[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6010164A - Flow communication type ion sensor - Google Patents

Flow communication type ion sensor

Info

Publication number
JPS6010164A
JPS6010164A JP58117060A JP11706083A JPS6010164A JP S6010164 A JPS6010164 A JP S6010164A JP 58117060 A JP58117060 A JP 58117060A JP 11706083 A JP11706083 A JP 11706083A JP S6010164 A JPS6010164 A JP S6010164A
Authority
JP
Japan
Prior art keywords
ion
hole
polyvinyl chloride
layer
insulating board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58117060A
Other languages
Japanese (ja)
Inventor
Tetsuya Katayama
潟山 哲哉
Kenichi Sugano
菅野 憲一
Masao Koyama
小山 昌夫
Toshio Takiguchi
瀧口 登志夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58117060A priority Critical patent/JPS6010164A/en
Publication of JPS6010164A publication Critical patent/JPS6010164A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To obtain a long life ion sensor generating no delamination of an ion responsive film, in forming the ion responsive film to the inner peripheral surface of the through-hole provided to an insulating board, by providing polyvinyl chloride (PVC) resin plates provided with through-holes to both sides of the insulating board. CONSTITUTION:A through-hole 12 is provided to an insulating board 11 comprising an epoxy resin disc and a Ag-layer 13 is formed to a part of the inner peripheral surface of said through-hole 12 while a AgCl-layer 14 is formed to the surface layer 13 by an electrolytic process and an ion responsive film 16 is formed so as to cover the layer 14 and the inner peripheral surface of the insulating board 11. In this case, recessed parts are formed to both sides of the insulating board 11 around the through-hole 12 and polyvinyl chloride resin rings 15, 15 having through-holes are inlaid with the recessed parts while the responsive film 16 consisting of ion selective substances, a plasticizer and a PVC resin is formed so as to cover the surfaces of the rings 15, the surface of the insulating board 11 and the layer 14. By this method, K<+>, Na<+> and Cl<->-selective electrodes 31, 32, 33 are formed and received in a case along with a similarily fabricated reference electrode 34 through an insulating material. By this method, a small long life flow communication type sensor capable of simultaneously measuring ions in serum is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、特定のイオン濃度を選択的に測定することが
出来るイオンセンサ休に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ion sensor capable of selectively measuring specific ion concentrations.

更に詳しくば、イオン感応胛の密着性が他れ。More specifically, the adhesion of the ion-sensitive blade is different.

従って、安定な電位を示し、長寿命である流通型イオン
センサ体に関する。
Therefore, the present invention relates to a flow type ion sensor body that exhibits a stable potential and has a long life.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

イオン選択性電極は従来より液中の管足のイオンの濃度
を選択的に定量出来るという特色があり。
Ion-selective electrodes have the characteristic of being able to selectively quantify the concentration of ions in tube feet in liquids.

これまでも、特定イオンの濃度のモニタ、水質分析など
の広い分野において使用されてきた。
Until now, it has been used in a wide range of fields such as monitoring the concentration of specific ions and analyzing water quality.

これは1例えば、陽イオン選択性電極の場合に対象とす
る陽イオンの活量a と陽イオン選択性+ 亀4夕が示す電位Eとの間には。
For example, in the case of a cation-selective electrode, there is a difference between the activity a of the cation of interest and the potential E shown by the cation selectivity + Kame 4.

E =E’+2.303(RT/zF)10g a (
1)十 のように、また、陰イオン選択性電極の場合には対象と
するlt:’t、イオンの活fL a−と陰イオン選択
性電極が示す電位との間には、 E = E’ −2,303(几T/ zF ) 10
g a −−(2)のように活:甲の対数と電位とが比
例する関係が成立しているので、電位の測定値から目的
とするイオンの活量が簡単に計3・f出来る。
E = E' + 2.303 (RT/zF) 10g a (
1) As in 10, and in the case of an anion-selective electrode, the relationship between the ion activity fL a- and the potential exhibited by the anion-selective electrode is E = E. ' -2,303 (几T/zF) 10
g a - Since a relationship is established in which the logarithm of active:A is proportional to the potential as shown in (2), the total activity of the target ion can be easily calculated from the measured value of the potential by 3·f.

