[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5996846A - Low vibration motor - Google Patents

Low vibration motor

Info

Publication number
JPS5996846A
JPS5996846A JP20543182A JP20543182A JPS5996846A JP S5996846 A JPS5996846 A JP S5996846A JP 20543182 A JP20543182 A JP 20543182A JP 20543182 A JP20543182 A JP 20543182A JP S5996846 A JPS5996846 A JP S5996846A
Authority
JP
Japan
Prior art keywords
stator
rotor
electric motor
air gap
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20543182A
Other languages
Japanese (ja)
Inventor
Yoshitake Suzuki
鈴木 芳勇
Takuji Tajima
田島 琢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP20543182A priority Critical patent/JPS5996846A/en
Publication of JPS5996846A publication Critical patent/JPS5996846A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/30Structural association of asynchronous induction motors with auxiliary electric devices influencing the characteristics of the motor or controlling the motor, e.g. with impedances or switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To shorten the starting time of a motor by varying the size of an air gap between a rotor and a stator at the starting time and the normally rotating time of an armature, thereby increasing the starting torque. CONSTITUTION:Since a threaded part 12a of a handle nut 12 and a nut 11c are engaged when the handle nut 12 is rotated in one direction, a coupling member 11b moves leftwardly. Accordingly, a stator slide contact member 10 and a stator 9 also move leftwardly. An air gap between the rotor 6 and the stator 9 varies due to the movement of the stator 9. The air gap is reduced to increase the starting torque at the starting time, and the air gap is increased at the normal operation time after the starting, thereby reducing the vibration.

Description

【発明の詳細な説明】 本発明は、振動を可及的に低く抑えることが要求される
種々の装置に使用される低振動電動機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low-vibration electric motor used in various devices that require vibration to be suppressed as low as possible.

超精密加工機、超精密移動台(例えば、LSIのパター
ン焼付装置等に用いられる移動台)等の装置は、これら
装置の性能上、振動を極度に嫌うものである。このため
、これら装fRe駆動する電動機は、通常、装置本体と
は隔離して設置され、電動機と装置とはベルト又は振動
減衰特殊継手等によシ結合されて動力伝達が行なわれ、
これにょシミ動機自体の振動が装置に伝わるのを避けて
いる。このような現状にあっては、電動機自体の振動を
如何に低く抑えるかが問題となる。
2. Description of the Related Art Devices such as ultra-precision processing machines and ultra-precision moving tables (for example, moving tables used in LSI pattern printing devices, etc.) are extremely sensitive to vibrations due to their performance. For this reason, the electric motor that drives these devices is usually installed separately from the main body of the device, and the electric motor and the device are connected by a belt or a special vibration-damping joint to transmit power.
This prevents the vibrations of the rotor itself from being transmitted to the device. Under such current circumstances, the problem is how to suppress the vibration of the electric motor itself.

第1図は従来の電動機の一部断面図である。図で、lは
電動機の出力軸、1aは出力軸1の負荷接続端、2は出
力軸1に固定された回転子、3は電動機のケーシング、
4はケーシング3に固定された固定子、5は出力軸1と
ケーシング3の間の軸受である。回転子2と固定子4と
は、空隙δ1を介して対向して配置されておシ、固定子
4に交流を供給して回転磁界を発生せしめることにょシ
回転子2が回転する。
FIG. 1 is a partial sectional view of a conventional electric motor. In the figure, l is the output shaft of the motor, 1a is the load connection end of the output shaft 1, 2 is the rotor fixed to the output shaft 1, 3 is the casing of the motor,
4 is a stator fixed to the casing 3, and 5 is a bearing between the output shaft 1 and the casing 3. The rotor 2 and the stator 4 are arranged to face each other with a gap δ1 interposed therebetween, and the rotor 2 rotates when alternating current is supplied to the stator 4 to generate a rotating magnetic field.

ところで、このような電動機自体の振動発生の原因とし
て、一般に次のような事項が考えられる。
By the way, the following matters are generally considered to be the causes of such vibrations in the electric motor itself.

(1)1回転子2の材質の不均一等にょ)生ずる回転子
の動的アンバランス。
(1) Dynamic imbalance of the rotor caused by non-uniformity of the material of the rotor 2, etc.

(2)、出力軸lの軸受5の回転精度の不足。(2) Insufficient rotational accuracy of the bearing 5 of the output shaft l.

