JPS6010167A - Ultrasonic flaw detection signal processor - Google Patents
Ultrasonic flaw detection signal processorInfo
- Publication number
- JPS6010167A JPS6010167A JP58117122A JP11712283A JPS6010167A JP S6010167 A JPS6010167 A JP S6010167A JP 58117122 A JP58117122 A JP 58117122A JP 11712283 A JP11712283 A JP 11712283A JP S6010167 A JPS6010167 A JP S6010167A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- circuit
- flaw detection
- processing
- defect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4409—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
- G01N29/4427—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0609—Display arrangements, e.g. colour displays
- G01N29/0618—Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
- G01N29/0627—Cathode-ray tube displays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/07—Analysing solids by measuring propagation velocity or propagation time of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/36—Detecting the response signal, e.g. electronic circuits specially adapted therefor
- G01N29/38—Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
Landscapes
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Engineering & Computer Science (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は超音波探傷信号処理装置に係り、管に物体に生
ずる内部亀裂空洞等を非破かい的に検出して探傷信号と
して電子計算機で処理するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection signal processing device, which non-destructively detects internal cracks and cavities occurring in pipes and objects, and processes them as flaw detection signals by an electronic computer.
従来超音波探傷による探傷信号を電子計n様に送り情報
として加工ファイルするシステムにおいては探触子にて
受信され超音波探傷器にて増幅された探傷信号を設定し
た時間範囲(ゲート範囲)において時間的に一定なスレ
ッショルドレベル(しきい値)を越えた信号についてピ
ークホールド又はサンプルホールドしアナログディジタ
ル変換(以下A/D変換と呼称す)を行なったのち電子
計算機に送られる。超音波の特性としては探触子からの
距離に反比例して弱まり同−欠陥大きさでも距離によっ
て受信されるレベルが変化する。同様に被検査材料の結
晶組織にて発生する林状エコーも距離によって変化しこ
のため林状エコーに対して例えば2倍以上の信号を欠陥
信号として処理する場合近距離から遠距離までを林状エ
コーさ欠陥信号との比(SN)を同一比率にて区別する
ことができない。In a conventional system in which the flaw detection signal from ultrasonic flaw detection is sent to an electronic meter and processed as information, the flaw detection signal received by the probe and amplified by the ultrasonic flaw detector is detected within a set time range (gate range). A signal that exceeds a temporally constant threshold level is peak-held or sample-held, subjected to analog-to-digital conversion (hereinafter referred to as A/D conversion), and then sent to an electronic computer. The characteristics of ultrasonic waves are that they weaken in inverse proportion to the distance from the probe, and the level received changes depending on the distance even if the defect size is the same. Similarly, forest-like echoes generated in the crystalline structure of the inspected material also change depending on the distance. Therefore, when processing a signal that is more than twice as large as a forest-like echo as a defect signal, the forest-like echo from a short distance to a long distance is processed as a defect signal. It is not possible to distinguish the same ratio (SN) from the echoed defect signal.
このため探傷機の入力伯号増幅部において増幅量を時間
的に減少させCRTディスプレイ上の表示としては林状
エコー又は欠陥信号を距離の変化に対して一定とする付
加機能が付けられている装置もある。しかし増幅器の時
間的な減少量そのものを表示されておらず、信頼性に乏
しく又その減少量を測定し探傷結果を保証する試験材料
を各製品ごとに作成し探傷のステップごとに確認する必
要があった。For this reason, the device is equipped with an additional function to temporally reduce the amount of amplification in the input amplification section of the flaw detector, so that the display on the CRT display is a forest echo or a defect signal that remains constant over changes in distance. There is also. However, the amount of decrease over time in the amplifier itself is not displayed, making it unreliable, and it is necessary to create test materials for each product to measure the amount of decrease and guarantee the flaw detection results, and to check it at each step of flaw detection. there were.
又、電子計n機によるプログラミング制御には一定時間
を必要とするため、探傷器より繰返し得られる信号をそ
の才\超音速にてディジタル化した信号を処理すること
ができず、前処理としてピークホールド回路又はディジ
タル比較回路によって一定時間内の最大値を電子計1I
Ai機の情報としていた。このため、−パルス信号によ
って複数個の欠陥信号を受信し処理する高精度ノデータ
処理システムにおいては、処理速度の対応可能な高速な
大型電子計算機を必要とした。このためマイクロコンピ
ュータ−の処理速度では処理できずそれら複数個の欠陥
の中で最大の信号のみを処理していた。このような装置
では複数個の欠陥が内在して不合格となるレベルに欠陥
情報を得た場合には再度1人によってその欠陥部を確認
する必要があった0又特公昭kA−J4LOI、0号公
報記載のように受信信号を直接A/D変換する場合には
データ量が膨大となる。In addition, since programming control using an electronic meter requires a certain amount of time, it is not possible to process signals obtained repeatedly from flaw detectors at supersonic speeds, and peak The maximum value within a certain period of time is calculated using an electronic meter 1I using a hold circuit or digital comparison circuit.
