JPS648074B2 - - Google Patents
Info
- Publication number
- JPS648074B2 JPS648074B2 JP6988881A JP6988881A JPS648074B2 JP S648074 B2 JPS648074 B2 JP S648074B2 JP 6988881 A JP6988881 A JP 6988881A JP 6988881 A JP6988881 A JP 6988881A JP S648074 B2 JPS648074 B2 JP S648074B2
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- laser
- amorphous alloy
- inner peripheral
- peripheral surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 35
- 239000010959 steel Substances 0.000 claims description 35
- 239000000843 powder Substances 0.000 claims description 12
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims 1
- 238000002844 melting Methods 0.000 description 12
- 230000008018 melting Effects 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 238000001816 cooling Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【発明の詳細な説明】
本発明はレーザーを使用して鋼管の内周面を非
晶質化する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of amorphizing the inner peripheral surface of a steel pipe using a laser.
従来、たとえば溶融状態にある金属を急速に冷
却して原子配列が不規則で結晶組織をもたぬいわ
ゆる非晶質金属(アモルフアスメタル)とするこ
とにより、通常の結晶組織を有する金属に比べて
強度、靭性、硬度および耐食性等が格段に向上す
ることは公知である。 Conventionally, for example, by rapidly cooling a metal in a molten state to form a so-called amorphous metal, which has an irregular atomic arrangement and no crystalline structure, It is well known that strength, toughness, hardness, corrosion resistance, etc. are significantly improved.
本発明はレーザーが金属の局部表面を急速に加
熱溶融できる点、および鋼管を急速回転させるこ
とにより溶融金属を急速凝固できる点を利用し
て、鋼管の内周面に前記非晶質金属の被覆層を形
成し、耐食、耐摩耗性等を付与することを特徴と
するもので、以下図面に基づいて説明する。 The present invention takes advantage of the fact that a laser can rapidly heat and melt the local surface of a metal, and that the molten metal can be rapidly solidified by rapidly rotating the steel pipe. It is characterized by forming a layer to impart corrosion resistance, abrasion resistance, etc., and will be explained below based on the drawings.
第1図および第2図は本発明の一実施例におけ
る主要部を示し、第1図は縦断正面図、第2図は
第1図−線における断面図で、内周面を非晶
質化すべき鋼管1は中心軸を水平方向にして長さ
方向両端部下方をドライブロール2で支承され、
電動機3から伝動装置4を介して前記ドライブロ
ール2を回転することにより、鋼管1は中心軸を
回転中心として矢印方向に高速回転するように設
けられており、2′は振動防止用のスタビライザ
ーロールである。 Figures 1 and 2 show the main parts of an embodiment of the present invention, with Figure 1 being a vertical front view and Figure 2 being a sectional view taken along the line - Figure 1. A steel pipe 1 is supported by drive rolls 2 at the bottom of both lengthwise ends with the central axis in the horizontal direction.
By rotating the drive roll 2 from the electric motor 3 via the transmission device 4, the steel pipe 1 is provided to rotate at high speed in the direction of the arrow around the central axis, and 2' is a stabilizer roll for vibration prevention. It is.
前記鋼管1内には中空の回転軸5が鋼管1と同
心になるようその一端部に装置した軸受6および
図示しないその他の軸受等に軸支され、電動機7
から伝動装置8を介して矢印で示すように前記鋼
管1の回転方向に対して逆方向に高速回転するよ
うに設けられ、その回転軸5の一端側中空内部に
は軸方向に対して45゜傾斜するミラー11を固定
して、回転軸5の他端側前方に設置した公知のた
とえばCO2ガスレーザーを発生するレーザーヘツ
ド10から発射される軸方向のレーザーを半径方
向に変換し、さらに回転軸5側壁部に固定したレ
ンズ12で鋼管1の内周面上に焦点を結ぶように
してある。 Inside the steel pipe 1, a hollow rotating shaft 5 is rotatably supported by a bearing 6 installed at one end of the steel pipe 1 and other bearings (not shown) so as to be concentric with the steel pipe 1, and an electric motor 7 is mounted.
The steel pipe 1 is provided to rotate at high speed in a direction opposite to the rotational direction of the steel pipe 1 as shown by an arrow through a transmission device 8, and the hollow interior of one end of the rotating shaft 5 has an angle of 45° with respect to the axial direction. The tilting mirror 11 is fixed, and the axial laser emitted from a known laser head 10 that generates, for example, a CO 2 gas laser, which is installed in front of the other end of the rotating shaft 5, is converted into the radial direction, and further rotated. A lens 12 fixed to the side wall of the shaft 5 focuses on the inner peripheral surface of the steel pipe 1.
