[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60106031A - Preprocessor of optical recording medium - Google Patents

Preprocessor of optical recording medium

Info

Publication number
JPS60106031A
JPS60106031A JP58212702A JP21270283A JPS60106031A JP S60106031 A JPS60106031 A JP S60106031A JP 58212702 A JP58212702 A JP 58212702A JP 21270283 A JP21270283 A JP 21270283A JP S60106031 A JPS60106031 A JP S60106031A
Authority
JP
Japan
Prior art keywords
recording medium
light
optical recording
radiation
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58212702A
Other languages
Japanese (ja)
Other versions
JPH0245247B2 (en
Inventor
Keiichi Yoshizumi
恵一 吉住
Noboru Yamada
昇 山田
Mutsuo Takenaga
睦生 竹永
Kenichi Nishiuchi
健一 西内
Toshiaki Kashihara
樫原 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58212702A priority Critical patent/JPS60106031A/en
Publication of JPS60106031A publication Critical patent/JPS60106031A/en
Publication of JPH0245247B2 publication Critical patent/JPH0245247B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1378Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To change at a high speed the entire surface of an optical disk into a state of a high optical constant by using an optical system which leads the light radiated from a light source onto an optical recording medium in a fixed form and then shifting the irradiating position of the light on the recording medium. CONSTITUTION:The light is dispersed in both the tangent and radius directions of a disk by means of cylindrical lenses 7 and 8. The dispersed light having a diameter larger than the aperture diameter of an objective lens 9 is obtained in the radius direction of the disk, and the peripheral light is cut off by the aperture of the lens 9. While the dispersed light of the tangent direction of the disk has a diameter smaller than the aperture diameter of the lens 9. For the distance between the lens 9 and the disk 5, the focus servo is applied by a control means 10 so that the recordingsurface of the disk is set at the focal position of parallel beams. It is possible to vary the sizes and distribution of the spots on the disk by changing both the focal distance and the focal position of the lenses 7 and 8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、記録前後で光学定数を変化させ記録または・
消去を行なうタイプの光記録媒体(光ディスク)におい
て、あらかじめ光ディスクの初期反射率又は初期透過率
を、ある一定のレベルに設定するための前処理装置に関
するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is a method for recording or recording by changing optical constants before and after recording.
The present invention relates to a preprocessing device for setting the initial reflectance or initial transmittance of an optical disc to a certain level in advance in an erasing type optical recording medium (optical disc).

従来例の構成とその問題点 これまでに開発されている光ディスクには大きくわけて
レーザ光等の照射によって、記録媒体に穴、あるいは泡
等を形成して反射率を変化させる方式のものと、記録媒
体の形状は、そのままに、n、に等の光学定数を変化さ
せ、その結果としての反射率変化あるいは透過率変化を
利用するものの2つがある。
Conventional Structures and Problems There are two main types of optical disks that have been developed so far: those that change the reflectance by forming holes or bubbles in the recording medium by irradiating it with laser light, etc.; There are two types of recording media, one in which the optical constants such as n and ni are changed while the shape of the recording medium is unchanged, and the resulting change in reflectance or transmittance is utilized.

このうち、後者に属する光ディスクの記録媒体としては
、カルコゲン系ガラス薄膜のように非晶質状態と結晶状
態との間の相変態を利用するもの、あるいはTeox(
0(x(2)を中心とする薄膜のように、薄膜中の結晶
性小粒子の結晶性および粒径の増減によるもの等が良く
知られており、光学定数の大なる状態から小なる状態、
あるいは小なる状態から大なる状態へと、いずれの方向
をも情報記録手段丑たは消去手段として用いることが可
能である。
Among these, optical disk recording media that belong to the latter category include those that utilize phase transformation between an amorphous state and a crystalline state, such as a chalcogen-based glass thin film, or Teox (
It is well known that changes in the crystallinity and particle size of small crystalline particles in a thin film, such as a thin film centered on 0(x(2)), are caused by changes in the optical constant from large to small. ,
Alternatively, any direction from the small state to the large state can be used as an information recording means or erasing means.

ところが、一般に、これらの薄膜は、その形成時には、
相対的に光学定数の小なる状態であるため、記録方向と
して光学定数の犬なる状態から小なる状態への変化を使
う場合には、ひとまず薄膜の光学定数を犬なる状態へ変
えておくことが必要である。光学定数を小なる状態から
犬なる状態に変化さぜるには、薄膜を熱し、徐々に冷や
すことによってなされる。光学定数を大なる状態から小
なる状態に変化させるには、薄膜を熱し、急冷すること
によってなされる。
However, in general, when forming these thin films,
Since it is a state in which the optical constant is relatively small, when using a change in the optical constant from a dog state to a small state as the recording direction, it is necessary to first change the optical constant of the thin film to a dog state. is necessary. Changing the optical constant from a small state to a large state is done by heating a thin film and gradually cooling it. The optical constant can be changed from a large state to a small state by heating the thin film and rapidly cooling it.