It was information about the Ai machine. For this reason, a high-precision data processing system that receives and processes a plurality of defect signals using -pulse signals requires a large, high-speed computer that can handle the processing speed. For this reason, the processing speed of the microcomputer could not process it, and only the largest signal among the plurality of defects was processed. In such a device, if there are multiple defects and defect information is obtained at a level that would result in a failure, it is necessary for one person to confirm the defect again. When the received signal is directly A/D converted as described in the publication, the amount of data becomes enormous.
特にノイズレベルの一倍以上の欠陥信号を処理する目的
では、表層近傍のノイズエコーを全て、信号として処理
しなければならない。前記公報においても欠陥信号を受
信してからSOμeea間のみをA/D変換しているだ
けで全域にわたりてA/n変換を行なっておらす処理能
力上限界と思われる。In particular, for the purpose of processing a defect signal that is one or more times the noise level, all noise echoes near the surface layer must be processed as signals. Even in the above-mentioned publication, A/D conversion is performed only between SOμeea after receiving a defect signal, and A/N conversion is performed over the entire area, which seems to be at the limit of processing capacity.
以上の点を考慮して本発明では電子計算機からの信号に
より或は手動−にて調整可能な時間的に変化するスレッ
ショルドレベル信号を探傷信号を同−CRTディスプレ
イ上に表示し、又これらの(i号を11接比較して欠陥
信号のみを取り出すことができるようにして本来の探傷
信号を変化させることなく林状エコーに対して例えば一
倍以上の欠陥4M号を取り出すようにしたものである。Considering the above points, the present invention displays a flaw detection signal on a CRT display using a time-varying threshold level signal that can be adjusted manually or by a signal from a computer, and also displays these ( It is possible to extract only the defect signal by comparing No. i 11 times, so that defect No. 4M, which is more than one times as large as the forest echo, can be extracted without changing the original flaw detection signal. .
また複数個の欠陥信号が一パルス信号によって受信され
、それらを超高速でA/D変換し1に子計n機で処理す
る場合に、その電子計算機の処理速度に対応させるため
ディジタル信号を一時的にP°工FOメモリーに格納し
マイクロコンピュータ−の処理速度でも高速なディジタ
ル信号を処理可能とするものである。In addition, when multiple defective signals are received as one pulse signal, A/D converted at ultra-high speed, and processed by n sub-machines, the digital signal is temporarily converted to correspond to the processing speed of the electronic computer. It is possible to process digital signals at high speeds even at the processing speed of a microcomputer by storing them in the FO memory.
尚、超音波探傷による受信信号の速度は200μθOQ
程度(o、s yn日ea)であり、又、探傷信号はパ
ルス信号であるため、各々のパルス信号0量隔は//A
O〜t/loo sea (/ 4m5ec〜/θm5
ec )である。又、複数の欠陥を処理可能とするため
には/μsecごとにデータ処理をする必要がある0こ
の点ではF工FOメモリ(F工FOバッファレジスタ或
は一時格納用バッファメモリ)を用いることによりパル
ス信号の間に(/Am5ec〜/θ7g 5ec)デー
タ処理を行えばよいことになる。尚F工FOは処理速度
への対応であり、林状エコーの2倍以上の信号はスレッ
ショルドレベルと探傷信号の比較によって可能となる。In addition, the speed of the received signal by ultrasonic flaw detection is 200μθOQ
degree (o, syn day ea), and since the flaw detection signal is a pulse signal, the interval between each pulse signal 0 amount is //A
O~t/loo sea (/4m5ec~/θm5
ec). In addition, in order to be able to process multiple defects, it is necessary to process data every /μsec.In this respect, by using an F-process FO memory (F-process FO buffer register or temporary storage buffer memory), It is sufficient to perform data processing during the pulse signal (/Am5ec to /θ7g 5ec). Note that the FO is a response to processing speed, and a signal that is more than twice that of a forest echo can be obtained by comparing the threshold level and the flaw detection signal.
