JPS642498B2 - - Google Patents
Info
- Publication number
- JPS642498B2 JPS642498B2 JP347981A JP347981A JPS642498B2 JP S642498 B2 JPS642498 B2 JP S642498B2 JP 347981 A JP347981 A JP 347981A JP 347981 A JP347981 A JP 347981A JP S642498 B2 JPS642498 B2 JP S642498B2
- Authority
- JP
- Japan
- Prior art keywords
- injection
- sensor
- molding machine
- pressure
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002347 injection Methods 0.000 claims description 30
- 239000007924 injection Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 21
- 238000001514 detection method Methods 0.000 claims description 18
- 230000005856 abnormality Effects 0.000 claims description 16
- 238000000465 moulding Methods 0.000 claims description 16
- 238000001746 injection moulding Methods 0.000 claims description 10
- 238000012544 monitoring process Methods 0.000 claims description 8
- 230000006870 function Effects 0.000 claims description 3
- 230000002950 deficient Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/766—Measuring, controlling or regulating the setting or resetting of moulding conditions, e.g. before starting a cycle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/768—Detecting defective moulding conditions
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
本発明は、射出成型機を最適な成形条件で動作
するように制御するための制御方式に関するもの
である。
射出成型機においては、例えば充填不足やバリ
の発生には、射出圧力の保圧(二次圧)が、また
溶融樹脂の型内圧変化には、射出温度、射出圧力
(一次圧)、射出速度、インジエクシヨン速度なら
びに金型温度等が夫々大きく関係し、製品重量及
び肉厚寸法は、射出速度、射出圧力、シリンダー
温度、金型温度の相関により、ひけは射出後の保
圧、インジエクシヨン速度、金型温度等によつて
決定されるといつたように、多くの要因が複雑に
からみ合つて、成形品の良・不良が生じる。
従つて、これらの要因による最適条件の選定
は、非常に難しいのであるが、現状では、材料樹
脂の種類や成形すべき製品の重量、厚み等に応じ
て作業者が経験により成形条件を設定しておき、
実際に成形された製品の状態を目視して作業者が
勘により成形条件の修正を行ない、不良品が発生
する都度、上記の修正を繰返すといつた非能率で
作業時間、材料等のロスが大きい方法によつてな
われているのが普通である。
このため、近年では、射出成型機の制御にもコ
ンピユーターが応用され始めている。この制御方
式としては、例えば、射出成形すべき成形品の材
質、重量及び肉厚比の異なる組合せに対応して、
成型機の多数の作動条件を設定した複数のプログ
ラムをコンピユーターに記憶されておき、成形品
の材質、重量及び肉厚比に応じて、前記プログラ
ム群の中から、適当なプログラムを選択し、成型
機の各部位に設けたセンサーによつて検出された
実際の作動値をフイードバツクさせて、該作動値
が前記の選択されたプログラムの設定条件に可及
的に近くなるように制御する方式が知られてい
る。
しかし乍ら、これによる場合は、プログラムの
作成が難しく且つプログラムの選択操作が必要で
あり、しかも、基本的には、各センターによつて
作動値が上、下限を越えた明らかな異常を検出
し、この検出信号を制御系にフイードバツクする
制御方法であるから、変動巾の小さい高精度の制
御は期待できない。このため、不良品の発生に備
えて、不良状態に応じて成型機の作動条件を変化
させるための複数の修正プログラムを記憶させて
おき、成形品の不良項目に応じて、適当な修正プ
ログラムを選択するように構成することが必要と
され、回路構成が複雑で、操作性の悪いものとな
つている。
このような現状に鑑み、本発明は、アルゴリズ
ム(異常予知の方式)を用いて射出成型機の制御
を行なうことにより、成形品の高精度化、高品質
化を図り得る制御方式を提案するものである。
ここで、アンゴリズムとは、データの時間に対
する動きをもとに、異常をその兆しの段階で把え
ようとする方式である。この方式については、高
度な統計学を駆使して、既に20種類の方式が確立
されているが、いずれもその基礎資料となるの
は、プロセスデータの時間的変化である。この時
間ごとのプロセスデータに対して、予め確立され
たアルゴリズムに従つて異常か否かの判断がなさ
れる。「ある値以上のことが、一定回数以上起こ
つたとき異常の兆しがあると判断しなければなら
ない」という典型的な場合を例にとれば、アルゴ
リズムが参照しなければならないのは、時間ごと
のプロセスデータのみならず、「ある値」と「一
定回数」のような予め定まつている「設定値(コ
ード設定値)」、さらに既にそのようなことが何回
起こつているかという「途中経過(コード情報)」
が必要である。この例以外の場合も同じやり方で
まとめることができる。
要するに、アルゴリズムはすべて、時系列のデ
ータ、コード設定値、コード情報を参照に、時に
コード情報を更新しながら異常の兆しが見られる
か否かを判定していく形式である。
また、アルゴリズムが参照する時系列データ
は、何種類かのプロセスデータを想定している
が、基本的には、次の3つに大別できる。
The present invention relates to a control method for controlling an injection molding machine to operate under optimal molding conditions. In an injection molding machine, for example, the holding pressure (secondary pressure) of the injection pressure is responsible for insufficient filling and the occurrence of burrs, and the injection temperature, injection pressure (primary pressure), and injection speed are responsible for changes in the internal pressure of the molten resin. , injection speed, mold temperature, etc. are closely related to each other. Product weight and wall thickness are related to injection speed, injection pressure, cylinder temperature, and mold temperature. Sink marks are affected by holding pressure after injection, injection speed, and mold temperature. Many factors, such as those determined by mold temperature and other factors, are intricately intertwined to determine whether a molded product is good or bad. Therefore, it is extremely difficult to select the optimal conditions based on these factors, but at present, the molding conditions are set by the operator based on experience, depending on the type of resin material, the weight, thickness, etc. of the product to be molded. Keep it