従って、記録、消去が可能な薄膜にプレヤーによって記
録、消去を行なう場合には、レーザ光を第1図に示すよ
うに1μm程度の小さいスポットPに絞り、第1図に示
すように、薄膜をより短時間で加熱、急冷して薄膜の光
学定数を小さくシ。
Therefore, when recording and erasing is performed using a player on a thin film that can be recorded and erased, the laser beam is focused on a small spot P of about 1 μm as shown in Fig. 1, and the thin film is The optical constants of thin films can be reduced by heating and rapidly cooling them in a shorter time.

情報を記録し、10μm程度の長さの細長いスポットP
′により、より長時間で加熱、徐冷し薄膜の光学定数を
大きくすることによって消去できる。
Information is recorded on a long and narrow spot P with a length of about 10 μm.
' can be erased by increasing the optical constant of the thin film by heating and slowly cooling it for a longer time.

ところで、薄膜の形成時に、光学定数をあらかじめ小な
る状態から犬なる状態にする為に、上記の細長いスポッ
ト(消去スポットと呼ぶ)によって行なうこともできる
が、これでは、1トラツクごとにしか処理できず、時間
がかかり、生産性が良くない。
By the way, when forming a thin film, it is possible to change the optical constant from a small state to a dog state in advance by using the above-mentioned elongated spot (called an erasing spot), but this can only process one track at a time. It is time consuming and not very productive.

壕だ、薄膜を基盤ごとオープンに入れて熱した場合には
、基盤が変型するなどの問題を生ずる。
However, if the thin film is placed in the open with the substrate and heated, problems such as deformation of the substrate will occur.

発明の目的 本発明は、光記録媒体、その中でも特に消去可能な記録
媒体の形成時の光学定数の小なる状態から、記録のでき
る光学定数の大なる状態に持ってゆくだめの前処理装置
であって、大パワーで連続出力のレーザ光を幅広くディ
スク上に照射し、光ディスクの全面を、高速で、光学定
数の高い状態に変化させる為の光記録媒体の前処理装置
を得ることを目的とする。
Purpose of the Invention The present invention is a pretreatment device for bringing optical recording media, especially erasable recording media, from a state where the optical constants are small when forming them to a state where the optical constants are large enough to enable recording. The purpose of this invention is to obtain a pretreatment device for optical recording media that can rapidly change the entire surface of an optical disk to a state with high optical constants by irradiating a wide range of high-power, continuous-output laser beams onto the disk. do.

発明の構成 上記目的を達する為、本発明は、放射光源とその放射光
源からの放射光を一定の形状として光記録媒体上に導く
光学系と、前記放射光の前記記録媒体上の照射位置を、
記録媒体、又は放射光を移動させることにより、相対的
に移動させる移動手段とを有した光記録媒体の前処理装
置である。
Structure of the Invention In order to achieve the above object, the present invention provides a radiation light source, an optical system that guides the radiation light from the radiation light source in a fixed shape onto an optical recording medium, and a radiation position of the radiation light on the recording medium. ,
This is a preprocessing device for an optical recording medium, which includes a recording medium or a moving means for relatively moving the recording medium by moving the radiation light.

実施例の説明 以下、図面に従って、本発明の詳細な説明を行なう。第
2図で、1はAr レーザで、出力は1W〜4Wである
。レンズ2によって、レーザ光ヲ直径30μηl〜60
μnl に絞り、回転するディスク6上に照射させる。
DESCRIPTION OF EMBODIMENTS The present invention will be described in detail below with reference to the drawings. In FIG. 2, 1 is an Ar laser with an output of 1W to 4W. Depending on the lens 2, the diameter of the laser beam is 30 μηl to 60 μηl.
The rotating disk 6 is irradiated with an aperture of .mu.nl.

4は移動台で、照射位置をディスクの半径上で移動させ
る。ディスク5は、モーター6によって回転させる。
Reference numeral 4 denotes a moving stage that moves the irradiation position on the radius of the disk. The disk 5 is rotated by a motor 6.