前記回転軸5の一端側中心部にはガス供給管1
3を挿入し、そのガス供給管13の途中にパウダ
ーホツパ14、先端部に前記鋼管1内周面上に照
射されるレーザーの近傍に開口するリング状の耐
熱材料製ノズル15を設けて、たとえばArまた
はN2等の不活性雰囲気ガスをガス供給管13か
ら供給し、途中のパウダーホツパ14から非晶質
合金粉末を吸引してノズル15から噴出するよう
にしてある。 A gas supply pipe 1 is provided at the center of one end of the rotating shaft 5.
3, a powder hopper 14 is provided in the middle of the gas supply pipe 13, and a ring-shaped nozzle 15 made of a heat-resistant material is provided at the tip end in the vicinity of the laser irradiated onto the inner peripheral surface of the steel pipe 1. Alternatively, an inert atmospheric gas such as N 2 is supplied from the gas supply pipe 13, and the amorphous alloy powder is sucked from the powder hopper 14 in the middle and ejected from the nozzle 15.
なお前記回転軸5はたとえば図示のピニオンラ
ツク式あるいはねじ式等の軸方向送り装置9によ
り、レーザーの焦点が前記鋼管1に対して軸方向
に相対移動するように設けられているが、前記送
り装置9は鋼管1側に設けてもよい。 The rotating shaft 5 is provided with an axial feed device 9 such as a pinion rack type or a screw type as shown in the figure so that the focal point of the laser moves relative to the steel pipe 1 in the axial direction. The device 9 may be provided on the steel pipe 1 side.
上記の装置によりレーザーヘツド10から照射
されたレーザーはミラー11で方向変換し、レン
ズ12で絞られて高エネルギとなり、鋼管1内周
面上に焦点を結んで第3図に示すようにその局部
表面を溶融すると共に、前記パウダーホツパ14
中の非晶質合金粉末がガス供給管13から送られ
る不活性雰囲気ガスに吸引されてノズル15から
噴出し、不活性ガス雰囲気中で前記レーザーによ
り瞬時に溶融されて前記鋼管1内周面の溶融部1
6に噴出圧力と遠心力とにより吹き付けられ、鋼
管1と回転軸5は相互に反対方向に高速回転して
いるので前記溶融部16は回転方向に急速に移動
し、かつ前記送り装置9により第4図に示すよう
に相対的に1回転するごとに局部的溶融部16は
軸方向に所定ピツチずつ相対移動して鋼管1内周
面の長さの一部または全部にわたつて急冷却組織
すなわち非晶質合金層17を形成する。 The laser irradiated from the laser head 10 by the above device is changed in direction by the mirror 11, condensed by the lens 12, becomes high energy, and is focused on the inner circumferential surface of the steel pipe 1, as shown in FIG. While melting the surface, the powder hopper 14
The amorphous alloy powder inside is sucked by the inert atmosphere gas sent from the gas supply pipe 13 and ejected from the nozzle 15, and is instantaneously melted by the laser in the inert gas atmosphere to form the inner peripheral surface of the steel pipe 1. Melting part 1
6 by jet pressure and centrifugal force, and since the steel pipe 1 and the rotating shaft 5 are rotating at high speed in mutually opposite directions, the molten part 16 moves rapidly in the rotational direction, and the feeding device 9 As shown in Fig. 4, each time the local molten part 16 makes one relative rotation, the local molten part 16 moves by a predetermined pitch in the axial direction, forming a rapidly cooling structure or An amorphous alloy layer 17 is formed.
なお前記急冷却組織が非晶質組織を呈するため
にはパウダーホツパ14の合金粉末の化学成分構
成をあらかじめ急冷により非晶質となるようたと
えばFe70Cr10P13C7、Fe58Cr10Mo12B20、
Fe77Cr5B18、Ni70Cr10P13C7あるいは
Fe50Cr25B20Mo5(いずれもat%)にしておくこと
と、冷却速度が非晶質化のための必要急冷度104
〜106℃/secであることが必要である。 In order for the rapidly cooled structure to exhibit an amorphous structure, the chemical composition of the alloy powder in the powder hopper 14 must be changed in advance so that it becomes amorphous by rapid cooling, for example, Fe 70 Cr 10 P 13 C 7 , Fe 58 Cr 10 Mo 12 . B20 ,
Fe 77 Cr 5 B 18 , Ni 70 Cr 10 P 13 C 7 or
Fe 50 Cr 25 B 20 Mo 5 (both at%) and the cooling rate required to achieve amorphous quenching degree 10 4
~10 6 °C/sec is required.