Workers visually inspect the condition of the actually molded product and make corrections to the molding conditions based on intuition, and the above corrections are repeated every time a defective product occurs, resulting in inefficiency and loss of work time and materials. It is usually done using a large scale method. For this reason, in recent years, computers have also begun to be applied to control injection molding machines. As this control method, for example, in response to different combinations of material, weight, and wall thickness ratio of the molded product to be injection molded,
A plurality of programs that set a number of operating conditions for the molding machine are stored in the computer, and an appropriate program is selected from the program group according to the material, weight, and wall thickness ratio of the molded product to perform molding. A method is known in which the actual operating values detected by sensors installed in each part of the machine are fed back and controlled so that the operating values are as close as possible to the setting conditions of the selected program. It is being However, in this case, it is difficult to create a program and requires a program selection operation, and basically, each center detects obvious abnormalities in which the operating value exceeds the upper or lower limit. However, since this control method feeds back this detection signal to the control system, highly accurate control with a small fluctuation range cannot be expected. Therefore, in preparation for the occurrence of defective products, multiple correction programs are stored to change the operating conditions of the molding machine according to the defective state, and appropriate correction programs can be applied depending on the defective item of the molded product. The circuit configuration is complicated and the operability is poor. In view of the current situation, the present invention proposes a control method that can improve the precision and quality of molded products by controlling an injection molding machine using an algorithm (an abnormality prediction method). It is. Here, the algorithm is a method that attempts to identify abnormalities at the stage of their signs based on the movement of data over time. Twenty types of this method have already been established by making full use of advanced statistics, but the basic data for all of them is temporal changes in process data. A determination is made as to whether or not there is an abnormality with respect to this time-based process data according to a pre-established algorithm. For example, in a typical case where it is necessary to judge that there is a sign of an abnormality when something over a certain value occurs more than a certain number of times, the algorithm must refer to the hourly data. Not only process data, but also predetermined "setting values (code setting values)" such as "certain value" and "certain number of times," and "intermediate progress (code setting value)" that shows how many times such an event has already occurred. code information)”
is necessary. Cases other than this example can also be summarized in the same way. In short, all algorithms refer to time-series data, code setting values, and code information, and determine whether or not there are signs of abnormality while updating the code information from time to time. Furthermore, the time-series data referred to by the algorithm is assumed to be several types of process data, but can basically be divided into the following three types.