第3図はこの場合の信号例線図でa、 a、はパルス信
号、bは欠陥信号、Cは欠陥信号の受信される時間θ、
jmBec、d 1iFIFOメモリなしの処理時間で
ある。Figure 3 is an example signal diagram in this case, where a is a pulse signal, b is a defective signal, C is the time θ at which the defective signal is received,
jmBec,d 1i Processing time without FIFO memory.
かくて本発明は超音波探傷の探傷信号を電子計算機を介
して処理する場合においてクロック信号をもとに発生す
るトリガ信号を受けて時間的に変化するスレッショルド
レベル信号とゲート範囲信号とを発生するスレッショル
ド回路と、前記探傷信号とスレッショルドレベル信号と
を与えられ欠陥信号だけをとりたす比較回路と、前記欠
陥(g号をディジタル化するサンプルボールド回路並び
にA/Di換回路と、前記ディジタル化ぜる欠陥信号を
一時的に格納する第1のF工FOメモリと、前記ゲート
範囲信号のスタート並びにエンド信号々クロック信号が
送られクロック数がカウントされるカウンタ回路と、前
記クロッ、クイ6号のカウンタ量をとりだし、欠陥信号
との一致により距離信号としてとりだす一致回路並びに
前記距離信号を一時的に格納する第一のF工FOメモリ
とを備え、これら格納された信号をCPUに組込才れた
プログラムにもとすいてデータの解析処理を行いその結
果を主メモリに格納するようにしたことを特徴とする−
0かくて本発明によれば先の特公昭!;t−3’lOA
θ号公報と相異して最大lμ!ooHH間を処理する必
要がある場合膨大なメモリと超高速な処理が必要で現実
的には不可能であるのをアナログ比較回路によってデー
タ量を減少させることによって、A/D変換する範囲を
限定することなく処理が行なえるようにしたものである
。Thus, the present invention generates a threshold level signal and a gate range signal that change over time in response to a trigger signal generated based on a clock signal when processing an ultrasonic flaw detection signal via an electronic computer. a threshold circuit, a comparison circuit that receives the flaw detection signal and the threshold level signal and takes only the defect signal, a sample bold circuit and an A/Di conversion circuit that digitizes the defect (g), and a comparison circuit that digitizes the defect (g); a first FO memory for temporarily storing defective signals; a counter circuit to which the start and end signals of the gate range signal are sent and the number of clocks is counted; It is equipped with a matching circuit that takes out the counter amount and takes it out as a distance signal by matching it with a defect signal, and a first FO memory that temporarily stores the distance signal, and these stored signals can be incorporated into the CPU. The present invention is characterized in that the data analysis process is performed in the program, and the results are stored in the main memory.
0 Therefore, according to the present invention, the above-mentioned special public show! ;t-3'lOA
Unlike the θ publication, the maximum lμ! When it is necessary to process between ooHH and HH, a huge amount of memory and ultra-high-speed processing are required, which is practically impossible, but by reducing the amount of data using an analog comparison circuit, the range of A/D conversion is limited. This allows processing to be carried out without having to do anything.
本発明を図の実施例装置について説明すると、第7図は
超音波探傷信号処理装丁のブロック構成図である。図で
lは探触子52は超音波探傷器、3はクロック回路、弘
はトリガー回路、Sはスレッショルド回路、乙は比較回
路、りはサンプルホールド回路%gはA/D変換回路、
?は第1のF工FOメモリー、IOはカウンタ回路、l
/は一致回路、lコは第一のF工FOメモリである。To explain the present invention with reference to the illustrated embodiment, FIG. 7 is a block diagram of an ultrasonic flaw detection signal processing device. In the figure, l is the probe 52, an ultrasonic flaw detector, 3 is a clock circuit, Hiro is a trigger circuit, S is a threshold circuit, O is a comparison circuit, ri is a sample hold circuit, %g is an A/D conversion circuit,
? is the first FO memory, IO is the counter circuit, l
/ is a matching circuit, and l is the first FO memory.
その低電子計算機に属するものでは、13はCPU、/
4Iはメモリ、或は図示しないが入出力コントローラ′
、演算制御器等があり/3はパスラインであり、パスラ
インは一例として16ビツトのデータバスとlクピット
のアドレスバス並びにλビットのコントロールバスで構
成されるものとする。次に第1図について動作説明を行
う。Among those belonging to the low-electronic computers, 13 is the CPU, /
4I is a memory or an input/output controller (not shown)
, an arithmetic controller, etc., and /3 is a pass line, which is composed of, for example, a 16-bit data bus, a 1-bit address bus, and a λ-bit control bus. Next, the operation will be explained with reference to FIG.
