JPS5999712A - Anode forming material for electrolytic condenser - Google Patents
Anode forming material for electrolytic condenserInfo
- Publication number
- JPS5999712A JPS5999712A JP21042882A JP21042882A JPS5999712A JP S5999712 A JPS5999712 A JP S5999712A JP 21042882 A JP21042882 A JP 21042882A JP 21042882 A JP21042882 A JP 21042882A JP S5999712 A JPS5999712 A JP S5999712A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- molded body
- tantalum
- powder
- lead wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Metals (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 産業上の利用分野 本発明は固体電解コンデンサ用陽極成形体に関する。[Detailed description of the invention] Industrial applications The present invention relates to an anode molded body for solid electrolytic capacitors.
従来例の構成とその問題点 ・まず、固体
電解コンデンサはタンタルまたはニオブなどの金属の微
粉体中に、同一種類の金属線の一端を埋め込み、前記金
属粉を、前記金属線□の一端と共に一体に加圧形成され
た陽極成形体を、りん酸などの水溶液中で陽極化成して
、陽極成形体の表面に誘電体酸化皮膜を形成し、グいで
、この上に陰極として二酸化マンガンなどの固体電解質
層□を被着させ、さらに、カーボン、導電性銀ペイン、
トを順次付着させ陰極リード線を半田付けした後、全体
に外装を施したもの・である。Structure of the conventional example and its problems - First, in a solid electrolytic capacitor, one end of a metal wire of the same type is embedded in fine powder of metal such as tantalum or niobium, and the metal powder is integrated with one end of the metal wire □. The anode molded body formed under pressure is anodized in an aqueous solution such as phosphoric acid to form a dielectric oxide film on the surface of the anode molded body. Electrolyte layer□ is deposited, and carbon, conductive silver pane,
After the electrodes were sequentially attached and the cathode lead wires were soldered, the entire body was covered.
一般に□、・固体電解コンデンサ用陽極成形体としては
□、構成する金属粉体粒子間および金属粉体粒子と5埋
め込まれた部分の金属線間の密着度を高めかつ電気抵抗
を十分低くするため、−、般的には高真空高温度で焼結
をさせることが必、要である。しかるに、この焼結によ
って金属粉体集合体の表面積が□相等に減少する。。In general, □. As an anode molded body for solid electrolytic capacitors, □ is used to increase the degree of adhesion between the constituent metal powder particles and between the metal powder particles and the metal wire in the embedded part, and to sufficiently lower the electrical resistance. - Generally, it is necessary to sinter at high vacuum and high temperature. However, due to this sintering, the surface area of the metal powder aggregate is reduced to □ phase or the like. .
電解コンデンサとして金属粉の単位重量当り高電気容量
・を得るためには、この焼結温度はなるべく低湿でおこ
なうべきであるが、・低温焼結では金属粉体を金属線と
の焼□結結着が不モ分で、機械的処理においてリード・
線法は番おこしたり、コンデンサにしたとき容量抜けや
、損失係数の過大なものを生・じたり□する原因となる
。In order to obtain high capacitance per unit weight of metal powder as an electrolytic capacitor, the sintering temperature should be as low as possible, but in low-temperature sintering, metal powder is sintered with metal wire. It is hard to wear, and mechanical processing leads to
The wire method may cause problems such as loss of capacitance or excessive loss coefficient when used as a capacitor.
このように□、従来ば電解コンデンサ用陽極成形体の低
、温焼結によって高電気容量の電解コンデンサを製造す
ることは一般的に困難であった。As described above, in the past, it was generally difficult to manufacture an electrolytic capacitor with a high electric capacity by low-temperature sintering of an anode molded body for an electrolytic capacitor.
第1図に従来の電解コンデンサ用陽極成形体の断面図を
示す。FIG. 1 shows a cross-sectional view of a conventional anode molded body for an electrolytic capacitor.