【表】
プロセスデータ
これら(1)〜(3)のどの場合でも、異常予知の基本
的な考え方は、統計学の種々の成果を駆使して、
ちようど人間が計測器のデータチヤートを眺めな
がら異常か否かを判断するようなパターン認識で
ある。
以下、本発明の実施例を図面に基づいて説明す
る。
第1図は本発明の制御方式によつて制御される
射出成型機を示し、第2図は制御盤を示す。A
は、シリンダー1、原料供給スクリユー2及びヒ
ーター3等を有する射出装置、Bは、溶融樹脂注
入口4aを有する固定金型4と可動金型5とから
なる成型用金型で、流体圧シリンダー6で開閉駆
動され、金型B内の成形品は図外のオーナハンド
等によつて一定のタイミングで自動的に取り出さ
れる。
7は金型温度調整手段であり、温水槽8、冷水
槽9、温水循環ポンプPa、冷水循環ポンプPb、
温水と冷水の流路を切換える三方弁Va,Vb及び
電磁弁V1,V2,V3,V4等によつて構成してあ
る。
S1,S2は夫々焦電検出器を用いた既知構造の赤
外線センサーであり、一方の赤外線センサーS1は
金型B内の残溜物10を検出するためのもので、
残溜物10が生じやすい固定金具4の前記注入口
4aが検出視野に入るように配置され、他方の赤
外線センサーS2は金型温度測定用であり、可動金
型5内面の適当な点が検出視野に入るように配置
される。S3は射出温度検出用センサー、S4はシリ
ンダー1の温度検出用センサーであり、これら
S3,S4は熱電対又はその他の測温体によつて構成
される。S5は射出圧力(一次圧)検出用センサ
ー、S6は射出後の保圧(二次圧)検出用センサ
ー、S7は射出速度検出用センサーであり、前記ス
クリユー2の回転に連動させたポテンシヨメータ
ーによつて構成してある。S8はインジエクシヨン
速度検出用センサー、S9は金型Bの型締圧検出用
センサー、S10は金型Bの破損(ねじれ、歪み等
による破損)検出用センサーであり、金型B開閉
時の発生音を集録するマイクロホン等によつて構
成してある。S11は金型Bの開閉に伴つて同期信
号を発するセンサーであり、フオトトランジスタ
ーによつて構成してある。前記各センサーの検出
信号は、マイクロコンピユーターCPUに入力さ
れる。マイクロコンピユーターCPUは学習機能
と監視機能とを有し、学習モードでは成形品が良
品であることを目視にて確認した時点で、前記各
センサーによる検出ポイントでの最適条件を学習
させる。即ち、成型作業を行なうにあたつては、
電源用押釦11、始動用押釦12、学習用押釦1
3をこの順に押圧操作し、20サイクル程度の成形
を行ない、成形品の状態を目視し、これが良好で
あれば、学習結果登録用押釦14を押圧操作し、
その時点での成形条件を記憶させ、次いで監視用
押釦15を押圧操作し、監視モードに切換えるの
である。監視モードでは、各センサーの検出信号
によるプロセスデータ又は複合プロセスデータを
予めROM化した適当なアルゴリズムで処理して
異常を予知し、この異常検出に基づいてマイクロ
コンピユーターCPUから出力される制御出力に
より、前記検出信号が学習モードで記憶した最適
条件に可及的に近くなるように成型機を制御す
る。
例えば、成形品の不良要素である充填不足、バ
リに関しては、センサーS6の検出信号をマイクロ
コンピユーターCPUが一定のアルゴリズムで解
析し、異常の兆しが現われた段階で制御信号を発
し、比例制御弁、サーボ弁等を作動して射出後の
保圧圧力を制御する。
溶融樹脂の型内圧変化に関しては、センサー
S2,S3,S5,S7,S8等の検出信号による複合プロ
セスデータを適当なアルゴリズムで解析し、異常
の兆しが現われた時点で、マイクロコンピユータ
ーCPUから出力される信号により適切な制御を
行なう。例えば、金型温度については冷媒の流
量、温度の制御、射出温度についてはヒーター3
のON−OFF制御、射出圧力については比例制御
弁、サーボ弁等の制御、射出速度についてはスク
リユー2の回転制御を行なう。
成形品の重量及び寸法については、センサー
S2,S4,S5,S7等の検出信号による複合プロセス
データをアルゴリズムで解析し、異常に兆しが現
われた時点で金型温度、シリンダー温度、射出圧
力、射出速度を制御する。
ひけについては、センサーS2,S6,S8の検出信
号による複合プロセスデータをアルゴリズムにて
解析し、異常の兆しが現われた時点で、金型温
度、射出後の保圧圧力、インジエクシヨン速度を
制御する。
16は学習モードで記憶したデータ、監視モー
ドで記憶したデータを記録するプリンターであ
り、操作終了押釦17を押圧操作することによつ
て印字動作を行なう。18…は前記センサーS1〜
S10の検出信号をデジタル表示する表示部、19
…はそのチヤンネルスイツチである。
本発明による射出成型機の制御方式は、上述の
構成よりなり、成型が正常に行なわれていること
を目視で確認して、その時点での成形条件を学習
させ、監視モードでは、成型機各部位のセンサー
による検出信号が学習モードで記憶した最適条件
に可及的に近くなるように制御するため、予め何
種類ものプログラムを記憶させておき、これらの
中から必要なプログラムを選び出して、これに基
づいて成型機を制御する場合のようなプログラム
の作成が不要である。
殊に、各センサーによる検出信号をアルゴリズ
ムで解析して、異常をその兆しの段階で把握し、
これに基づいて制御信号を発するため、変動巾の
小さい高精度の制御が可能で成形品の高精度化、
高品質化を図ることができ、且つ、何種類もの修
正プログラムを記憶させておき、成形品の不良項
目に応じて適当な修正プログラムを選択すると場
合に比べて、良好な操作性が得られる等の効果が
ある。[Table] Process data In all of these cases (1) to (3), the basic idea of abnormality prediction is to make full use of various statistical achievements,
This is pattern recognition, just like a human looking at the data chart of a measuring instrument and determining whether something is abnormal or not. Embodiments of the present invention will be described below based on the drawings. FIG. 1 shows an injection molding machine controlled by the control method of the present invention, and FIG. 2 shows a control panel. A
1 is an injection device having a cylinder 1, a raw material supply screw 2, a heater 3, etc.; B is a molding mold consisting of a fixed mold 4 having a molten resin injection port 4a and a movable mold 5; The molded product inside the mold B is automatically taken out at a certain timing by an owner's hand (not shown) or the like. 7 is a mold temperature adjustment means, which includes a hot water tank 8, a cold water tank 9, a hot water circulation pump Pa, a cold water circulation pump Pb,