(3)9回転子2と固定子4の偏心による回転力の変動
(3) 9 Fluctuations in rotational force due to eccentricity of the rotor 2 and stator 4.

(4)、各部品の加工精度の不足。(4) Insufficient machining accuracy of each part.

(5)0回転磁界と回転子の偏心、即ち、磁気的アンバ
ランス。
(5) Zero-rotation magnetic field and rotor eccentricity, that is, magnetic imbalance.

以上の振動発生原因のうち(1)〜(4)は機械的原因
である。従来の低振動対策は主としてこれらに対する改
善であシ、これにょシ振動の振幅をミクロンオーダ(1
,5〜3μ)に抑えることが可能となっている。これに
対して、上記振動発生原因(5)については、この磁気
的アンバランスを軽減するため、回転子2と固定子4と
の間の空隙δ1を大きくした特殊電動機が提供されてい
る。
Among the above causes of vibration generation, (1) to (4) are mechanical causes. Conventional low-vibration countermeasures are mainly improvements to these problems, and have reduced the amplitude of vibrations to the order of microns (1
, 5 to 3μ). On the other hand, regarding the cause of vibration generation (5), a special electric motor is provided in which the gap δ1 between the rotor 2 and the stator 4 is increased in order to reduce this magnetic imbalance.

しかしながらこの特殊電動機は、空隙δ1を大きくして
いるので極めて効率が悪く、例えば、3.7KWの出力
の通常の電動機に対し、これと同程度の大きさの特殊電
動機では、その出力は115〜1/1゜に低下し、甚だ
しい不利を生じる。一方、このような不利はさらに次の
ような欠点を生じる。即ち、一般に、超精密加工機や超
精密移動台等の装置では、その装置の機能上、運転中に
これを駆動するのに要するトルクは極めて小さく、例え
ば200〜300Wの電動機の出力トルクで充分である
。しかし、装置の起動時にはその慣性力のため可成シ大
きなトルクを必要とし、上記200〜300Wの電動機
では所定回転数に達するまで極めて長時間を要する。例
えば、ある装置を駆動するのに3.7KWの電動機を使
用した場合、回転速度2000r*pemに達する所要
時間は5秒であるが、200Wの電動機では約92秒を
要する。そして、このような長時間起動では装置の能率
が著しく低下するので、上記の例にしたがえば、前記低
振動電動機は3.7KWの出力のものでなければならな
い。ところが、3.7KWの出力の低振動電動機は、同
一出力の通常の電動機と比較すると、その占有容積は数
倍(5〜10倍)になるという欠点を生ずるものである
。結局、回転子2と固定子4の空隙δ1を大きく設定し
た従来の低振動電動機では、占有容積を小さくするため
に低出力のものを使用すれば起動に長時間を要し、逆に
、短時間起動のため大きな出力のものを使用すれば、起
動時だけのためにその占有容積が大きくなってしまうと
いう二律背反を生じることとなる。
However, this special motor has a large air gap δ1, so it is extremely inefficient.For example, compared to a normal motor with an output of 3.7KW, a special motor of the same size has an output of 115~ This decreases to 1/1°, resulting in a severe disadvantage. On the other hand, these disadvantages also give rise to the following disadvantages. That is, in general, in devices such as ultra-precision processing machines and ultra-precision moving tables, the torque required to drive them during operation is extremely small due to the function of the device, and for example, the output torque of an electric motor of 200 to 300 W is sufficient. It is. However, when starting up the device, a considerably large torque is required due to its inertial force, and with the above-mentioned 200-300 W electric motor, it takes an extremely long time to reach a predetermined rotation speed. For example, if a 3.7 KW electric motor is used to drive a certain device, the time required to reach a rotational speed of 2000 r*pem is 5 seconds, while a 200 W electric motor takes about 92 seconds. Since the efficiency of the device is significantly reduced in such a long-time start-up, according to the above example, the low-vibration electric motor must have an output of 3.7 KW. However, a low-vibration electric motor with an output of 3.7 KW has the disadvantage that its occupied volume is several times (5 to 10 times) larger than that of a normal electric motor with the same output. As a result, in conventional low-vibration electric motors in which the air gap δ1 between the rotor 2 and stator 4 is set large, if a low-output motor is used to reduce the occupied volume, it will take a long time to start; If a large output device is used for timed activation, there will be a tradeoff in that the volume occupied will be large just for the activation time.

