合出力N流検出回路18からの過電流
検出信号のANDをとって、予備電源から電力を負荷に
直送するよう切替制御信号を発生ずる。
On the other hand, one switch control circuit that drives the energized line switching switch 7 performs an AND of the overcurrent detection signal from the output current detection circuit 15 of each machine and the overcurrent detection signal from the total output N flow detection circuit 18. and generates a switching control signal to send power directly from the standby power source to the load.

従って、各インバータ装置の遮断と予備電源の投入が無
瞬断で行なわれるので、負荷への電力供給は瞬断を生じ
ることなく継続する。そして、予備電源により過電流を
供給し、過負荷の原因になっている負荷を例えばフユー
ズ(E)、配線用遮斯様(MCB>等の過電流保護器具
により切り離し、過電流が解除された時には総合出力電
流検出回路18が出力過電流解除を検出し、所定時間経
過後に各スイッチ制御回路16及び1つへ過電流解除信
号を送出する。この信号を受けた各スイッチ制御回路1
6が選択遮断用スイッチ2をオンさせ、主電源(インバ
ータ装置)が予備電源と並列に負荷へ電力供給を開始し
、予備電源の負荷を主用?l!(インバータ装置)側に
移行させる。負荷移行が完了すると、スイッチ制御回路
19が切台制御信りを発生し、通電線路切替用スイッチ
7をオフする。
Therefore, each inverter device is shut off and the backup power source is turned on without momentary interruption, so that power supply to the load continues without momentary interruption. Then, the overcurrent is supplied by the backup power supply, and the load causing the overload is disconnected using an overcurrent protection device such as a fuse (E) or a wiring shield (MCB), and the overcurrent is released. Sometimes, the comprehensive output current detection circuit 18 detects output overcurrent release, and after a predetermined period of time has elapsed, sends an overcurrent release signal to each switch control circuit 16.Each switch control circuit 1 that receives this signal
6 turns on the selective cutoff switch 2, the main power supply (inverter device) starts supplying power to the load in parallel with the backup power supply, and the load of the backup power supply is used as the main power supply. l! (inverter device) side. When the load shift is completed, the switch control circuit 19 generates a switch control signal and turns off the energized line switching switch 7.

従って、各インバータ装置は元の平衡並列運転に戻り、
瞬断を生じることなく負荷へ電力供給を行なう。
Therefore, each inverter device returns to the original balanced parallel operation,
Power is supplied to the load without causing momentary interruptions.

以上説明したように、本発明の装置は従来のものより一
段と信頼性が向上するし、並列運転するインバータ装置
の台数の増減も簡41に行なえるので、インバータ装置
を増設し電源システムを拡張するようなことは容易に行
なえる。また、過負荷に対する処置も適切に行えるので
、各インバータ装置の保護並びに過負荷の原因になって
いる負荷の切離しもすみやかに行なうことができ、瞬断
の生じない安定した電力の供給が可能になる。さらに、
副次的効果として大電流の開閉を行なう通電線路切替用
スイッチは一つですむようになる。
As explained above, the device of the present invention is much more reliable than the conventional one, and the number of inverter devices operated in parallel can be easily increased or decreased, so it is possible to expand the power supply system by adding more inverter devices. Something like this can be done easily. In addition, since overload measures can be taken appropriately, each inverter device can be protected and the load causing the overload can be quickly disconnected, making it possible to provide a stable power supply without momentary power outages. Become. moreover,
As a side effect, only one energized line switching switch is required to switch on and off a large current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はいずれも従来の並列冗長同期運転方
式インバータ装置の構成を示すブロック図、第3図は本
発明の一実施例の装置の構成を示すブロック図である。 4・・・・・・予IaN源電圧の入力端子、5・・・・
・・予備通電線路、 7−・・・・・通電線路切替用スイッチ、8・・・・・
・負荷接続用の出力端子、10・・・・・・インバータ
装置、 11・・・・・・インバータ、 12・・・・・・ゲートコントロール回路、13・・・
・・・検出切替器、 14・・・・・・インバータ6す御回路、15・・・・
・・出力電流検出回路、 16.19・・・・・・スイッチ制御回路、17・・・
・・・総合出力線路、 18・・・・・・総合出力電流検出回路。 出願人 日本電気t1%器株式会社 代理人 弁理士 増田竹夫
Both FIGS. 1 and 2 are block diagrams showing the configuration of a conventional parallel redundant synchronous operation type inverter device, and FIG. 3 is a block diagram showing the configuration of a device according to an embodiment of the present invention. 4... Input terminal for pre-IaN source voltage, 5...
...Preliminary energized line, 7-... Energized line switching switch, 8...
・Output terminal for load connection, 10... Inverter device, 11... Inverter, 12... Gate control circuit, 13...
...Detection switch, 14...Inverter 6 control circuit, 15...
...Output current detection circuit, 16.19...Switch control circuit, 17...
... Comprehensive output line, 18... Comprehensive output current detection circuit. Applicant: NEC T1% Equipment Co., Ltd. Agent: Takeo Masuda, patent attorney