It is composed of three-way valves Va, Vb and solenoid valves V 1 , V 2 , V 3 , V 4 and the like for switching hot water and cold water flow paths. S 1 and S 2 are infrared sensors of known structure each using a pyroelectric detector, and one infrared sensor S 1 is for detecting the residue 10 in the mold B,
The injection port 4a of the fixture 4, where residue 10 tends to occur, is placed in the detection field of view, and the other infrared sensor S2 is for measuring the mold temperature, and is placed at an appropriate point on the inner surface of the movable mold 5. It is placed within the detection field of view. S 3 is a sensor for detecting the injection temperature, and S 4 is a sensor for detecting the temperature of cylinder 1.
S 3 and S 4 are composed of thermocouples or other temperature sensing elements. S 5 is a sensor for detecting injection pressure (primary pressure), S 6 is a sensor for detecting holding pressure (secondary pressure) after injection, and S 7 is a sensor for detecting injection speed, which is linked to the rotation of the screw 2. It consists of a potentiometer. S 8 is a sensor for detecting the injection speed, S 9 is a sensor for detecting mold clamping pressure of mold B, and S 10 is a sensor for detecting damage to mold B (damage due to twisting, distortion, etc.). It consists of a microphone etc. that collects the sounds generated by the system. S11 is a sensor that emits a synchronizing signal as the mold B opens and closes, and is composed of a phototransistor. Detection signals from each of the sensors are input to the microcomputer CPU. The microcomputer CPU has a learning function and a monitoring function, and in the learning mode, when it is visually confirmed that the molded product is good, it learns the optimal conditions at the detection points by each of the sensors. In other words, when performing molding work,
Power push button 11, start push button 12, learning push button 1
3 in this order, perform molding for about 20 cycles, visually check the condition of the molded product, and if it is good, press the learning result registration push button 14,
The molding conditions at that time are stored, and then the monitoring push button 15 is pressed to switch to the monitoring mode. In the monitoring mode, the process data or composite process data based on the detection signals of each sensor is processed using an appropriate algorithm stored in ROM in advance to predict abnormalities, and based on the abnormality detection, the control output from the microcomputer CPU is used to The molding machine is controlled so that the detection signal is as close as possible to the optimal conditions stored in the learning mode. For example, regarding insufficient filling and burrs, which are defective elements of molded products, the microcomputer CPU analyzes the detection signal of sensor S 6 using a certain algorithm, and when signs of abnormality appear, it issues a control signal and controls the proportional control valve. , operates a servo valve, etc. to control the holding pressure after injection. Sensors are used to detect changes in mold pressure of molten resin.