レーザ光のディスク上に照射される熱によって、ディス
ク上の記録薄膜は光学定数が小なる状態から犬なる状態
に変化してゆく。ディスクの内外周で照射条件を一定と
する為に1回転の線速度と、送りピンチを一定とする必
要がある。その為に、モーターの回転数、及び、送り速
度をディスクの照射位置の半径に反比例させた。この理
由は以下に説明する。線速度V、回転角速度をωとする
と。
Due to the heat irradiated onto the disk by the laser beam, the recording thin film on the disk changes from a state where the optical constant is small to a state where the optical constant is small. In order to keep the irradiation conditions constant on the inner and outer circumferences of the disk, it is necessary to keep the linear velocity of one rotation and the feed pinch constant. For this purpose, the rotation speed and feed rate of the motor were made inversely proportional to the radius of the irradiation position on the disk. The reason for this will be explained below. Let V be the linear velocity and ω be the rotational angular velocity.

v = rω となる。ここでrは、ディスクの照射位
置の半径である。従って、線速度Vを一定とする為には
、ω−ヱと、モーターの回転角速度をrに反比例させれ
ば良い。同様に送りピッチpは、送り速度をU、モータ
ー回転数を2πω とすると、p−Σ1;となる。ω=
7であるので、”” 2yrvとなり、u−□となる。
v = rω. Here, r is the radius of the irradiation position on the disk. Therefore, in order to keep the linear velocity V constant, it is sufficient to make ω-E and the rotational angular velocity of the motor inversely proportional to r. Similarly, the feed pitch p is p-Σ1; where the feed speed is U and the motor rotation speed is 2πω. ω=
7, so it becomes "" 2yrv, which becomes u-□.

従って、Vとpを一定とする為には、送り速度Uはrに
反比例させれば良い。
Therefore, in order to keep V and p constant, the feed rate U should be made inversely proportional to r.

回転の線速度をI Qm/ Bとした時の照射光のノく
ワー密度は1mVY/μm′程度のオーダーである。従
って、直径60μ?+1のスボ、ットを照射する場合、
必要な合計パワーは、直径60μ?IZの円内で均一な
パワー分布を仮定するならば、合計約3.6Wのレーザ
パワーが必要となる。
When the linear velocity of rotation is IQm/B, the particle density of the irradiated light is on the order of 1 mVY/μm'. Therefore, the diameter is 60μ? When irradiating +1 spots,
The total power required is 60μ in diameter? Assuming a uniform power distribution within the IZ circle, a total laser power of approximately 3.6 W is required.

ところで、第一実施例の方法では、ディスク上でのスポ
ットの形状は、円形で1強度分布は中心部を最大パワー
とするガウス分布となる。従って。
By the way, in the method of the first embodiment, the shape of the spot on the disk is circular, and the intensity distribution is a Gaussian distribution with the maximum power at the center. Therefore.

ディスク上では光学定数のムラが生ずることかある。Unevenness in optical constants may occur on the disk.

これを解決したのが第2実施例の方式で、照射光の形状
を、ディスクの半径方向では、比較的均一な強度分布を
持つ構成とした。第3図のように、円柱レンズ了、8に
よって、ディスクの半径方向、及び接線方向を発散光と
する。ディスクの半径方向ニついては、対物レンズ9の
開口径より大きい発散光とし、この対物レンズ9の開口
によって、周辺光を遮蔽する。ディスクの接線方向につ
いては、対物レンズ9の開口より小さく広−ける。従っ
て、対物レンズ9上での入射光の強度分布は、第4図の
ようになる。一方、対物レンズ9とディスク5の距離を
、第5図のように、平行光の焦点位置にディスク上の記
録面が来るように制御手段1゜によりフォーカスサーボ
をかける。そうすると、円柱レンズによって発散光とな
った入射光は、ディスク5より遠い所で絞られるのでデ
ィスク上では、一定の大きさの光像となる。この時のデ
ィスク上での光の強度分布は、第4図と同様、半径方向
にはほぼ均一に、接線方向には、はぼガウス分布となる
。使用する円柱レンズの焦点距離と位置を変えることに
よって、ディスク上でのスポットの大きさや分布を変え
ることができる。又、対物レンズとディスクとの距離を
変えることによってもスポットの形状は変えられる。
This problem was solved by the method of the second embodiment, in which the shape of the irradiated light was configured to have a relatively uniform intensity distribution in the radial direction of the disk. As shown in FIG. 3, the cylindrical lens 8 generates diverging light in the radial and tangential directions of the disk. In the radial direction of the disk, the divergent light is larger than the aperture diameter of the objective lens 9, and the aperture of the objective lens 9 blocks out peripheral light. In the tangential direction of the disk, the aperture can be made smaller than the aperture of the objective lens 9. Therefore, the intensity distribution of the incident light on the objective lens 9 is as shown in FIG. On the other hand, focus servo is applied to the distance between the objective lens 9 and the disk 5 by the control means 1° so that the recording surface on the disk is at the focal point of the parallel light, as shown in FIG. Then, the incident light that has become diverging light due to the cylindrical lens is condensed at a location far from the disk 5, so that it becomes an optical image of a constant size on the disk. At this time, the intensity distribution of the light on the disk is approximately uniform in the radial direction and has a Gaussian distribution in the tangential direction, as shown in FIG. By changing the focal length and position of the cylindrical lens used, the size and distribution of the spot on the disk can be changed. The shape of the spot can also be changed by changing the distance between the objective lens and the disk.