尚、前記(11式および(2)式において、Rは気体定
数、Tは絶対温度、2はイオン価、Fはファラデ一定数
、Eoは系の標準鵠゛極電位である。
In the above equations (11 and (2)), R is a gas constant, T is an absolute temperature, 2 is an ionic valence, F is a Faraday constant, and Eo is a standard subpolar potential of the system.

このように、イオン選択性電極を用いれば電位を測定す
るだけで広い濃度範囲でのイオン濃度の定量が可能とな
る。また、イオン選択性電極を用い、電極部を小型にす
れば少量のサンプルでの測定が可能となる。このように
、イオン選択性7W極は便利なので、最近ではこれを医
療用、特に、血液中に存在するイオン、例えば、Na 
、 K 。
In this way, by using an ion-selective electrode, it becomes possible to quantify the ion concentration over a wide concentration range simply by measuring the potential. Furthermore, by using an ion-selective electrode and making the electrode part smaller, it becomes possible to measure a small amount of sample. As described above, the ion-selective 7W electrode is convenient and has recently been used for medical purposes, especially for ions present in blood, such as Na.
, K.

CI などの各種イオンの定量に用いる試みが盛んにな
っている。
Attempts to use it for quantifying various ions such as CI are becoming more popular.

また、実際に、前記イオン選択性電極を用いた分析装置
が多種卿考案されており、血液等の医療用の分析装置と
して、その用途が広まりつつある。
In fact, various types of analyzers using the ion-selective electrodes have been devised, and their use as medical analyzers for blood and the like is expanding.

これらのイオン選択性電極のうち、最近、内部電解質溶
液がなく、金属北直接、イオン感応膜を形成した部系な
構造のイオン選択性鏡極が、特に。
Among these ion-selective electrodes, recently there is no internal electrolyte solution, especially the ion-selective mirror electrode, which has a partial structure in which the metal north directly forms an ion-sensitive membrane.

電極の製造、取扱、保守岬が簡単なため、注目を浴びて
いる。
The electrode is attracting attention because it is easy to manufacture, handle, and maintain.

また、被測定液中の複数の押船のイオンのそれぞれの濃
度を速続的に測定する方法として、aj+1+定液の流
通路に複数のイオン選択性γtノ、極を並設し。
Further, as a method for rapidly measuring the concentration of each of the ions of a plurality of barges in the liquid to be measured, a plurality of ion-selective γt poles are arranged in parallel in the flow path of the constant liquid.

各々の電極からの電気信号を解析する。所謂、フローセ
ル方式が便利であるととが知られている。
Analyze the electrical signals from each electrode. It is known that the so-called flow cell system is convenient.

更に、最近、上記内部電解質溶液を有しないイオン選択
性電極を一体的にフローセル方式で結合せしめた流通型
イオンセンサ体が開発されている。
Furthermore, recently, a flow-type ion sensor body has been developed in which the ion-selective electrodes having no internal electrolyte solution are integrally combined in a flow cell manner.

この流通型イオンセンサ体は、被測定液の流通路面が複
数のイオン選択性?a、極の電極面によって措成されて
いるため、小型かつ多機能となり、しかも、イオン分析
に要する被測定液量が少量で足りるという利点を有して
いる。
This flow-type ion sensor body has multiple ion-selective flow paths for the liquid to be measured. a. Since it is formed by the electrode surface of the pole, it is compact and multifunctional, and has the advantage that only a small amount of liquid to be measured is required for ion analysis.

かかる流通型イオンセンサ体としては、金、銀等のy−
1金続のパイプをイオン感応膜で被覆したものが知られ
ている。
As such a flow-type ion sensor body, y-
It is known that a single-metal continuous pipe is coated with an ion-sensitive membrane.

然しなから、貴金属のパイプから成る流通型イオンセン
サ体は、多量の貴金属材料を使用するので高価であり、
しかも、金属とイオン感応膜との間の密着性が悪く、寿
命が短いという欠点を有していた。
However, a flow-through type ion sensor body made of a precious metal pipe is expensive because it uses a large amount of precious metal material.
Moreover, it has the disadvantage that the adhesion between the metal and the ion-sensitive membrane is poor and its life is short.

このため、金11・i)パイプの代りに、プラスチック
板の板面に被測定液が流通する貫通孔を設け、この貫通
孔内面の一部に金属薄膜な被着させたものを使用した電
極が提案されている。
For this reason, gold 11.i) Instead of a pipe, a through hole is provided on the surface of the plastic plate through which the liquid to be measured flows, and an electrode using a thin metal film coated on a part of the inner surface of the through hole is used. is proposed.