Composite process data from detection signals such as S 2 , S 3 , S 5 , S 7 , S 8 etc. is analyzed using an appropriate algorithm, and when signs of abnormality appear, appropriate signals are output from the microcomputer CPU. control. For example, the mold temperature is controlled by the refrigerant flow rate and temperature, and the injection temperature is controlled by the heater 3.
The injection pressure is controlled by proportional control valves, servo valves, etc., and the injection speed is controlled by the rotation of the screw 2. For the weight and dimensions of the molded product, the sensor
Composite process data from detection signals such as S 2 , S 4 , S 5 , and S 7 is analyzed using an algorithm, and the mold temperature, cylinder temperature, injection pressure, and injection speed are controlled when signs of abnormality appear. Regarding sink marks, we use an algorithm to analyze combined process data from the detection signals of sensors S 2 , S 6 , and S 8 , and when signs of abnormality appear, we adjust the mold temperature, post-injection holding pressure, and injection speed. Control. Reference numeral 16 denotes a printer for recording data stored in the learning mode and data stored in the monitoring mode, and a printing operation is performed by pressing an operation end push button 17. 18... is the sensor S 1 ~
Display section for digitally displaying the detection signal of S 10 , 19
...is the channel switch. The control system for the injection molding machine according to the present invention has the above-mentioned configuration. It visually confirms that molding is being performed normally, and learns the molding conditions at that time. In the monitoring mode, each molding machine In order to control the detection signal from the sensor in the body part to be as close as possible to the optimal conditions stored in the learning mode, a number of types of programs are stored in advance, and the necessary program is selected from these. There is no need to create a program as in the case of controlling a molding machine based on. In particular, we use algorithms to analyze the detection signals from each sensor and identify abnormalities at their earliest signs.
Since control signals are issued based on this, high-precision control with small fluctuation range is possible, improving the precision of molded products.
High quality can be achieved, and better operability can be obtained compared to the case where multiple types of correction programs are stored and the appropriate correction program is selected depending on the defective item of the molded product. There is an effect.
図面は本発明の一実施例を示し、第1図は射出
成型機の構成図、第2図は制御盤の正面図であ
る。
S1〜S10……センサー、CPU……マイクロコン
ピユーター。
The drawings show an embodiment of the present invention, with FIG. 1 being a configuration diagram of an injection molding machine, and FIG. 2 being a front view of a control panel. S 1 to S 10 ...Sensor, CPU...Microcomputer.