最適スポット形状をきめる為には、多くのパラメータを
考慮する必要がある。一つのパラメータは、記録媒体の
特性であ、る。記録媒体としては光学定数の変化温度、
変化速度、熱伝導度等、種々のものがあり、これらは最
終製品の用途によって最適なものが異なる。即ち、必要
な記録再生の線速度をとっても、デジタルビデオ情報の
実時間記録では、25m/s程度の線速度が必要だし、
データ記録等で、2m/s程度のものもある。他のパラ
メータとして、ディスクの大きさ、S/N、必要な処理
時間等がある。
In order to determine the optimal spot shape, it is necessary to consider many parameters. One parameter is the characteristics of the recording medium. As a recording medium, temperature changes in optical constants,
There are various factors such as rate of change and thermal conductivity, and the optimal one differs depending on the use of the final product. In other words, even if we consider the necessary linear velocity for recording and reproduction, real-time recording of digital video information requires a linear velocity of about 25 m/s.
For data recording, etc., there are speeds of about 2 m/s. Other parameters include disk size, S/N, required processing time, etc.

スポットの接線方向の最適な大きさは、線速度が10m
 / sの時、記録媒体の光学定数の変化の難易度によ
って、5μm〜60μm程度に変わる。又、スポットの
半径方向の大きさは、大きい程、送りピッチを大きくで
き、従って、処理時間が早くなるが、必要なパワー密度
と、レーザパワーの関係から、6μm〜100μm 程
度まで可能である。又、半径方向のスポットの大きさよ
り送9ピッチを短くすればする程、全体を均一に光学定
数の大なる状態にすることが可能となるが、これも処理
時間とのかね合いである。
The optimum size of the spot in the tangential direction is when the linear speed is 10 m.
/s, it varies from about 5 μm to 60 μm depending on the difficulty of changing the optical constants of the recording medium. Also, the larger the spot size in the radial direction, the larger the feed pitch can be, and therefore the faster the processing time, but depending on the relationship between the required power density and laser power, it is possible to have a spot size of about 6 μm to 100 μm. Also, the shorter the feed pitch is compared to the size of the spot in the radial direction, the more uniformly the optical constant can be made over the entire area, but this also has to do with the processing time.

本実施例においては、放射光源として、4Wのアルゴン
レーザを使用した。又、フォーカスサーボは、He −
N eレーザ光を対物レンズの光軸からずらせて入射さ
せ、記録面と対物レンズとの距離の変化が、反射光の光
路のずれとなるのを2分割の光検出器で検知し、誤差信
号とした。この誤差信号を増巾、及び位相補償した信号
を対物レンズを上下に動かすフォーカスアクチュエータ
に加える点は、良く知られたフォーカスサーボと全く同
じである。
In this example, a 4W argon laser was used as the radiation light source. Also, the focus servo is He −
The Ne laser beam is incident on the objective lens at a position shifted from the optical axis, and a two-split photodetector detects that a change in the distance between the recording surface and the objective lens results in a shift in the optical path of the reflected light, and an error signal is detected. And so. This is exactly the same as the well-known focus servo in that this error signal is amplified and the phase compensated signal is applied to a focus actuator that moves the objective lens up and down.

本実施例においては、He −N eレーザの反射光、
又は、透過光の強度を光検出器で検知し、このHe−N
oレーザの出射部に取付けられたビームスプリッタから
の反射光の強度との比を測定して、記録面の反射率、及
び透過率を測定した。He −N @レーザ自体のパワ
ードリフト分は、これを分母としているので、反射率や
透過率の測定誤差とはならない。
In this example, the reflected light of the He-Ne laser,
Alternatively, the intensity of the transmitted light is detected with a photodetector, and this He-N
o The reflectance and transmittance of the recording surface were measured by measuring the ratio to the intensity of the reflected light from the beam splitter attached to the emission part of the laser. Since the power drift of the He-N@laser itself is used as the denominator, it does not become an error in the measurement of reflectance or transmittance.

記録媒体としては、蒸着した後、単にレーザ光で光学定
数を大なる状態にするのではなく、一旦、レーザ光で光
学定数の小なる状態にしだ後、光学定数を大なる状態に
した方が良すものや、光学定数を大なる状態から小なる
状態という変化を数回繰り返した方が良いものがある。
For recording media, it is better to use a laser beam to first reduce the optical constants and then increase the optical constants, rather than simply increasing the optical constants using a laser beam after vapor deposition. There are some things that are good, and some things that it is better to repeat changing the optical constant from a large state to a small state several times.