プラスチック板を用いる流通型イオンセンサ体にあって
目、金属材料の使用量が少ないので廉価となり、しかも
、イオン感応膜を金属面のみならす、金属f:1冒二1
47接するプラスチック面にも広けて被損せしめること
によって、イオン感応膜の密着性の改善を期1:!jす
ることが出来る。
The flow-through type ion sensor body uses a plastic plate, so it is inexpensive because it uses less metal material, and the ion-sensitive membrane is only on the metal surface.
47 Improving the adhesion of the ion-sensitive membrane by spreading the damage to the plastic surface that comes into contact with it Phase 1:! I can do j.

このような目的で、今日まで用いられてきたプラスチッ
ク板は、アクリル樹脂、フェノールtlb・1脂、エポ
キシ樹脂等であった。
Plastic plates that have been used to date for this purpose have been made of acrylic resin, phenol TLB-1 resin, epoxy resin, and the like.

然しなから、これらプラスチック板とイオン感応膜基材
のポリ塩化ビニル樹脂願との密着性は期待されたほど良
好ではなく、しばしば剥離を起し。
However, the adhesion between these plastic plates and the polyvinyl chloride resin film of the ion-sensitive membrane base material was not as good as expected, and peeling often occurred.

被測定液が金属板に短絡することによって電位が不安定
となり、イオンセンサ体の寿命を著しく低下せしめると
いう問題があった。
There is a problem in that short-circuiting of the liquid to be measured to the metal plate causes the potential to become unstable, significantly shortening the life of the ion sensor body.

〔発明の目的〕[Purpose of the invention]

本発明は、イオン感応膜の密着性が優れ、従って、安定
な電位を示し、長寿命である流通型イオンセンサ体を提
供することを目的とする。
An object of the present invention is to provide a flow-through type ion sensor body that has an excellent adhesion of an ion-sensitive membrane, exhibits a stable potential, and has a long life.

〔発明の概要〕[Summary of the invention]

本発明者らは上記目的を達成すべく、鋭意研究を重ねた
結果、絶縁材料の板に穿設された貫通孔を被測定液の流
通路とする流通型イオンセンサ侶・において、絶縁材料
の板の両側に貫通孔の穿設されたポリ塩化ビニル系樹脂
板を配設し、その表面にポリ塩化ビニル系樹脂膜からな
るイオン感応痕を塗布するとイオン感応膜の密着性が著
しく改善される事実を見い出し、本発明を完成した。即
ち、本発明の流通型イオンセンナ体は、絶縁材料からな
る板に穿設された貫通孔に沿って、該貫通孔の内周面の
少なくとも一部を形成するように配設された。v′1電
部利と;該絶Ka C1’ IIの板の両側に配設され
た貫通孔のあるポリ塩化ビニル系樹脂板と;該絶&1 
)rA旧の板に穿設された貫通孔の内周面を形成する導
電部拐表面、該導電部材表面に隣接する給綿材料の板表
面および該絶縁利料の板の両側に配設されたポリ塩化ビ
ニル系樹脂板の少なくとも一部を被4ちしたポリ塩化ビ
ニル系樹脂膜からなるイオン感応膜と;上記導電部利に
接続されたり−ド紳とから成る複数のイオン選択性電接
が:電気絶縁g1!材を介して、それぞれの貫通孔が被
測定液のδ11通銘4形成するべく相互に一体的に連結
されていることを特徴とする。
In order to achieve the above object, the present inventors have conducted extensive research, and as a result, we have developed a flow-through type ion sensor in which a through hole drilled in a plate of insulating material serves as a flow path for the liquid to be measured. If a polyvinyl chloride resin plate with through holes is provided on both sides of the plate and an ion-sensitive trace made of a polyvinyl chloride resin film is applied to the surface, the adhesion of the ion-sensitive membrane will be significantly improved. They discovered the facts and completed the present invention. That is, the flow-through type ion sensor body of the present invention is disposed along a through hole formed in a plate made of an insulating material so as to form at least a part of the inner circumferential surface of the through hole. v'1 Denberi; A polyvinyl chloride resin plate with through holes arranged on both sides of the board of Ka Zetsu Ka C1'II; Kai Zetsu &1
) rA conductive member surface forming the inner circumferential surface of the through hole drilled in the old plate, the cotton feeding material plate surface adjacent to the conductive member surface, and the insulation material plate disposed on both sides of the plate. an ion-sensitive membrane made of a polyvinyl chloride resin film covering at least a portion of the polyvinyl chloride resin plate; and a plurality of ion-selective electrical connections connected to the conductive parts. G: Electrical insulation g1! It is characterized in that the respective through holes are integrally connected to each other through a material so as to form a δ11 mark of the liquid to be measured.