Claims (1)
出温度、射出圧力、射出後の保圧圧力、インジエ
クシヨン速度、金型温度、残溜物、金型の型締、
金型の型締圧等を検出するセンサーを設け、これ
ら各センターによる検出信号を、学習機能と監視
機能とを有するコンピユーターに入力し、学習モ
ードでは成型が正常に行なわれていることを目視
確認した時点で前記コンピユーターに前記各部位
の最適条件を学習させ、次に、監視モードでは、
各センサーによる検出信号をアルゴリズムで処理
して異常を予知し、この異常予知に基づいて前記
コンピユーターから出力される制御信号により、
射出成型機を各センサーの検出信号が学習モード
で記憶した最適条件に可及的に近くなるように制
御することを特徴とする射出成形機の制御方式。1 Each part of the injection molding machine has cylinder temperature, injection temperature, injection pressure, holding pressure after injection, injection speed, mold temperature, residue, mold clamping,
Sensors are installed to detect mold clamping pressure, etc., and the detection signals from these centers are input to a computer that has learning and monitoring functions.In learning mode, it is visually confirmed that molding is being performed normally. At that point, the computer is made to learn the optimal conditions for each part, and then in monitoring mode,
Detection signals from each sensor are processed by an algorithm to predict an abnormality, and a control signal output from the computer based on this abnormality prediction is used to
A control method for an injection molding machine characterized by controlling the injection molding machine so that detection signals of each sensor are as close as possible to optimal conditions stored in a learning mode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP347981A JPS57116622A (en) | 1981-01-10 | 1981-01-10 | Control system for injection molding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP347981A JPS57116622A (en) | 1981-01-10 | 1981-01-10 | Control system for injection molding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57116622A JPS57116622A (en) | 1982-07-20 |
JPS642498B2 true JPS642498B2 (en) | 1989-01-17 |
Family
ID=11558468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP347981A Granted JPS57116622A (en) | 1981-01-10 | 1981-01-10 | Control system for injection molding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57116622A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60104306A (en) * | 1983-11-10 | 1985-06-08 | Toshiba Mach Co Ltd | Method and apparatus for controlling injection process |
JPS60247537A (en) * | 1984-05-22 | 1985-12-07 | Toshiba Mach Co Ltd | Display of monitoring value for injection molding machine |
JPH0425305Y2 (en) * | 1985-07-26 | 1992-06-17 | ||
JPS62297129A (en) * | 1986-06-17 | 1987-12-24 | Toshiba Mach Co Ltd | Controlling device of injection molder |
JPS63276522A (en) * | 1987-03-27 | 1988-11-14 | Idemitsu Petrochem Co Ltd | Control of injection compressing molding machine |
JP2617567B2 (en) * | 1989-03-27 | 1997-06-04 | 三菱重工業株式会社 | Temperature control device for injection molding machines and peripheral equipment |
US5302103A (en) * | 1991-10-10 | 1994-04-12 | Gencorp Inc. | Injection molding machine including quick-change mold assembly |
US5332539A (en) * | 1993-03-26 | 1994-07-26 | Cincinnati Milacron Inc. | Non-contact linear position transducer for an injection molding machine and method of using |
WO2020005478A1 (en) | 2018-06-29 | 2020-01-02 | iMFLUX Inc. | Systems and approaches for autotuning an injection molding machine |
TWI725341B (en) * | 2018-10-01 | 2021-04-21 | 中原大學 | Injection molding system and injection molding method |
-
1981
- 1981-01-10 JP JP347981A patent/JPS57116622A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57116622A (en) | 1982-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5815397A (en) | Method of analyzing factors affecting product quality and adjusting molding conditions for injection molding machine | |
US6409495B1 (en) | Mold protection device for injection molding machine | |
JP2767320B2 (en) | Injection molding machine molding condition setting method | |
US6915182B2 (en) | Method for setting determination conditions used for determining whether molded product is non-defective or defective | |
JPS642498B2 (en) | ||
JPH06510495A (en) | How to control machines for manufacturing products, especially injection molding machines | |
US5154935A (en) | Injection pressure control apparatus for an electrically-operated injection molding machine | |
KR960016033B1 (en) | Method for discriminating non-defective from defective in injection molding machine | |
JP4474369B2 (en) | Data display method and apparatus for molding machine | |
JP3967655B2 (en) | Display device for injection molding machine and injection molding machine | |
JP2545465B2 (en) | Method for automatically setting upper and lower limits of molding conditions of molding machine | |
JPH0572249B2 (en) | ||
JP4474368B2 (en) | Data processing method and apparatus for molding machine | |
US7144531B2 (en) | Method of and device for evaluating resin using injection molding machine | |
JPS60247536A (en) | Quality recorder for molding machine | |
JPS61283518A (en) | Mold-clamping force correcting device of injection molder | |
JP4081242B2 (en) | Monitoring display device and display method | |
JPH03266622A (en) | Automatically inspecting method for product in molding machine | |
JP4982273B2 (en) | Data display method of molding machine | |
JPH0249894B2 (en) | ||
JPH0353910A (en) | Indicating method for die pressing state | |
JP4571044B2 (en) | Monitoring display device and display method | |
JPH0698656B2 (en) | Method and device for setting optimum allowable value of monitoring data of injection molding machine | |
JPH0482722A (en) | Monitor apparatus of injection molding machine | |
KR0132912Y1 (en) | Controlling apparatus for heater temperature signal of semiconductor chip molding module |