まずOPU/、?がクロック回路3に始動信号を与える
ことによりクロック回路3においてクロック信号を発生
し、これをもとにトリガー回路グに与えてトリガー信号
を発生する。このトリガー信号を超音波探傷器−に与え
ることによりパルス信号としては探触子/から超音波を
被検査物に向って発生しこれにより被検査物の内部に存
する亀裂や空洞などが探触子lから探傷器コへの反射波
中に探傷信号として含まれてとりだされる。一方スレッ
ショルド回路3はトリガー回j11151Iよりのトリ
ガー信号を受けて時間的に変化するスレッショルドレベ
ル信号とゲート信号を発生し探傷器コに送られ探傷器コ
のORTディスプレイ上に探傷信号と同時に表示される
。First of all, OPU/? gives a start signal to the clock circuit 3, thereby generating a clock signal in the clock circuit 3, and based on this, the clock signal is given to the trigger circuit to generate a trigger signal. By applying this trigger signal to the ultrasonic flaw detector, an ultrasonic wave is generated as a pulse signal from the probe towards the object to be inspected. It is included as a flaw detection signal in the reflected wave from the flaw detector l to the flaw detector and extracted. On the other hand, the threshold circuit 3 receives the trigger signal from the trigger circuit j11151I and generates a threshold level signal and a gate signal that change over time, which are sent to the flaw detector and displayed simultaneously with the flaw detection signal on the ORT display of the flaw detector. .
又探傷器λよりの探傷信号とスレッショルド回路lより
発生せるスレッショルドレベル信号(!:ゲート範囲信
号つまりゲートの始動信号と終了信号は比較回路乙に送
られ欠陥信号だけが取り出される。この欠陥信号はアナ
ログ信号であるのでサンプルホールド回路7とA/D変
挽回路gによってディジタル化された電圧レベル信号と
してとりだされ第1のFIFOメモリープに一時的に格
納される。又、クロック回路よりのクロック信号はスレ
ッショルド回路よりのゲート範囲の始動信号によってカ
ウンタ回路ioに送られてクロック数がカウントされ始
め終了信号によりカウントアウトされる。カウンタ回路
10よりのカウンタ量と比較回路6よりの欠陥信号は一
致回路/lに与えられ°にのカウント数は距離信号つま
り探触子lから超音波が亀裂等にて反射され探傷器コで
受信されるまでの時間信号として取り出され、第一のF
IFOメモリー/コに一時的に格納される。尚この距離
信号はカウンタ回路ioで処理されるので数値処理が既
にディジタルでありA/D変換器は不用である。これら
第7と第一のFIFOメモリーも12に格納された信号
はCPUに組み込まれたプログラムに基づいてデーター
の解析処理を行ないその結果を主メモIJ−tllに格
納するもので必要に応じ読みだすことができる。In addition, the flaw detection signal from the flaw detector λ and the threshold level signal (!: gate range signal, that is, the gate start signal and end signal generated by the threshold circuit l) are sent to the comparator circuit B, and only the defect signal is extracted. Since it is an analog signal, it is extracted as a digitized voltage level signal by the sample and hold circuit 7 and the A/D conversion circuit g, and is temporarily stored in the first FIFO memory tape.Also, the clock signal from the clock circuit is sent to the counter circuit io by the start signal of the gate range from the threshold circuit, and the number of clocks starts counting and is counted out by the end signal. The number of counts given to /l and ° is taken out as a distance signal, that is, a time signal from the probe l to the time when the ultrasonic wave is reflected by a crack etc. and received by the flaw detector.
Temporarily stored in IFO memory/co. Note that since this distance signal is processed by the counter circuit io, the numerical processing is already digital and an A/D converter is unnecessary. The signals stored in the seventh and first FIFO memories 12 are analyzed based on the program built into the CPU, and the results are stored in the main memory IJ-tll and read out as necessary. be able to.
尚、第一図ハ従来のスレッショルドレベルにおける探傷
線図、第3図は同距離振幅補正回路を用いた探傷線図、
第9図は本発明による探傷線図である。−例としてトリ
ガー信号は60〜2 k OHz、サンプルホールドと
しては30μsecで欠陥信号を標本化し、/μsec
の間連続して量子化するこ1とによりその間の最大差圧
を抽出し、サンプルホールド回路で抽出された差圧を1
IsoμSecに2gビットの数値にアナロクーテデイ
ジタル変換部でディジタル化する。In addition, Fig. 1 is a flaw detection line diagram at the conventional threshold level, and Fig. 3 is a flaw detection line diagram using the same distance amplitude correction circuit.