Claims (1)

【特許請求の範囲】 1、商用周波電源又は回転機電源(以下「予備電源」と
言う。)と、該予備電源からの電力を負荷に直送する予
備3I!l電線路と、上記予備電源と同期運転可能な複
数台のインバータ装置を備えた主電源と、該主電源が過
負荷状態になった時に上記予備電源に切替えるため上記
予備通電ね路に設けた通電線路切替用スイッチと、上記
複数台のインバータ装置のそれぞれ出力側通電線路に設
けた並列運転選択遮断用スイッチと、該スイッチのそれ
ぞれと上記通電線路切替用スイッチの出力側を負荷に共
通に結ぶ総合出力線路と、該総合出力線路及び上記各イ
ンバータ装置の出力側にそれぞれ設けた総合出力電流検
出回路及び出力電流検出回路を有して構成される無停電
電源システムにおいて、上記複数台のインバータ装置の
それぞれは、並列運転する他のインバータ装置の運転状
況に応じた制御信号を発生するインバータ制御回路と、
該インバータ制御回路からの制御信号によって運転方法
を決める検出切替器を備え、 上記選択遮断用スイッチのそれぞれは、上記出力電流検
出回路及び上記総合出力電流検出回路からの検出出力に
応じて選択遮断信号を発生するスイッチ制御回路を備え
、 上記通電線路切替用スイッチは、上記複数台のインバー
タ装置の出力電流検出回路及び総合出力電流検出回路か
らの検出出力の論理積(AND)をとりその出力によっ
て切替制御信号を発生するスイッチ制御回路を備えたこ
とを特徴とする並列冗長同期運転方式インバータ装置。
[Claims] 1. A commercial frequency power source or a rotating machine power source (hereinafter referred to as a "standby power source"), and a standby 3I that directly sends power from the standby power source to the load! A power line, a main power source equipped with a plurality of inverter devices capable of synchronized operation with the backup power source, and a backup power line provided in the backup power line to switch to the backup power source when the main power source becomes overloaded. An energized line switching switch, a parallel operation selection/cutoff switch provided on the output side energized line of each of the plurality of inverter devices, and each of the switches and the output side of the energized line switching switch are commonly connected to a load. In an uninterruptible power supply system configured with a general output line, and a general output current detection circuit and an output current detection circuit provided on the output side of the general output line and each of the above-mentioned inverter devices, the plurality of inverter devices described above each includes an inverter control circuit that generates a control signal according to the operating status of other inverter devices that operate in parallel;
A detection switch is provided which determines the operation method based on a control signal from the inverter control circuit, and each of the selective cutoff switches generates a selective cutoff signal in accordance with the detection output from the output current detection circuit and the general output current detection circuit. The energizing line switching switch performs a logical product (AND) of the detection outputs from the output current detection circuits and the general output current detection circuit of the plurality of inverter devices, and performs switching based on the output. A parallel redundant synchronous operation type inverter device characterized by comprising a switch control circuit that generates a control signal.
JP58208499A 1983-11-07 1983-11-07 Parallel redundancy synchronous operation type inverter Pending JPS60102878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58208499A JPS60102878A (en) 1983-11-07 1983-11-07 Parallel redundancy synchronous operation type inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58208499A JPS60102878A (en) 1983-11-07 1983-11-07 Parallel redundancy synchronous operation type inverter

Publications (1)

Publication Number Publication Date
JPS60102878A true JPS60102878A (en) 1985-06-07

Family

ID=16557164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58208499A Pending JPS60102878A (en) 1983-11-07 1983-11-07 Parallel redundancy synchronous operation type inverter

Country Status (1)