その為に、第6図に示すように、前述の光学定数を大な
る状態にする為のスポットbの前に、光学定数を小なる
状態にする為の接線方向に短く、急激に加熱、急冷ので
きるスポットをつけ加えることができる。
For this purpose, as shown in Figure 6, before spot b, which is used to make the optical constant large, is heated and rapidly cooled in a short and tangential direction to make the optical constant small. You can add spots where you can.

第7図は、本発明第3実施例における要部光学系の構成
図で、第6図に示すようなスポット形状を得ることので
きる光学系を示す。スポラ)aは対物レンズ9に、トラ
ックの接線方向のみ平行なビームを入射させ、対物レン
ズの焦点位置に記録媒体を置くことによって得られる。
FIG. 7 is a block diagram of the main optical system in the third embodiment of the present invention, and shows an optical system that can obtain a spot shape as shown in FIG. 6. Spora) a is obtained by making a parallel beam enter the objective lens 9 only in the tangential direction of the track, and placing the recording medium at the focal point of the objective lens.

円柱レンズ13と16によって、幅の広い平行光が得ら
れる。トラックの半径方向は、円柱レンズ14で発散光
とする。12はλ/2板で、Ar レーザ1の光の偏光
方向を90°回転させ、偏光プリズム16によって2つ
の光を合成させる。17はダイクロイックミラーで、H
e −N eレーザの+333 rlmの波長を反射し
、Ax レーザの470−530nm の波長の光を透
過させる。
The cylindrical lenses 13 and 16 provide wide parallel light. The cylindrical lens 14 causes the light to diverge in the radial direction of the track. 12 is a λ/2 plate which rotates the polarization direction of the light from the Ar laser 1 by 90 degrees and combines the two lights by a polarizing prism 16. 17 is a dichroic mirror, H
It reflects the +333 rlm wavelength of the e-N e laser and transmits the 470-530 nm wavelength light of the Ax laser.

Ar レーザの2つの光、及び、He −N eレーザ
の光は、互いに対物レンズ9に対して傾けて入射させる
ことによって、第6図のようにスポットの位置を分離さ
せることができる。各スポット間の距離は、互いの入射
光軸の傾き角と、対物レンズ9の焦点距離の積で表わさ
れる。
By making the two lights of the Ar laser and the light of the He-N e laser enter the objective lens 9 at an angle, the spot positions can be separated as shown in FIG. The distance between each spot is represented by the product of the inclination angle of their respective incident optical axes and the focal length of the objective lens 9.

第6図のような配置をとることによって、He−Neレ
ーザのスボッ)cによって、光学定数を大なる状態にす
る処理後の反射率や、透過率が測定可能となる。
By adopting the arrangement as shown in FIG. 6, it becomes possible to measure the reflectance and transmittance after processing to increase the optical constant using the He--Ne laser beam.

第8図は、スポット形状のモニター光学系で、対物レン
ズへの入射光、及び、記録媒体6からの反射光を、ビー
ムスプリッタ18でごく一部分離し、顕微鏡21によっ
てスポット形状をモニターできる。又、記録媒体5から
の反射光の一部は、ミラー19で反射しモニターした時
、スポ7)aの反射光もトラックの接線方向に小さく絞
れるようにフォルカス位置を調整することによって、フ
ォーカス状態を正しく合わせることができる。
FIG. 8 shows a spot shape monitoring optical system, in which a small portion of the light incident on the objective lens and the reflected light from the recording medium 6 are separated by a beam splitter 18, and the spot shape can be monitored by a microscope 21. Also, when a part of the reflected light from the recording medium 5 is reflected by the mirror 19 and monitored, the focus state is adjusted by adjusting the focus position so that the reflected light from the spot 7)a is also narrowed down to a small extent in the tangential direction of the track. can be matched correctly.