次に5本発明のイオンセンナ体を図面を参照しながら説
1明する。
Next, the ion sensor body of the present invention will be explained with reference to the drawings.

第11ルジ、大発明に係るナトリウムイオン選択性電極
の一態様の断面概念図である。
11 is a cross-sectional conceptual diagram of one embodiment of a sodium ion selective electrode according to the great invention; FIG.

図中、エポキシ樹脂板11の中心部には貫通孔12が穿
設されており1貫通孔12に沿って被着された銀13は
該貫通孔12の内周面の一部を形成しCいる。
In the figure, a through hole 12 is bored in the center of the epoxy resin plate 11, and the silver 13 deposited along the through hole 12 forms a part of the inner peripheral surface of the through hole 12. There is.

この銀13の該表面は塩化銀層14で岱ゎれている。The surface of this silver 13 is covered with a silver chloride layer 14.

尚、エポキシ樹脂板11の両側はポリ塩化ビニル系樹脂
からなるリング15が埋設されるような4’M造とした
The epoxy resin plate 11 had a 4'M structure in which rings 15 made of polyvinyl chloride resin were embedded on both sides.

本発明において、ポリ塩化ビニル系樹脂からなるリング
15はイオン感応膜基材のポリ塩化ビニル系樹脂膜の密
着性を改善する役割をなす必須の4111成要素であり
、その形状はリング状にこだわらず四角形、三角形、星
形等いずれのものでもよい。
In the present invention, the ring 15 made of polyvinyl chloride resin is an essential 4111 component that plays a role in improving the adhesion of the polyvinyl chloride resin film of the ion-sensitive membrane base material, and its shape is not limited to a ring shape. It may be square, triangular, star-shaped, etc.

又、その配設法も埋設にこだわらずネジ止め等のいかな
る手段でもよい。この塩化銀層14とエポキシ樹脂板1
1とポリ塩化ビニル系樹脂リング15とからなる貫通孔
12の内周面はポリ塩化ビニル樹脂とモネンシンと可塑
剤のオルトントロフェニルオクチルエーテルとからなる
イオン感応膜16で被弘され1貫通孔12内を流れる゛
被測定液のイオンj“’i fffllll定而を形成
して面る。
Further, the method of disposing the device is not limited to burying, but any method such as screwing may be used. This silver chloride layer 14 and the epoxy resin plate 1
1 and a polyvinyl chloride resin ring 15, the inner peripheral surface of the through hole 12 is covered with an ion-sensitive membrane 16 made of a polyvinyl chloride resin, monensin, and a plasticizer, orthotrophenyl octyl ether. The ions of the liquid to be measured flowing through it form a constant state.

第2図は1本発明の好適態様に於いて用いられる照合電
極の一態様の断面概念図である。
FIG. 2 is a conceptual cross-sectional view of one embodiment of a reference electrode used in a preferred embodiment of the present invention.

図中、エポキシ樹脂板21の中心部には貫通孔22が穿
設されており、声通孔22に沿って被着された銀23は
該ft通孔の内周面の一部を形成している。
In the figure, a through hole 22 is bored in the center of the epoxy resin plate 21, and the silver 23 deposited along the voice through hole 22 forms part of the inner peripheral surface of the ft through hole. ing.

エポキシ樹脂板21の両側はポリ塩化ビニル系樹脂リン
グ25が埋設されている。この塩化銀層24とエポキシ
樹脂板21とポリ塩化ビニル系樹脂リング25とからな
るJj通孔22の内周面は塩化カリウムを含むポリ塩什
ビニル系樹脂膜26で被橙され、このポリ塩化ビニル系
41脂が26はシリコーン系高分子の保護膜27によっ
て保護されている。
Polyvinyl chloride resin rings 25 are embedded on both sides of the epoxy resin plate 21. The inner peripheral surface of the Jj through hole 22, which is made up of the silver chloride layer 24, the epoxy resin plate 21, and the polyvinyl chloride resin ring 25, is covered with a polyvinyl chloride resin film 26 containing potassium chloride. The vinyl resin 41 and the resin 26 are protected by a protective film 27 made of silicone polymer.