FIG. 9 is a flaw detection diagram according to the present invention. - For example, the trigger signal is 60-2 kHz, the sample and hold is 30 μsec, and the defect signal is sampled /μsec.
The maximum differential pressure between them is extracted by continuously quantizing 1, and the differential pressure extracted by the sample hold circuit is quantized by 1.
The data is digitized into a 2g bit value in IsoμSec using an analog-to-digital converter.
この発明は、以上説明したように探傷信号をそのま\に
して林状エコーの2倍以上の信号を取り出すことができ
、さらに繰返し発生する高速のディジタル化された信号
をマイクロコンピュータ−にて処理できることより、安
価なシステムにて信頼性の高い超音波探傷信号を得るこ
とが不可能になった。As explained above, this invention is capable of extracting a signal that is more than twice as large as the forest echo without changing the flaw detection signal, and further processes the repeatedly generated high-speed digitized signal using a microcomputer. However, it has become impossible to obtain reliable ultrasonic flaw detection signals using an inexpensive system.
図面は本発明超音波探傷信号処理装置の実施例で第7図
はブロック4昔成図、第2図は従来のスレッショルドレ
ベルにおける探傷線図、第3図は同距離振幅補正回路を
用いた探傷線図、第9図は本発明による探傷線図、第S
図は説明のための信号例線図である。
図で/は探触子、コは超音波探傷器、3はクロック発生
回路、ダはトリガー回路、5はスレッショルドレベル発
生回路、乙は比較回路、りはサンプルホールド回路、g
はアナログディジタル変換回路、ワは第1のF工FOメ
モIJ−1/θはカウンタ一部、//は一致回路、/2
は第コのFIFOメモリー、13はCPU%lグはメモ
リー〇
#%軒出出願人 株式会社日本製鍋所The drawings show an embodiment of the ultrasonic flaw detection signal processing device of the present invention, and Fig. 7 is a diagram showing the construction of four blocks, Fig. 2 is a flaw detection diagram at a conventional threshold level, and Fig. 3 is a flaw detection diagram using the same distance amplitude correction circuit. The diagram, FIG. 9 is the flaw detection diagram according to the present invention, No. S
The figure is an example signal diagram for explanation. In the figure / is the probe, C is the ultrasonic flaw detector, 3 is the clock generation circuit, Da is the trigger circuit, 5 is the threshold level generation circuit, O is the comparison circuit, ri is the sample hold circuit, g
is the analog-to-digital conversion circuit, wa is the first FO memo IJ-1/θ is part of the counter, // is the matching circuit, /2
is the FIFO memory of No. 1, 13 is the CPU% lg is the memory
Claims (1)
理する場合においηクロック信号をもとに発生するトリ
ガ信号を受けて時間的に変化するスレッショルドレベル
信号とゲート範囲信号とを発生するスレッショルド回路
と、前記探m 信号とスレッショルドレベル信号とを与
えられ欠陥信号だけをとりだす比較回路と、前記欠陥信
号をディジタル化するサンプルホールド回路並びにA/
D変換回路と、前記ディジタル化せる欠陥信号を一時的
に格納する第1のF工FOメモリと、前記ゲート範囲信
号のスタート並びにエンド信号とクロック信号が送られ
クロック数がカウントされるカウンター回路と、前記ク
ロック信号のカウンタ量をとりだし欠陥信号との一致に
より距離信号としてとりだす一致回路並びに前記距離信
号を一時的に格納する第コのF工FOメモリとを備え、
これら格納された信号をCPHに組込まれたプログラム
にもとすいてデータの解析処理を行いその、結果を主メ
モリに格納するようにしたことを特徴とする超音波探傷
信号処理装置0(1) Threshold that generates a threshold level signal and gate range signal that change over time in response to a trigger signal generated based on an η clock signal when processing an ultrasonic flaw detection signal via an electronic computer. circuit, a comparison circuit that receives the probe signal and the threshold level signal and extracts only the defect signal, a sample and hold circuit that digitizes the defect signal, and an A/
a D conversion circuit, a first FO memory for temporarily storing the defect signal to be digitized, and a counter circuit to which the start and end signals of the gate range signal and the clock signal are sent and the number of clocks is counted. , comprising a matching circuit that extracts the counter amount of the clock signal and extracts it as a distance signal based on a match with the defect signal, and a fourth F-operation FO memory that temporarily stores the distance signal,