発明の効果 本発明によれば、光ディスクの記録媒体、その中でも特
に消去可能な記録媒体の形成時の光学定数の低い状態か
ら、記録のできる光学定数の高い状態に持ってゆくだめ
の工程において、高速、かつ均一な処理ができる光記録
媒体の前処理装置を得ることができ、その工業的利用価
植は大きい。
Effects of the Invention According to the present invention, in the process of bringing an optical disk recording medium, especially an erasable recording medium, from a state of low optical constants during formation to a state of high optical constants that allows recording, It is possible to obtain an optical recording medium preprocessing device that can perform high-speed and uniform processing, and its industrial utility value is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、消去可能光ディスクの記録時と消去時のスポ
ットの形状を示す説明図、第2図、第3図は、それぞれ
本発明の前処理装置の第−及び第二実施例の構成図、第
4図、第6図は、本発明の第二、第三実施例の説明図、
第6図、第7図、第8図は本発明第三実施例の構成図で
ある。 1・・・・・・アルゴンレーザ、2・・・・・・レンズ
、3.19・・・・・・ミラー、4・・・・・・移動台
、5・・・・・・記録媒体、6・・・・・・モーター、
7,8,13,14,16・・・・・・円柱レンズ、9
・・・・・・対物レンズ、10・・・・・・フォーカス
アクチュエータ、11.18・・・・・・ヒームスフ9
リッタ、12・・・・・・λ/2板、16・・・・・・
偏光プリズム、17・・・・・・ダイクロイックミラー
、20・・・・・・モニター用対物レンズ、21・・・
・・・モニター用顕微鏡。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
面 P′ 第2図 荻′43因 5 第5図 第6図 昆7図 第8図
FIG. 1 is an explanatory diagram showing the shape of a spot during recording and erasing of an erasable optical disc, and FIGS. 2 and 3 are configuration diagrams of the first and second embodiments of the preprocessing apparatus of the present invention, respectively. , FIGS. 4 and 6 are explanatory diagrams of the second and third embodiments of the present invention,
FIG. 6, FIG. 7, and FIG. 8 are configuration diagrams of a third embodiment of the present invention. 1... Argon laser, 2... Lens, 3.19... Mirror, 4... Moving table, 5... Recording medium, 6... Motor,
7, 8, 13, 14, 16... Cylindrical lens, 9
...Objective lens, 10...Focus actuator, 11.18...Heams 9
liter, 12...λ/2 plate, 16...
Polarizing prism, 17... Dichroic mirror, 20... Objective lens for monitor, 21...
...Monitoring microscope. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Plane P' Fig. 2 Ogi'43 Cause 5 Fig. 6 Fig. 7 Fig. 8

Claims (1)