第3図は本発明のイオンセンナ体の一態様の断面を示す
概念Nである。
FIG. 3 is a concept N showing a cross section of one embodiment of the ion sensor body of the present invention.

図中、杓号31 、32 、33および34はそれぞれ
In the figure, ladle numbers 31, 32, 33 and 34 are respectively.

ナトリウム、カリウム、塩素イオン選択性電極および照
合弗、極を表す。
Represents a sodium, potassium, and chloride ion selective electrode and a reference electrode.

これらイオン選択性th極31.32.33および照合
T44% 34 k’r、 % % Ml’ Iq、音
1−tr)835を介して、それぞれの貫通孔が被測定
液の流通路を形成するべく相互に一体的に連結されてい
る。
Through these ion-selective th electrodes and reference T44%34k'r,%%Ml'Iq,sound1-tr)835, each through hole forms a flow path for the liquid to be measured. They are integrally connected to each other.

更に、この流通型イオンセンナ体は、該貫通孔と連結す
る被測定液流入口36および被測定液流出を外部に導出
する電気信号出力口を有する外装39で囲繞されている
Furthermore, this flow type ion sensor body is surrounded by an exterior 39 having a liquid to be measured inlet 36 connected to the through hole and an electric signal output port for guiding the outflow of the liquid to be measured to the outside.

それぞれのイオン選択性電4ヶのイオン感応膜部を形成
するには1例えば1次のような方法を用いることができ
る(第1図を用いて説明する)。
In order to form the ion-sensitive membrane portions of the four ion-selective electrodes, for example, the following method can be used (this will be explained with reference to FIG. 1).

先ず、ポリ塩化ビニル系樹脂とモネンシン、パリノマイ
シン、第4級アンモニウム塩等のイオン選択物質とアジ
ピン酸ジオクチル、フタル酸ジオクチル、オルトニトロ
フェニルオクチルエーテル等の可塑剤とをテトラヒドロ
フラン等の溶媒に溶解せしめて、イオン感応膜形成溶液
を杓る。
First, a polyvinyl chloride resin, an ion selective substance such as monensin, palinomycin, or a quaternary ammonium salt, and a plasticizer such as dioctyl adipate, dioctyl phthalate, orthonitrophenyl octyl ether are dissolved in a solvent such as tetrahydrofuran. , ladle the ion-sensitive membrane forming solution.

次に、この溶液をエポキシ樹脂板11の貫通孔12と塩
化銀層14およびポリ塩化ビニル糸わ1脂リング15の
内周面に塗布し、乾燥せしめると、イオン感応膜層が得
られる。
Next, this solution is applied to the through holes 12 of the epoxy resin plate 11, the silver chloride layer 14, and the inner circumferential surfaces of the polyvinyl chloride thread and the resin ring 15 and dried to obtain an ion-sensitive membrane layer.

本発明に於いては、ポリ塩化ビニル系樹脂リング15に
ポリ塩化ビニル系樹脂からなるイオン感応膜16を被覆
せしめるのでその密着性は極めて良好である。特に、ポ
リ塩化ビニル系リングにテトラヒドロフラン等の溶媒を
含むイオン感応膜形成溶液を塗布してイオン感応Jlす
\16を形成せしめると、溶媒によってポリ塩化ビニル
系樹脂リング15の表面層が溶)灯し、イオン感応膜1
6との密着性を一層高めることになる。
In the present invention, since the polyvinyl chloride resin ring 15 is coated with the ion-sensitive membrane 16 made of polyvinyl chloride resin, its adhesion is extremely good. In particular, when an ion-sensitive film-forming solution containing a solvent such as tetrahydrofuran is applied to a polyvinyl chloride ring to form an ion-sensitive layer 16, the surface layer of the polyvinyl chloride resin ring 15 is dissolved by the solvent. and ion sensitive membrane 1
This will further enhance the adhesion with 6.