本発明の目的は、上記従来の問題を解決し、起動トルク
を犬キ<シて起動時間を短かくすることができ、しかも
小型とすることができる低振動電動機を提供するにある
SUMMARY OF THE INVENTION An object of the present invention is to provide a low-vibration electric motor which can solve the above-mentioned conventional problems, reduce the starting torque to shorten the starting time, and can be made compact.

この目的を達成するため、本発明は、回転子の外径と固
定子の内径を出力軸に沿って所定角度の傾斜をもって形
成し、回転子又は固定子のいずれか一方又は両方を出力
軸に沿って容動可能とし、これによシミ動機の起動時と
通常運転時における空隙の寸法を変化させるようにした
ことを特徴きする。
In order to achieve this object, the present invention forms the outer diameter of the rotor and the inner diameter of the stator with a predetermined angle of inclination along the output shaft, so that one or both of the rotor and the stator is aligned with the output shaft. It is characterized in that it is movable along the length of the stainer, thereby changing the size of the gap between when the staining machine is started up and when it is in normal operation.

以下、本発明を図示の実施例に基づいて説明するQ 第2図は本発明の実施例に係る低振動電動機の断面図で
ある。図で、第1図に示す部分と同一部分には同一符号
が付しである。6は出方軸1に固定された回転子で条シ
、その外径は回転子6の右端(第2図で)において最大
で、左端において最小となるように構成されている。そ
して、回転子6の右端から左端へかけての外径の減少の
割合は一定である。第2図では、この外径の変化が直線
状の傾斜となって示されている。7は電動機のエンドブ
ラケット、8はエンドブラケット7に固定されたケーシ
ング、8aはケーシング8に設けられて冷却水を通す水
ジャケットである。9はケーシング8の内面に、前記回
転子6と対向して設置された固定子である。固定子9の
内径は回転子6の外径と一致するように、即ち、固定子
9の右端の内径が最大、左端の内径が最小であり、がっ
、右端から左端へかけての内径の減少の割合は前記回転
子6の外径減少の割合と同一である。第2図では、この
内径の変化が直線状の傾斜となって示されている。固定
子9はケーシング8の内面に対して、出力軸lの軸方向
にのみ摺動できるように適宜の手段、例えばスライディ
ングキーのような手段で取付けられている。1oは固定
子摺動部材であシ、固定子9の右端部に適宜数取付けら
れて固定子9の摺動に寄与する。各固定子摺動部材10
の端部はエンドブラケット7の外方に貫通している。1
1は固定子摺動機構を示し、電動機のエンドブラケット
7に固定されたケースllaに収納されている。llb
は前記固定子摺動部材lOの各端部相互を連結する棒状
又は板状の連結部材、11cは連結部材11bに取付け
られたナツトである。12はケースllaに回動自在に
取付けられたハンドルであシ、ハンドル12の先端には
ネジ部12aが形成されている。このネジ部12aは固
定子摺動機構11のナツト11cと螺合している。
Hereinafter, the present invention will be explained based on the illustrated embodiments. FIG. 2 is a sectional view of a low-vibration electric motor according to an embodiment of the present invention. In the figure, the same parts as those shown in FIG. 1 are given the same reference numerals. Reference numeral 6 denotes a rotor fixed to the output shaft 1, and its outer diameter is maximum at the right end (in FIG. 2) of the rotor 6 and minimum at the left end. The rate of decrease in the outer diameter from the right end to the left end of the rotor 6 is constant. In FIG. 2, this change in outer diameter is shown as a linear slope. 7 is an end bracket of the electric motor, 8 is a casing fixed to the end bracket 7, and 8a is a water jacket provided on the casing 8 and through which cooling water passes. A stator 9 is installed on the inner surface of the casing 8, facing the rotor 6. The inner diameter of the stator 9 is made to match the outer diameter of the rotor 6, that is, the inner diameter at the right end of the stator 9 is the largest, the inner diameter at the left end is the smallest, and the inner diameter from the right end to the left end is The rate of decrease is the same as the rate of decrease in the outer diameter of the rotor 6. In FIG. 2, this change in inner diameter is shown as a linear slope. The stator 9 is attached to the inner surface of the casing 8 by suitable means, such as a sliding key, so that it can slide only in the axial direction of the output shaft l. A stator sliding member 1o is attached in appropriate numbers to the right end of the stator 9 and contributes to the sliding movement of the stator 9. Each stator sliding member 10
The end portion of the end bracket 7 extends outwardly through the end bracket 7. 1
Reference numeral 1 indicates a stator sliding mechanism, which is housed in a case lla fixed to an end bracket 7 of the electric motor. llb
11c is a rod-shaped or plate-shaped connecting member that connects each end of the stator sliding member 1O, and 11c is a nut attached to the connecting member 11b. A handle 12 is rotatably attached to the case lla, and a threaded portion 12a is formed at the tip of the handle 12. This threaded portion 12a is screwed into a nut 11c of the stator sliding mechanism 11.