電解コンデンサ用高純度タンタル粉末110 mqを円
筒状空所を有する金型に入れ、その中央にリード線とし
て直径0.3 mmのタンタル線を埋め込み、直径2.
8 mm %高さ28關の円筒状に一体に圧縮成形した
ものの、リード線の中心を通る面による切断面を表わし
ている。(1)は圧縮成形されたタンタル粉末部分、(
2)はその中央に埋め込まれ加圧固定されたタンタル線
を示す。110 mq of high-purity tantalum powder for electrolytic capacitors was placed in a mold with a cylindrical cavity, and a tantalum wire with a diameter of 0.3 mm was embedded as a lead wire in the center of the mold.
Although it was integrally compression-molded into a cylindrical shape with a height of 8 mm and 28 mm, it shows a cut surface taken along a plane passing through the center of the lead wire. (1) is the compression molded tantalum powder part, (
2) shows a tantalum wire embedded in the center and fixed under pressure.
発明の目的
本発明は従来の電解コンデンサ用陽極成形体の欠点であ
るところの、焼結によって表面積、ひいては電気容量が
減少することを軽減できる低温焼結の可能な電解コンデ
ンサ用陽極成形体を得んとするものである。Purpose of the Invention The present invention provides an anode molded body for electrolytic capacitors which can be sintered at a low temperature and which can reduce the reduction in surface area and eventually capacitance caused by sintering, which is a drawback of conventional anode molded bodies for electrolytic capacitors. This is what we do.
発明の構成
本発明のTlj解コンデンサ用陽極成形体は、表面がア
ルミニウムの薄膜で被覆された金属タンクルのリード線
の一部が高純度金属タンタルの微粉末中に埋め込まれ、
前記タンタル微粉末と前記リード線の一部とが一体に加
圧圧縮されて形成されることを特徴とする。Structure of the Invention In the anode molded body for a Tlj decomposition capacitor of the present invention, a part of the lead wire of a metal tank whose surface is coated with a thin film of aluminum is embedded in fine powder of high-purity metal tantalum,
It is characterized in that the tantalum fine powder and a part of the lead wire are integrally pressed and formed.
実施例の説明 以下本発明の詳細な説明する。Description of examples The present invention will be explained in detail below.
第2図は本発明による電解コンデンサ用陽極成形体の断
面図を示す。図において、(3)は圧縮成形されたタン
タル粉末、(4)はタンタル線で、表面に真空蒸着によ
って厚さ3600オングストロームのアルミニウム薄膜
(5)を被覆させたものである。FIG. 2 shows a cross-sectional view of a molded anode for an electrolytic capacitor according to the present invention. In the figure, (3) is compression-molded tantalum powder, (4) is tantalum wire, and the surface thereof is coated with a 3600 angstrom thick aluminum thin film (5) by vacuum deposition.
本発明の電解コンデンサ用陽極成形体(以下単に陽極成
形体という。)は構成する金属粉末の単位重量当りにつ
いて高電気容量を得るために、より低温で焼結をおこな
った場合においても、タンタルのリード線の表面に被覆
されたアルミニウムの薄膜の融点降下作用のため焼結が
促進され、粉末部分と金属線との良好な電気的、機械的
接続が得られる。The anode molded body for electrolytic capacitors of the present invention (hereinafter simply referred to as the anode molded body) has a high capacitance per unit weight of the constituent metal powder, even when sintered at a lower temperature. Sintering is promoted due to the melting point lowering effect of the aluminum thin film coated on the surface of the lead wire, resulting in a good electrical and mechanical connection between the powder part and the metal wire.