〔発明の効果〕〔Effect of the invention〕

本発明のイオンセンサ体はイオン感応膜の密着性が優れ
、従って、安定な電位を示し、長寿命であるという効果
を奏し、その工業的価値は極めて大である。
The ion sensor body of the present invention has excellent adhesion of the ion-sensitive membrane, and therefore exhibits stable potential and long life, and has extremely great industrial value.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の流通型イオンセンサ体を実施例に沿って
詳説する。
EMBODIMENT OF THE INVENTION Hereinafter, the flow type ion sensor body of this invention is explained in detail along with an Example.

実施例および比較例 直径15朋ψ、厚さ3駅のエポキシ樹脂製円板の中心に
穿設された2、5關φの貫通孔を中心にして直径6朋、
深さ9.5xmのへこみ部をエポキシ樹脂製円板の両側
に設けて5貫通孔の内周面の一部にリード線が接続され
た露出面積24 mm ’、厚さU、 1朋の銀層を被
着せしめた後、この釧を陽極にして電解法によって銀層
表面に塩化銀層をイRた。次に外径5.8mm、内径3
龍、厚さ9.5mmのポリ塩化ビニル樹脂リングをエポ
キシ樹脂製円板の両側のへこみ部にはめ込んだ。このよ
うにして産油孔内周面に塩化銀を配設したエポキシ樹脂
製円板を4枚用意した。
Examples and Comparative Examples A through hole with a diameter of 6 mm centered on a 2.5 mm diameter through hole drilled in the center of an epoxy resin disk with a diameter of 15 mm and a thickness of 3 mm,
Recesses with a depth of 9.5 x m were provided on both sides of the epoxy resin disk, and a lead wire was connected to a part of the inner peripheral surface of the 5 through holes, with an exposed area of 24 mm', thickness U, and 1 mm silver. After the layer was deposited, a silver chloride layer was irradiated on the surface of the silver layer by an electrolytic method using the pot as an anode. Next, outer diameter 5.8mm, inner diameter 3
A polyvinyl chloride resin ring with a thickness of 9.5 mm was fitted into the recesses on both sides of the epoxy resin disk. In this way, four epoxy resin disks having silver chloride arranged on the inner peripheral surface of the oil producing hole were prepared.

一方、テトラヒドロフラン20 gに、それぞれ。Meanwhile, 20 g of tetrahydrofuran, respectively.

ポリ塩化ビニル樹脂1g、オルトニトロフェニルオクチ
ルエーテル2g、モネンシン130mgを1容解させて
ナトリウムイオン感応膜形成溶液、ポリ塩化ビニル樹脂
1.1g、アジピン酔ジオクチル1.7g、カリウムテ
トラフェニルポレート2mg、パリノマイシン10 m
 gを溶解させてカリウムイオン感応膜形成溶液、ポリ
塩化ビニル樹脂1.5g、メチルトリドデシルアンモニ
ウムクロライド500mgを溶解させて塩素イオン感応
膜形成溶液を調fij、l! した。
Dissolve 1 g of polyvinyl chloride resin, 2 g of orthonitrophenyl octyl ether, and 130 mg of monensin to create a sodium ion-sensitive membrane forming solution, 1.1 g of polyvinyl chloride resin, 1.7 g of adipine dioctyl, 2 mg of potassium tetraphenylporate, and palinomycin. 10 m
Prepare a chloride ion sensitive membrane forming solution by dissolving potassium ion sensitive membrane forming solution, 1.5 g of polyvinyl chloride resin, and 500 mg of methyltridodecylammonium chloride. did.

次に、得られたナトリウム、カリウム、塩素の各イオン
感応膜形成溶液を、それぞれ上記3枚のエポキシ樹脂製
円板の貫通孔とポリ塩化ビニル製リングの内周面に塗布
し、乾燥し、膜厚300μmのイオン感応膜を形成せし
め1本発明に係るイオン選択性電極を得た。残りの1枚
のエポキシ樹脂円板、塩化カリウムを含有するポリ塩化
ビニル膜1(200μm)の上にシリコーンゴム膜(R
TV) !(100μm)を同様な方法で形成せしめ照
合電極と″した。
Next, the obtained sodium, potassium, and chlorine ion-sensitive membrane forming solutions were respectively applied to the through holes of the three epoxy resin disks and the inner peripheral surface of the polyvinyl chloride ring, and dried. An ion-selective electrode according to the present invention was obtained by forming an ion-sensitive membrane having a thickness of 300 μm. A silicone rubber film (R
TV)! (100 μm) was formed in the same manner and used as a reference electrode.