【特許請求の範囲】 (1)成るレベルよシ高い強度の放射光を照射する事に
よって反射率をR1からR2に、又は透過率をT、から
T2 に変化させて情報を記録し、前記レベルよシ低い
放射光を照射し、この反射光、又は透過光の強度変化か
ら情報を読み出すことのできる光記録媒体の形成時の初
期状態である反射率R05又は透過率T。を、反射率R
1、又は、透過率T1 にする為の前処理装置であって
、放射光源と、この放射光源からの第一の放射光を前記
光記録媒体上に導く光学系と、第一の放射光の前記光記
録媒体上の照射位置をその光記録媒体、又は第一の放射
光を移動させて、相対的に移動させる移動手段とを備え
、第一の放射光の前記相対的な移動の方向における長さ
が、半値全幅で5μm以上、前記相対的な移動の方向に
垂直な方向の長さが半値全幅で6μm以上とした光記録
媒体の前処理装置。 (2)第一の放射光の照射位置における光記録媒体の移
動線速度をほぼ一定とした特許請求の範囲第1項記載の
光記録媒体の前処理装置。 (3)第一の放射光の照射位置における光記録媒体の送
りピッチをほぼ一定とした特許請求の範囲第1項記載の
光記録媒体の前処理装置。 (4)記録媒体の送りピッチを、第一の放射光の照射位
置における相対的な移動方向に垂直な方向の長さよシ小
さくした特許請求の範囲第1項記載の光記録w体の前処
理装置。 (6)第一の放射光の光軸方向をZ軸とした直交座標系
x−y−zにおいて、第一の放射光はX方向にのみレン
ズ作用を持つ第一の一方向性レンズ、Y方向にのみレン
ズ作用を持つ第二の一方向性レンズヲ通過し、第三のレ
ンズによって光記録媒体上に集光させる構成とした特許
請求の範囲第1項記載の光記録媒体の前処理装置。 (6)第一の放射光を一部分離するか、又は他の放射光
源からの第二の放射光を第三のレンズを通過して、光記
録媒体上に照射させ、この反射光から前記第三のレンズ
と前記光記録媒体との距離を一定とする為の焦点誤差信
号の検出手段、前記第三のレンズを前記光記録媒体に対
しほぼ垂直な方向に移動させる電磁駆動手段、及び、前
記焦点誤差信号によって、前記電磁駆動手段を駆動させ
るサーボ回路を備えた特許請求の範囲第1項記載の光記
録媒体の前処理装置。 (7)放射光又は、第二の放射光の反射光又は透過光の
強度を検出し、前記光記録媒体の反射率又は透過率の測
定を可能とした特許請求の範囲第1項記載の光記録媒体
の前処理装置。 (8)照射位置における相対的な移動方向の長さが3η
Lμ以下の第三の放射光を有する特許請求の範囲第1項
記載の光記録媒体の前処理装置。 (9)第三の放射光の前記照射位置における相対的な移
動方向に、垂直な方向の長さを5μm以上とした特許請
求の範囲第1項記載の光記録媒体の前処理装置。 (10)第三の放射光は、X方向のみ一定の大きさのビ
ーム径を持つ平行光となるように置かれた一方向性ビー
ムエクスパンダ−系と、Y方向の第四の一方向性レンズ
を通過し、前記第三のレンズによって集光され、前記平
行光の焦点位置に光記録媒体を位置させた特許請求の範
囲第1項記載の光記録媒体の前処理装置。 (11)第一、及び第二の放射光、又は、第一9M二、
及び第三の放射光は、前記光記録媒体上で、互いに相対
的な移動方向に縦列に並ばせた特許請求の範囲第1項記
載の光記録媒体の前処理装置。 (12)第一、第二、第三のいずれかの放射光の経路中
に置かれ、入射光、又は、前記光記録媒体からの反射光
を一部分離する為のビームスプリッタと、該ビームスプ
リッタにより分離された光によって。 これらの放射光の前記光記録媒体上における形状をモニ
ターする手段を備えだ特許請求の範囲第1項記載の光記
録媒体の前処理装置。
[Claims] (1) Information is recorded by changing the reflectance from R1 to R2 or the transmittance from T to T2 by irradiating synchrotron radiation with a higher intensity than the level, and Reflectance R05 or transmittance T is the initial state at the time of formation of an optical recording medium that can be irradiated with very low radiation light and read information from changes in the intensity of reflected or transmitted light. , the reflectance R
1, or a pre-processing device for making the transmittance T1, which comprises a radiation source, an optical system that guides the first radiation from the radiation source onto the optical recording medium, and a radiation source for the first radiation. moving means for moving the irradiation position on the optical recording medium relatively by moving the optical recording medium or the first radiation light, in the direction of the relative movement of the first radiation light; A preprocessing device for an optical recording medium having a length of 5 μm or more in full width at half maximum, and a length in a direction perpendicular to the direction of relative movement of 6 μm or more in full width at half maximum. (2) The preprocessing device for an optical recording medium according to claim 1, wherein the moving linear velocity of the optical recording medium at the irradiation position of the first radiation light is substantially constant. (3) The preprocessing device for an optical recording medium according to claim 1, wherein the feeding pitch of the optical recording medium at the irradiation position of the first radiation light is substantially constant. (4) Pretreatment of the optical recording body according to claim 1, in which the feeding pitch of the recording medium is made smaller than the length in the direction perpendicular to the relative movement direction at the irradiation position of the first radiation light. Device. (6) In an orthogonal coordinate system x-y-z with the optical axis direction of the first synchrotron radiation as the Z axis, the first synchrotron radiation is a first unidirectional lens that has a lens action only in the X direction, 2. The preprocessing device for an optical recording medium according to claim 1, wherein the light passes through a second unidirectional lens having a lens action in only one direction, and is focused onto the optical recording medium by a third lens. (6) Part of the first radiation light is separated, or the second radiation light from another radiation source is passed through a third lens and irradiated onto the optical recording medium, and this reflected light is extracted from the a focus error signal detection means for keeping the distance between the third lens and the optical recording medium constant; an electromagnetic driving means for moving the third lens in a direction substantially perpendicular to the optical recording medium; 2. The optical recording medium preprocessing device according to claim 1, further comprising a servo circuit for driving said electromagnetic drive means based on a focus error signal. (7) The light according to claim 1, which detects the intensity of the emitted light or the reflected light or transmitted light of the second emitted light, and makes it possible to measure the reflectance or transmittance of the optical recording medium. Pre-processing device for recording media. (8) The length in the relative movement direction at the irradiation position is 3η
The pre-processing device for an optical recording medium according to claim 1, which has a third emitted light of Lμ or less. (9) The preprocessing device for an optical recording medium according to claim 1, wherein the length of the third radiation light in the direction perpendicular to the relative moving direction at the irradiation position is 5 μm or more. (10) A unidirectional beam expander system placed so that the third synchrotron radiation becomes parallel light with a constant beam diameter only in the X direction, and a fourth unidirectional beam expander system in the Y direction. 2. The preprocessing device for an optical recording medium according to claim 1, wherein the optical recording medium is positioned at the focal point of the parallel light that passes through a lens and is focused by the third lens. (11) first and second synchrotron radiation, or first 9M2,
2. The preprocessing device for an optical recording medium according to claim 1, wherein the third radiation light and the third emitted light are arranged in a column in a direction of movement relative to each other on the optical recording medium. (12) A beam splitter placed in the path of any one of the first, second, and third emitted light to partially separate the incident light or the reflected light from the optical recording medium; and the beam splitter. By light separated by. 2. The optical recording medium preprocessing apparatus according to claim 1, further comprising means for monitoring the shape of the emitted light on the optical recording medium.
JP58212702A 1983-11-11 1983-11-11 Preprocessor of optical recording medium Granted JPS60106031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58212702A JPS60106031A (en) 1983-11-11 1983-11-11 Preprocessor of optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58212702A JPS60106031A (en) 1983-11-11 1983-11-11 Preprocessor of optical recording medium