Country Link
JP (1) JPS60102878A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588628A1 (en) * 1992-09-17 1994-03-23 Hitachi, Ltd. Electric vehicle control system
US5325285A (en) * 1991-08-21 1994-06-28 Mitsubishi Denki Kabushiki Kaisha Parallel running control apparatus for PWM inverters
US5390102A (en) * 1992-06-09 1995-02-14 Mitsubishi Denki Kabushiki Kaisha Parallel running control apparatus for PWM inverters
US5436823A (en) * 1992-06-24 1995-07-25 Mitsubishi Denki Kabushiki Kaisha Parallel operation controller for power converters
EP1020986A1 (en) * 1999-01-15 2000-07-19 Alstom Anlagen und Antriebssysteme GmbH Method for operating an electric converter
US7075268B2 (en) 2004-02-27 2006-07-11 York International Corporation System and method for increasing output horsepower and efficiency in a motor
US7096681B2 (en) 2004-02-27 2006-08-29 York International Corporation System and method for variable speed operation of a screw compressor
US7164242B2 (en) 2004-02-27 2007-01-16 York International Corp. Variable speed drive for multiple loads
US7193826B2 (en) 2004-02-27 2007-03-20 York International Corporation Motor disconnect arrangement for a variable speed drive
EP3020128A4 (en) * 2013-07-09 2016-07-06 Byd Co Ltd Motor control system of electric vehicle and controlling method for motor control system of electric vehicle and electric vehicle
WO2022219805A1 (en) * 2021-04-16 2022-10-20 東芝三菱電機産業システム株式会社 Uninterruptible power supply device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325285A (en) * 1991-08-21 1994-06-28 Mitsubishi Denki Kabushiki Kaisha Parallel running control apparatus for PWM inverters
US5390102A (en) * 1992-06-09 1995-02-14 Mitsubishi Denki Kabushiki Kaisha Parallel running control apparatus for PWM inverters
US5436823A (en) * 1992-06-24 1995-07-25 Mitsubishi Denki Kabushiki Kaisha Parallel operation controller for power converters
EP0588628A1 (en) * 1992-09-17 1994-03-23 Hitachi, Ltd. Electric vehicle control system
US5414339A (en) * 1992-09-17 1995-05-09 Hitachi Ltd Electric vehicle control system
EP1020986A1 (en) * 1999-01-15 2000-07-19 Alstom Anlagen und Antriebssysteme GmbH Method for operating an electric converter
US7075268B2 (en) 2004-02-27 2006-07-11 York International Corporation System and method for increasing output horsepower and efficiency in a motor
US7096681B2 (en) 2004-02-27 2006-08-29 York International Corporation System and method for variable speed operation of a screw compressor
US7164242B2 (en) 2004-02-27 2007-01-16 York International Corp. Variable speed drive for multiple loads
US7193826B2 (en) 2004-02-27 2007-03-20 York International Corporation Motor disconnect arrangement for a variable speed drive
EP3020128A4 (en) * 2013-07-09 2016-07-06 Byd Co Ltd Motor control system of electric vehicle and controlling method for motor control system of electric vehicle and electric vehicle
US9577569B2 (en) 2013-07-09 2017-02-21 Byd Company Limited Motor control system of electric vehicle and controlling method for motor control system of electric vehicle and electric vehicle
WO2022219805A1 (en) * 2021-04-16 2022-10-20 東芝三菱電機産業システム株式会社 Uninterruptible power supply device
JP7200398B1 (en) * 2021-04-16 2023-01-06 東芝三菱電機産業システム株式会社 Uninterruptible power system

Similar Documents

Publication Publication Date Title
US7265458B2 (en) Apparatus and methods for coordinated static switch operations for load transfers in uninterruptible power supply systems
JP4159546B2 (en) A system that supplies reliable power to important loads
US7061141B2 (en) Parallel operation method for an uninterruptible power supply apparatus
JP4462230B2 (en) Uninterruptible power supply system
JPH11146575A (en) Uninterruptive power supply having redundant function
JPS60102878A (en) Parallel redundancy synchronous operation type inverter
JP2004048964A (en) Uninterruptible power supply and no-instantaneous interruption system switching device
JPH0778039A (en) Clock selection control system
JPH08289485A (en) Uninterruptible power supply
JP2000184602A (en) Distributed power source unit
JP2006246616A (en) Uninterruptible power supply
JP3804592B2 (en) Parallel redundant operation method of uninterruptible power supply
JP2000201440A (en) Uninterruptible power supply system and its power supply method
JP3671391B2 (en) Uninterruptible power supply system
JP3543432B2 (en) Uninterruptible power system
JPS63157630A (en) Non-interrupting switching of non-interrupted electric source
JPH10304598A (en) Power source switching equipment
JPH08205544A (en) Inverter for intermediate and large capacity ups system and operation control method therefor
JP2002272016A (en) Uninterruptible power supply unit
SU1534636A1 (en) Quick-acting device for automatic switching-on of standby power source
JPS61207138A (en) Power failure-free constant voltage/constant frequency powersource unit
JP3337864B2 (en) Fault detection method and system switching method for inverter parallel operation system
JPS6123755B2 (en)
JPS61116937A (en) Parallel redundancy synchronous operation system inverter device
JPH05300673A (en) Uninterruptive power source system