これらイオン選択性電゛極と照合電極を、直径15闘φ
、厚さ3題のシリコーン・ゴム製円板の中心に2.5 
mmψの貫通孔が穿設された絶縁部材を介して、第3図
に示すようにそれぞれの貫通孔が被測定液の流通路を形
成するべく相互に一体的に連結せしめ1本発明のイオン
センサ体を得た。
These ion-selective electrodes and reference electrodes have a diameter of 15 mm.
, 2.5 in the center of a silicone rubber disk with a thickness of 3
As shown in FIG. 3, the through holes are integrally connected to each other to form a flow path for the liquid to be measured through an insulating member having through holes of mmψ. I got a body.

一方、比較のため、ポリ塩化ビニル樹脂製リングの代り
に、エポキシ樹脂製リングを用いたこと以外は上記と同
一の方法によって比較用イオンセンサ体を作成した。
On the other hand, for comparison, a comparative ion sensor body was created by the same method as above except that an epoxy resin ring was used instead of the polyvinyl chloride resin ring.

次に、以上の様にして作成した本発明および比較用のイ
オンセンサ体の被測定液流通路にナトリウム、カリウム
、塩素の各イオンを50mmol /l含む溶液を連続
的に通し、寿命試験を行った。
Next, a solution containing 50 mmol/l of each of sodium, potassium, and chlorine ions was continuously passed through the flow path of the liquid to be measured of the ion sensor bodies of the present invention and for comparison prepared as described above, and a life test was conducted. Ta.

その結果1本発明のイオンセンサ体は230日間連続測
定しても正常な測定値を示したが、比較用のイオンセン
サ体は11日間以内でイオン感応膜が剥離し、イオン濃
度の測定が不能となった。
Results 1: The ion sensor body of the present invention showed normal measurement values even after continuous measurement for 230 days, but the ion sensitive membrane of the comparative ion sensor body peeled off within 11 days, making it impossible to measure ion concentration. It became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明に係るナトリウムイオン選択性電極の
一態様の断面概念図である。 第2図は1本発明の好適態様に於いて用いられる照合電
極の一態様の断面概念図である。 第3図は本発明のイオンセンサ体の一態様の断面を示す
概念図である。 11.21・・・エポキシ樹脂板、12.22・・・貫
通孔。 13.23・・・銀板、 14%24・・・塩化銀層。 15.25・・・ポリ塩化ビニル樹脂製リング、16・
・・イオン感応膜、 26・・KCl含有ポリ塩化ビニル81脂〃マ。 27・・シリコン系高分子保護膜。 31・・・ナトリウムイオン選択性昂極、32・・・カ
リウムイオン選択性重積、33・・」4N、 k、’ 
/rオン選択性汁梗、34・・・照合電極、35 −シ
リコーンゴム製P絆部材。 36・・・被測定液流入口、37・・・被測定液出口。 代仰人弁理士則 近憲佑 (化1名)
FIG. 1 is a conceptual cross-sectional view of one embodiment of a sodium ion selective electrode according to the present invention. FIG. 2 is a conceptual cross-sectional view of one embodiment of a reference electrode used in a preferred embodiment of the present invention. FIG. 3 is a conceptual diagram showing a cross section of one embodiment of the ion sensor body of the present invention. 11.21...Epoxy resin plate, 12.22...Through hole. 13.23...Silver plate, 14%24...Silver chloride layer. 15.25...Polyvinyl chloride resin ring, 16.
...Ion-sensitive membrane, 26..KCl-containing polyvinyl chloride 81 resin. 27...Silicon-based polymer protective film. 31... Sodium ion selective pole, 32... Potassium ion selective intussusception, 33...'4N, k,'
/r On-selective sapling, 34... Reference electrode, 35 - P bond member made of silicone rubber. 36...Measurement liquid inlet, 37...Measurement liquid outlet. Representative Patent Attorney Rules Kensuke Chika (1 person)