また前記第4図において溶融部16Cが溶融を
始めたときに1ピツチ前の溶融部16Bが既に凝
固を完了した状態であれば前記溶融部16Cによ
る熱影響により結晶化する虞れがある。 Furthermore, in FIG. 4, when the melting section 16C starts melting, if the melting section 16B one pitch before has already completed solidification, there is a risk of crystallization due to the thermal influence of the melting section 16C.
そのため本発明では鋼管1とレーザー焦点が逆
回転による高速スキヤニング(Scanning、走査)
を可能として溶融部16Bの急冷速度よりも速く
レーザーにより溶融部16Cの溶解を行ない、従
つて溶融部16Cの溶解時には前の溶融部16B
はまだ溶融状態にあり、その前の溶融部16Aは
レーザー加熱部分より離れた位置で急冷されて凝
固し、非晶質合金層17を形成するようになつて
いる。 Therefore, in the present invention, the steel pipe 1 and the laser focus perform high-speed scanning by rotating in reverse.
The melting zone 16C is melted by the laser faster than the quenching speed of the melting zone 16B. Therefore, when melting the melting zone 16C, the previous melting zone 16B
is still in a molten state, and the previous molten part 16A is rapidly cooled and solidified at a position away from the laser heated part to form an amorphous alloy layer 17.
非晶質化に必要な冷却時間は鋼種によつて若干
異なるが、現在までに判明している実験データか
らみて概ね1/10秒〜1/100秒程度とみられる。 The cooling time required for amorphization varies slightly depending on the type of steel, but based on the experimental data available to date, it appears to be approximately 1/10 second to 1/100 second.
それ故に理論的には前記本発明方法の場合にお
いて鋼管1と回転軸5とが逆回転することから
各々の回転速度は1/10〜1/100秒/1回転(600〜
6000rpm)で再加熱による結晶化を防止し得るこ
とになり、少くともこの速度が必要である。 Therefore, theoretically, in the case of the method of the present invention, since the steel pipe 1 and the rotating shaft 5 rotate in opposite directions, the respective rotational speeds are 1/10 to 1/100 seconds/rotation (600 to 1/100 seconds/rotation).
Crystallization due to reheating can be prevented at a speed of 6,000 rpm), and at least this speed is necessary.
以下実施例について説明する。 Examples will be described below.
被処理材料としての鋼管1は材質JIS・G3456
高温配管用炭素鋼鋼管2種(STPT38、C/
0.21、Si/0.28、Mn/0.6)からなる外径500mm×
厚さ19mm×長さ1500mmのものとし、内周面を機械
切削およびパフ研摩により表面あらさ6Sとし、
更に外径も切削仕上げして回転による振動を防止
した。 The steel pipe 1 as the material to be treated is JIS/G3456.
Two types of carbon steel pipes for high temperature piping (STPT38, C/
0.21, Si/0.28, Mn/0.6), outer diameter 500 mm
The thickness is 19mm x length 1500mm, and the inner surface is machine cut and puff polished to a surface roughness of 6S.
Furthermore, the outer diameter has been machined to prevent vibrations caused by rotation.
非晶質合金粉末は鋼管1内周面に耐食性を有す
る非晶質合金層を形成する意図をもつて化学成分
をCr10に調整したFe70Cr10P13C7(at%)からなる
直径80〜100μm粒のものを使用し、ガス供給管
13から95%のArと、還元性を与える目的でH2
を5%添加した不活性ガスと共にノズル15から
噴出させた。 The amorphous alloy powder has a diameter of Fe 70 Cr 10 P 13 C 7 (at%) whose chemical composition has been adjusted to Cr 10 with the intention of forming an amorphous alloy layer with corrosion resistance on the inner peripheral surface of the steel pipe 1. 80 to 100 μm particles are used, and 95% Ar and H 2 are added from the gas supply pipe 13 for the purpose of providing reducing properties.
was ejected from the nozzle 15 together with an inert gas added with 5%.
使用レーザーは出力30WのCO2ガスレーザーと
し、前記ミラー11、レンズ12を経て鋼管1の
内周面上より約0.2mm管壁内に入つた点で焦点を
結ぶように位置し調整し、振動による加熱位置の
ずれの影響を防ぐと共に材料面でのレーザー光の
反射によるエネルギのロス防止を図つた。 The laser used is a CO 2 gas laser with an output of 30 W, and it is positioned and adjusted so that it is focused at a point about 0.2 mm from the inner peripheral surface of the steel pipe 1 into the pipe wall through the mirror 11 and lens 12, and is vibrated. In addition to preventing the effects of heating position shifts caused by heating, we also aimed to prevent energy loss due to reflection of laser light on the material surface.