さて、従来の@極成形体と本発明による@極成形体とを
共に高真空にて、1000℃、20分間の熱処理し焼結
させ、つぎに、これらを85℃、5%りん酸水溶液中に
て、直流50Vにて陽極化成し、表面に誘電体皮膜を形
成させ、電解コンデンサ用陽極とした。これら陽極を3
0%硫酸水溶液に浸漬し、銀板を対向電極として静電容
量を測定し、これよりタンタル粉末12当りのay積を
求めると、従来の陽極については18340μF−V。Now, both the conventional @ electrode molded body and the @ pole molded body according to the present invention were heat-treated and sintered at 1000°C for 20 minutes in a high vacuum, and then they were placed in a 5% phosphoric acid aqueous solution at 85°C. The sample was anodized at 50 V DC to form a dielectric film on the surface, and was used as an anode for an electrolytic capacitor. These anodes are 3
The capacitance was measured by immersing it in a 0% sulfuric acid aqueous solution and using a silver plate as a counter electrode, and from this the ay product per 12 pieces of tantalum powder was found to be 18,340 μF-V for the conventional anode.
本発明の陽極については18480μF・■となり、は
とんど等しい数値が得られた。しかるに、損失係数(t
anδ)は従来の陽極では65%で、本発明の陽極では
45%となり、またリード線引抜き強度は、従来の陽極
については2.2 kpでリード線が引き抜けてしまう
が、本発明の陽極については、37に7でリード線自体
が切断し、σ1抜き強度はこれより大きな値であること
がわかった。このような結果からみて、同一温度で焼結
させた場合、従来の陽極成形体にくらべ、本発明の陽極
成形体は、リード線とタンタル金属粉末部との焼結融着
が非常によくおこなわれているということがわかる。For the anode of the present invention, the value was 18480 μF·■, which is almost the same value. However, the loss coefficient (t
anδ) is 65% for the conventional anode and 45% for the anode of the present invention, and the lead wire pull-out strength is 2.2 kp for the conventional anode, but for the anode of the present invention. It was found that the lead wire itself broke at 37 to 7, and the σ1 extraction strength was larger than this. In view of these results, when sintered at the same temperature, the anode molded body of the present invention performs sintering and fusion between the lead wire and the tantalum metal powder part much better than the conventional anode molded body. You can see that it is true.
これは本発明の陽極成形体に用いられているタンタル線
表面のアルミ;ラム薄膜が、焼結に当ってタンタル粉と
共融反応をおこし、相互の間に合金の融液相を生成し、
非常によく焼結がおこなわれたものと考えられる。This is because the aluminum ram thin film on the surface of the tantalum wire used in the anode molded body of the present invention causes a eutectic reaction with the tantalum powder during sintering, producing an alloy melt phase between them.
It is thought that sintering was performed very well.
例えば機械的強度を得るため、従来の陽極成ル体を高真
空で1500℃、20分間焼結させ、得られた陽極に前
記と同様の陽極化成をおこなわせたものについての12
当りのa v(4iCi16000μF・■となる。こ
れに対し本発明の場合は1400℃の焼結温度でCV積
は前記の機械的強度を具備しながらこれにくらべ15%
の向上をしている。For example, in order to obtain mechanical strength, a conventional anode sintered body was sintered at 1500°C for 20 minutes in a high vacuum, and the resulting anode was anodized in the same manner as described above.
av (4iCi 16000μF・■).In contrast, in the case of the present invention, at a sintering temperature of 1400℃, the CV product is 15% compared to this while having the above-mentioned mechanical strength.
are improving.
発明の効果
従来の陽極成形体を低温で、すなわち1400℃にて焼
結したのみでは、cv積は15%向上しても、リード引
抜き強度が低下し、またコンデンサとしての損失係数が
大きくなるという結果をもたらすのに対し、本発明の陽
極成形体は前述のように、リード線引抜き強度は大きく
、コンデンサとしての12当りのaV積が向上し、ta
nδも小さいという特性もすぐれている。また同一粉末
重量を用いて15%もの電気容量増をもたらすと共に高
価なタンタル粉を節約できる効果を生ずる。Effects of the Invention If the conventional anode molded body is sintered only at a low temperature, that is, 1400°C, even if the CV product improves by 15%, the lead pull-out strength will decrease and the loss factor as a capacitor will increase. On the other hand, as mentioned above, the anode molded body of the present invention has a high lead wire pull-out strength, an improved aV product per 12 as a capacitor, and a high ta
It also has an excellent characteristic of having a small nδ. Furthermore, using the same powder weight, the electric capacity can be increased by as much as 15%, and the use of expensive tantalum powder can be saved.