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁材料で形成された板に穿設された貫通孔に沿
って、該貫通孔の内周面の少なくとも一部を形成するよ
うに配設された導電部材と;該絶縁材料の板の両側に配
設された貫通孔のあるポリ塩化ビニル系樹脂板と;該絶
縁材料の板に穿設された貫通孔の内面を形成する導電′
部拐表面、該導電部1表面に隣接する絶縁材料の板表面
および該絶縁材料の板の両側に配設されたポリ塩化ビニ
ル系樹脂板の少なくとも一部を被世したポリ塩化ビニル
系樹脂膜からなるイオン感応服と;上記導電部材に接続
されたリード線とから成る複数のイオン選択性電極が: 箪気絶り部材を介して、それぞれの貫通孔が被測定液の
流通路を形成するべく相互に一体的に連結されているこ
とを特徴とする流通型イオンセンサ体。
(1) A conductive member disposed along a through hole drilled in a plate made of an insulating material so as to form at least a part of the inner peripheral surface of the through hole; and a plate made of an insulating material. a polyvinyl chloride resin plate with through holes provided on both sides of the insulating material;
a polyvinyl chloride resin film covering at least a portion of a polyvinyl chloride resin plate disposed on the conductive part surface, the surface of an insulating material plate adjacent to the surface of the conductive part 1, and both sides of the insulating material plate; A plurality of ion-selective electrodes each comprising: an ion-sensitive garment consisting of; and a lead wire connected to the conductive member; A flow-through type ion sensor body characterized by being integrally connected to each other.
(2) プラスチック板に穿設された貫通孔の内周面に
設けられた照合電極が上記複数のイオン選択性電極と共
に電気絶縁部材を介して、それぞれの貫通孔が被測定液
の流通路を形成するべく相互性一体的に連結されている
特許請求の範囲第1項記載の流通型イオンセンナ体。
(2) A reference electrode provided on the inner circumferential surface of a through-hole drilled in the plastic plate is connected to the plurality of ion-selective electrodes via an electrically insulating member, so that each through-hole connects the flow path of the liquid to be measured. A flow-through type ion sensor body according to claim 1, which is interconnected to form a flow-through ion sensor body.
JP58117060A 1983-06-30 1983-06-30 Flow communication type ion sensor Pending JPS6010164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117060A JPS6010164A (en) 1983-06-30 1983-06-30 Flow communication type ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117060A JPS6010164A (en) 1983-06-30 1983-06-30 Flow communication type ion sensor

Publications (1)

Publication Number Publication Date
JPS6010164A true JPS6010164A (en) 1985-01-19

Family

ID=14702429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117060A Pending JPS6010164A (en) 1983-06-30 1983-06-30 Flow communication type ion sensor

Country Status (1)

Country Link
JP (1) JPS6010164A (en)

Similar Documents

Publication Publication Date Title
JPH032257B2 (en)
US4214968A (en) Ion-selective electrode
US5397451A (en) Current-detecting type dry-operative ion-selective electrode
US4528085A (en) Ion selective electrode and process of preparing the same
US20050006237A1 (en) Ion-selective solid-state polymeric membrane electrondes
JPH03503677A (en) reference electrode
SE450914B (en) ION SELECTIVE ELECTROD
EP0230572B1 (en) A method of manufacturing ion-selective electrodes for analyzing selected ions in solution
CN211122645U (en) A solid-state reference electrode and a multi-parameter integrated electrochemical sensor
US4859306A (en) Selectively ion-permeable dry electrodes for analyzing selected ions in aqueous solution
JP2003207476A (en) Ion sensor and biochemical autoanalyzer using the same
US9863908B2 (en) Low drift ion selective electrode sensors
JPS6010164A (en) Flow communication type ion sensor
JP2001281216A (en) Ion-selective electrode
EP0230573B1 (en) Selectively ion-permeable dry electrodes for analyzing selected ions in aqueous solution
JPS6010163A (en) Flow communication type ion sensor
JPS61176846A (en) Ion sensor body
JP2004053401A (en) pH ELECTRODE
JPS62852A (en) Flow type ion sensor body
JPH0519653B2 (en)
JPS62851A (en) Measuring method for ion concentration
Zhang et al. Multiplex Sensor for Ion Sensing Based on Printed Circuit Board
JPS61259157A (en) Flowing type ion sensor body
JPS601548A (en) Ion selective electrode
JPS59214752A (en) Sodium ion selective electrode