レーザー光束は管内周局部表面およびノズル1
5から噴出する非晶質合金粉末を加熱溶融するよ
う設置された。 The laser beam is directed to the local surface of the inner circumference of the tube and to the nozzle 1.
It was installed to heat and melt the amorphous alloy powder ejected from No. 5.
前記鋼管1と回転軸5とは互いに逆方向に同じ
く1500rpmの高速で回転させながら前記鋼管1内
周面局部表面と合金粉末の溶融を行ない、その溶
融幅に応じて回転軸5を軸方向に微調整しつつ移
動させ、鋼管1内周面を全長にわたり加工した。 The steel pipe 1 and the rotating shaft 5 are rotated in opposite directions at the same high speed of 1500 rpm to melt the inner peripheral surface of the steel pipe 1 and the alloy powder, and the rotating shaft 5 is rotated in the axial direction according to the melting width. The inner peripheral surface of the steel pipe 1 was processed over its entire length by moving the pipe while making fine adjustments.
この結果得られた鋼管1内周面の処理層はすぐ
れた耐食性能を有する厚さ約50μmの非晶質組織
であつた。 The treated layer on the inner peripheral surface of the steel pipe 1 thus obtained was an amorphous structure with a thickness of about 50 μm and excellent corrosion resistance.
本発明は以上のようにエネルギコントロールが
比較的容易なレーザーを使用して鋼管内周面に耐
食、耐摩耗性等すぐれた性質の非晶質合金層を形
成することができる。 As described above, the present invention can form an amorphous alloy layer with excellent properties such as corrosion resistance and wear resistance on the inner peripheral surface of a steel pipe using a laser whose energy can be controlled relatively easily.
第1図および第2図は本発明の一実施例におけ
る主要部を示し、第1図は縦断正面図、第2図は
第1図−線における断面図、第3図は第1図
部における拡大図、第4図は第3図部におけ
る溶融部の経過説明図である。
1:鋼管、2:ドライブロール、2′:スタビ
ライザーロール、3:電動機、4:伝動装置、
5:回転軸、6:軸受、7:電動機、8:伝動装
置、9:送り装置、10:レーザーヘツド、1
1:ミラー、12:レンズ、13:ガス供給管、
14:パウダーホツパ、15:ノズル、16,1
6A,16B,16C:溶融部、17:非晶質合
金層。
1 and 2 show the main parts in an embodiment of the present invention, FIG. 1 is a longitudinal sectional front view, FIG. 2 is a sectional view taken along the line shown in FIG. The enlarged view, FIG. 4, is an explanatory view of the progress of the melted part in the FIG. 3 section. 1: Steel pipe, 2: Drive roll, 2': Stabilizer roll, 3: Electric motor, 4: Transmission device,
5: Rotating shaft, 6: Bearing, 7: Electric motor, 8: Transmission device, 9: Feeding device, 10: Laser head, 1
1: mirror, 12: lens, 13: gas supply pipe,
14: Powder hopper, 15: Nozzle, 16,1
6A, 16B, 16C: Melt zone, 17: Amorphous alloy layer.