第1図は従来の電解コンデンサ用陽極成形体、第2図は
本発明の電解コンデンサ用陽極成形体の断面図を示す。
1:圧縮成形されたタンタル粉
2:タンクルリード線
3:圧縮成形されたタンタル粉
4:タンクルリード線
5:被覆されたアルミニウムFIG. 1 shows a conventional molded anode for an electrolytic capacitor, and FIG. 2 shows a sectional view of the molded anode for an electrolytic capacitor according to the present invention. 1: Compression molded tantalum powder 2: Tankle lead wire 3: Compression molded tantalum powder 4: Tankle lead wire 5: Coated aluminum
Claims (1)
リード線の一部を高純度金属タン□タルの微粉末中に埋
め込み、前記タンタル微粉末と前記リード線の一部とを
一体に加圧圧縮、形成してなる電解コンデンサ用陽極成
形体。A part of a lead wire made of tantalum metal whose surface is coated with a thin film of aluminum is embedded in fine powder of high-purity tantalum metal, and the fine tantalum powder and part of the lead wire are integrally compressed under pressure. An anode molded body for electrolytic capacitors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21042882A JPS5999712A (en) | 1982-11-29 | 1982-11-29 | Anode forming material for electrolytic condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21042882A JPS5999712A (en) | 1982-11-29 | 1982-11-29 | Anode forming material for electrolytic condenser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5999712A true JPS5999712A (en) | 1984-06-08 |
Family
ID=16589147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21042882A Pending JPS5999712A (en) | 1982-11-29 | 1982-11-29 | Anode forming material for electrolytic condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5999712A (en) |
-
1982
- 1982-11-29 JP JP21042882A patent/JPS5999712A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7489498B2 (en) | Capacitors and methods for manufacturing the same | |
JP3434041B2 (en) | Tantalum powder and electrolytic capacitor using the same | |
US20030026064A1 (en) | Solid electrolytic capacitor | |
US6835225B2 (en) | Niobium sintered body, production method therefor, and capacitor using the same | |
JP4703400B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
KR100380925B1 (en) | Metal electrode material, capacitor using metal electrode material, and method of manufacture | |
JP5232899B2 (en) | Solid electrolytic capacitor | |
JP3467200B2 (en) | Electrode metal material, capacitor using the same, and manufacturing method thereof | |
JP4776522B2 (en) | Solid electrolytic capacitor | |
CN103632847B (en) | A kind of axially mold pressing tantalum capacitor and manufacture method thereof | |
US11004615B2 (en) | Solid electrolytic capacitor for use at high temperatures | |
JP4422258B2 (en) | Capacitor | |
KR100812687B1 (en) | Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body | |
JPS5999712A (en) | Anode forming material for electrolytic condenser | |
JP2004014667A (en) | Solid electrolytic capacitor | |
JP3547484B2 (en) | Manufacturing method of capacitor element | |
JP4647744B2 (en) | Niobium powder for capacitor, sintered body using the same, and capacitor using the same | |
JP3503971B2 (en) | Manufacturing method of capacitor element | |
JPS63124511A (en) | Aluminum solid electrolytic capacitor | |
JPH05326341A (en) | Manufacture of solid electrolytic capacitor | |
JPS622452B2 (en) | ||
JPH08162372A (en) | Manufacture of electrolytic capacitor | |
JP3425200B2 (en) | Manufacturing method of capacitor element | |
JPS622450B2 (en) | ||
JP2908830B2 (en) | Manufacturing method of electrolytic capacitor |