Ultrasonic flaw detection signal processing device 0 characterized in that these stored signals are applied to a program built into the CPH, data is analyzed, and the results are stored in the main memory.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58117122A JPS6010167A (en) | 1983-06-30 | 1983-06-30 | Ultrasonic flaw detection signal processor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58117122A JPS6010167A (en) | 1983-06-30 | 1983-06-30 | Ultrasonic flaw detection signal processor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6010167A true JPS6010167A (en) | 1985-01-19 |
JPH0123730B2 JPH0123730B2 (en) | 1989-05-08 |
Family
ID=14703973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58117122A Granted JPS6010167A (en) | 1983-06-30 | 1983-06-30 | Ultrasonic flaw detection signal processor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6010167A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61181958A (en) * | 1985-02-07 | 1986-08-14 | Tokyo Keiki Co Ltd | Rejection circuit for flaw detector |
JPH02110365A (en) * | 1988-10-20 | 1990-04-23 | Hitachi Constr Mach Co Ltd | Gate circuit of ultrasonic wave flaw detector |
JPH02116746A (en) * | 1988-10-27 | 1990-05-01 | Hitachi Constr Mach Co Ltd | Gate circuit for ultrasonic flaw detector |
JPH02206759A (en) * | 1989-02-06 | 1990-08-16 | Tokyo Electric Power Co Inc:The | Ultrasonic flaw detector |
US4986566A (en) * | 1988-07-29 | 1991-01-22 | Suzuki Jidosha Kogyo Kabushiki Kaisha | Suspending apparatus for vehicles |
-
1983
- 1983-06-30 JP JP58117122A patent/JPS6010167A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61181958A (en) * | 1985-02-07 | 1986-08-14 | Tokyo Keiki Co Ltd | Rejection circuit for flaw detector |
US4986566A (en) * | 1988-07-29 | 1991-01-22 | Suzuki Jidosha Kogyo Kabushiki Kaisha | Suspending apparatus for vehicles |
JPH02110365A (en) * | 1988-10-20 | 1990-04-23 | Hitachi Constr Mach Co Ltd | Gate circuit of ultrasonic wave flaw detector |
JPH02116746A (en) * | 1988-10-27 | 1990-05-01 | Hitachi Constr Mach Co Ltd | Gate circuit for ultrasonic flaw detector |
JPH02206759A (en) * | 1989-02-06 | 1990-08-16 | Tokyo Electric Power Co Inc:The | Ultrasonic flaw detector |
Also Published As
Publication number | Publication date |
---|---|
JPH0123730B2 (en) | 1989-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6010167A (en) | Ultrasonic flaw detection signal processor | |
IL91929A (en) | Apparatus and method for the acquisition and processing of data for analyzing flaws in material | |
JP3183701B2 (en) | Acoustic emission measurement processor | |
JP2891767B2 (en) | AE generation position locating device | |
JP3551390B2 (en) | Semiconductor inspection equipment | |
JP3185814B2 (en) | Waveform storage device | |
JPS62262185A (en) | Pipe line control system | |
JP2002196051A (en) | Device and method for testing semiconductor device operation | |
Wooh et al. | Time-frequency analysis of broadband dispersive waves using the wavelet transform | |
Han et al. | Design of a Portable Frame Integrality Testing System Based on SOPC | |
SU1115568A1 (en) | Multichannel device for determining coordinates of acoustic emission signal sources | |
CN118961901A (en) | Defect analysis method and related device based on multi-mode electromagnetic ultrasonic signal tracking | |
JPS643087Y2 (en) | ||
JP2633673B2 (en) | Surface inspection equipment | |
SU1270765A1 (en) | Statistical analyzer | |
Balzer et al. | Online data reduction with a DSP-FPGA multiprocessor system | |
SU1330539A1 (en) | Automated eddy-current flaw detector | |
JPH05157770A (en) | Logic analyser | |
JPS6385445A (en) | Ultrasonic measuring instrument | |
Balzer et al. | Blackfin-fpga multiprocessor system for ultrasonic-data reduction | |
JPH07113768A (en) | Mossbauer measurement device | |
JPS5517483A (en) | Signal wave shaping unit for pen recording oscillograph of non-destructive tester | |
JPH0498698A (en) | On-chip test system for semiconductor memory | |
JPH04324353A (en) | Eddy current flaw detection method for piping | |
JPS63136400A (en) | Search circuit for defect analysis memory |