Claims (1)
溶融すると共に、前記レーザーにより該溶融部近
傍に供給した非晶質合金粉末を不活性ガス雰囲気
中にて溶融して前記鋼管の溶融部表面に吹き付け
ながら鋼管とレーザーの焦点を相対移動させ、レ
ーザー照射の移動方向とは逆方向に該鋼管の中心
軸を回転中心として鋼管を高速回転させることに
より前記溶融金属を急速凝固させ、前記鋼管内周
面の長さの一部または全部にわたつて非晶質合金
層を形成することを特徴とする鋼管内周面の非晶
質化方法。1 A laser is irradiated to melt the local surface of the inner peripheral surface of the steel pipe, and the amorphous alloy powder supplied near the melted part is melted by the laser in an inert gas atmosphere to melt the surface of the melted part of the steel pipe. The molten metal is rapidly solidified by moving the focal point of the laser relative to the steel pipe while spraying the steel pipe, and rotating the steel pipe at high speed about the central axis of the steel pipe in the opposite direction to the direction of movement of the laser irradiation. A method for amorphizing an inner circumferential surface of a steel pipe, the method comprising forming an amorphous alloy layer over part or all of the length of the circumferential surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6988881A JPS57185927A (en) | 1981-05-08 | 1981-05-08 | Formation of amorphous inside circumferential surface of steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6988881A JPS57185927A (en) | 1981-05-08 | 1981-05-08 | Formation of amorphous inside circumferential surface of steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57185927A JPS57185927A (en) | 1982-11-16 |
JPS648074B2 true JPS648074B2 (en) | 1989-02-13 |
Family
ID=13415718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6988881A Granted JPS57185927A (en) | 1981-05-08 | 1981-05-08 | Formation of amorphous inside circumferential surface of steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57185927A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4496607A (en) * | 1984-01-27 | 1985-01-29 | W. R. Grace & Co. | Laser process for producing electrically conductive surfaces on insulators |
JPS6123772A (en) * | 1984-07-09 | 1986-02-01 | Dai Ichi High Frequency Co Ltd | Method for performing metallic lining on inside surface of metallic pipe or the like |
EP0498286B1 (en) * | 1991-02-02 | 1995-01-11 | FRIEDRICH THEYSOHN GmbH | Process for manufacturing a wear-resistant coating |
IT1278354B1 (en) * | 1995-02-06 | 1997-11-20 | Sapim Amada Spa | PROCEDURE AND MACHINE FOR THE PRODUCTION OF SHEET METAL PANELS. |
BR0104705B1 (en) * | 2000-02-28 | 2012-02-07 | process for producing a cylindrical, partially cylindrical or hollow cylindrical part with an alloy surface. | |
US6689234B2 (en) | 2000-11-09 | 2004-02-10 | Bechtel Bwxt Idaho, Llc | Method of producing metallic materials |
US7341765B2 (en) * | 2004-01-27 | 2008-03-11 | Battelle Energy Alliance, Llc | Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates |
NL2015734B1 (en) * | 2015-11-06 | 2017-05-24 | Laser Clad Company B V | Method for laser cladding. |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5942070B2 (en) * | 1975-12-02 | 1984-10-12 | 新日本製鐵株式会社 | What is the best way to do this? |
JPS6038466B2 (en) * | 1977-03-09 | 1985-08-31 | 株式会社東芝 | Coating method |
JPS55148752A (en) * | 1979-05-11 | 1980-11-19 | Nippon Steel Corp | Formation method of coating on metal surface |
-
1981
- 1981-05-08 JP JP6988881A patent/JPS57185927A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57185927A (en) | 1982-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6125779B2 (en) | ||
US6303897B1 (en) | Process and device for laser treatments of inside surfaces | |
KR100388150B1 (en) | Light metal cylinder block, method of producing the same and device for carrying out the method | |
US4750947A (en) | Method for surface-alloying metal with a high-density energy beam and an alloy metal | |
US6417477B1 (en) | Method and apparatus for electrospark alloying | |
JP3065305B2 (en) | Method of manufacturing large-diameter spray-molded article using auxiliary heating and apparatus used for the method | |
JP5870621B2 (en) | Laser processing apparatus and laser processing method | |
US6858262B2 (en) | Method for producing a surface-alloyed cylindrical, partially cylindrical or hollow cylindrical component and a device for carrying out said method | |
JPH0434627B2 (en) | ||
JPS648074B2 (en) | ||
JP2003525351A5 (en) | ||
US5468932A (en) | Method of generating a pattern in the surface of a workpiece | |
JP2010502859A (en) | Roller body manufacturing method and roller body | |
JPH05329679A (en) | Method and device for laser beam machining | |
CN114875402B (en) | Babbitt metal laser cladding processing method | |
JP2019037997A (en) | Laser cladding device | |
CN111005022B (en) | Method for preparing high-hardness iron-based coating on surface of beryllium bronze copper roller by utilizing three lasers in synergy mode | |
KR100725796B1 (en) | Method and device for providing a layer to a piston ring | |
JP7400808B2 (en) | Welded pipe manufacturing method and welded pipe manufacturing device | |
JP3117363B2 (en) | High-speed rotating arc welding equipment | |
JPS58148056A (en) | Twin roll type casting and rolling machine | |
JPH0732173A (en) | Laser cladding method | |
JPH04210886A (en) | Laser beam cladding method | |
JP3331538B2 (en) | Rapidly solidified foil for ring-shaped joining material, method for producing the same, production apparatus and production nozzle | |
JPH111722A (en) | Rotary structure and method for modifying its surface |