Publications (2)

Publication Number Publication Date
JPS60106031A true JPS60106031A (en) 1985-06-11
JPH0245247B2 JPH0245247B2 (en) 1990-10-08

Family

ID=16627010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58212702A Granted JPS60106031A (en) 1983-11-11 1983-11-11 Preprocessor of optical recording medium

Country Status (1)

Country Link
JP (1) JPS60106031A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120236A (en) * 1984-07-09 1986-01-29 Hitachi Ltd Initializing system of reversible optical disk
US5294523A (en) * 1988-08-01 1994-03-15 Matsushita Electric Industrial Co., Ltd. Optical information recording medium
EP0706179A2 (en) 1994-09-27 1996-04-10 Matsushita Electric Industrial Co., Ltd. Production process of optical information recording medium and production apparatus therefor
US5684778A (en) * 1994-09-27 1997-11-04 Matsushita Electric Industrial Co., Ltd. Initialization process for a phase change recording medium with a zero level drop in flash light emission
EP1369848A2 (en) * 1996-12-14 2003-12-10 Ricoh Company, Ltd. Method and device for initializing optical recording medium of phase change type, and optical recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163528A (en) * 1980-05-19 1981-12-16 Matsushita Electric Ind Co Ltd Recording and erasing method of optical information

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163528A (en) * 1980-05-19 1981-12-16 Matsushita Electric Ind Co Ltd Recording and erasing method of optical information

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120236A (en) * 1984-07-09 1986-01-29 Hitachi Ltd Initializing system of reversible optical disk
US5294523A (en) * 1988-08-01 1994-03-15 Matsushita Electric Industrial Co., Ltd. Optical information recording medium
EP0706179A2 (en) 1994-09-27 1996-04-10 Matsushita Electric Industrial Co., Ltd. Production process of optical information recording medium and production apparatus therefor
US5684778A (en) * 1994-09-27 1997-11-04 Matsushita Electric Industrial Co., Ltd. Initialization process for a phase change recording medium with a zero level drop in flash light emission
EP1369848A2 (en) * 1996-12-14 2003-12-10 Ricoh Company, Ltd. Method and device for initializing optical recording medium of phase change type, and optical recording medium
EP1369848A3 (en) * 1996-12-14 2004-03-24 Ricoh Company, Ltd. Method and device for initializing optical recording medium of phase change type, and optical recording medium

Also Published As

Publication number Publication date
JPH0245247B2 (en) 1990-10-08

Similar Documents

Publication Publication Date Title
JPH0777025B2 (en) Optical recording / reproducing device
JP4286457B2 (en) Servo signal writing method to magnetic tape
JPS60106031A (en) Preprocessor of optical recording medium
JPH057690B2 (en)
US5478701A (en) Method for fabricating a read only optical disc
JPS58100248A (en) Optical information recording medium
JPS59152528A (en) Optical recorder
JPH10188280A (en) Initializing device and information recording carrier
JPH0449060B2 (en)
JP2737379B2 (en) Initialization device for rewritable optical disk
JPS6320725A (en) Controlling method for coincidence of focus between two laser beam heads
JPS61206937A (en) Optical information processor
JPS6292144A (en) Optical recording and reproducing device having plural optical spots
JP3298792B2 (en) Optical recording medium initialization method
JP2002023379A (en) Optical disk, exposure device and exposure method
JP3640013B2 (en) Initialization method for phase change optical disc and initialization apparatus using the initialization method
JPS62289944A (en) Preprocessor for optical recording medium
JPS61289547A (en) Optical information recording and reproducing device
JPS63251939A (en) Optical information recorder
JP2000149304A (en) Optical disk device and optical pickup as well as hemispherical lens used for the same and its production
JPS62289942A (en) Preprocessing method for optical recording medium
JPS6242342A (en) Erasure optical head
JPH10241212A (en) Phase transition type optical disk initialization device
JPS61210536A (en) Erasure optical head
JPH11203735A (en) Laser cutting device