このような構成の電動機において、ハンドル12を一方
向に回転すると、そのネジ部12aとナツト11cが螺
合してい、るので連結部材11bは第2図において例え
ば左方向に移動する。したがって、固定子摺動部材10
、固定子9も左方向に移動する。固定子9の移動は出力
軸lに対し平行な移動である。ハンドル12を反対方向
に回転すると、固定子9は上記と逆方向(右方向)に移
動する0このような固定子9の移動にょシ、回転子6と
固定子9の空隙が変化する。この変化を第3図によル説
明する。
In the electric motor having such a configuration, when the handle 12 is rotated in one direction, the threaded portion 12a and the nut 11c are screwed together, so that the connecting member 11b moves, for example, to the left in FIG. 2. Therefore, stator sliding member 10
, the stator 9 also moves to the left. The movement of the stator 9 is parallel to the output axis l. When the handle 12 is rotated in the opposite direction, the stator 9 moves in the opposite direction (to the right). Due to this movement of the stator 9, the gap between the rotor 6 and the stator 9 changes. This change will be explained with reference to FIG.

第3図は空隙部分における回転子と固定子の断面図であ
る。固定子9が第3図に実線で示す右端位置にあるとき
、回転子6と固定子9の空隙寸法はδ2である。今、ハ
ンドル12を所定方向に回転し、固定子9を矢印X方向
に摺動して第3図の一点鎖線位fft(左端位it)と
すると、固定子9の摺動は出力軸1の軸線と平行である
ので、当然空隙寸法δ3は増大する。このように、ハン
ドル12を回動することにょ)回転子6と固定子9の空
隙をその寸法δ2と寸法δ3の範囲内において自由に変
化せしめることができる。
FIG. 3 is a sectional view of the rotor and stator in the gap portion. When the stator 9 is at the right end position shown by the solid line in FIG. 3, the gap size between the rotor 6 and the stator 9 is δ2. Now, if the handle 12 is rotated in a predetermined direction and the stator 9 is slid in the direction of arrow Since it is parallel to the axis, the gap size δ3 naturally increases. In this way, by rotating the handle 12, the gap between the rotor 6 and the stator 9 can be freely changed within the range of the dimensions δ2 and δ3.

ここで、空隙寸法の変化が電動機の振動に及ばず影響に
ついて考察する。今、回転子をその直径方向に変動させ
る力、即ちラジアル変動力’kF(Kg)とすると、こ
の方Fは次式で表わされる。
Here, we will consider the effect that the change in the gap size has on the vibration of the motor. Now, assuming that the force that causes the rotor to fluctuate in its diametrical direction, that is, the radial fluctuating force 'kF (Kg), is expressed by the following equation.

F−−DL(5000” T”””・・・(1)ま ただし、D:回転子の外径(cm) L:回転子の長さくam) B:空隙の磁束密度(ガウス) Δ:空隙寸法(μm) δ:固定子と回転子間の偏心(μm) このラジアル変動力の1例を0.75KW級の電動機に
ついて算出すると(7tだし、各数値は概略の値である
。)、 F =−HX 10 X 6 X (5ooo)2X−
石T中13 、57(Kp)となる。空隙寸法を大きく
すると空隙の磁束密度は小さくなるので、前記(1)式
から、空隙寸法を大きくすること忙よシラシアル変動力
を大幅に減少せしめ得ることが明瞭である。ただし、空
隙寸法を大きくすると電動機出方は減少する。上記の例
につき、空隙寸法300μmを大きくするとともに、各
部品の精度をさらに向上せしめ、Δ=600μm、  
δ=204m、B=6000X (300/600)”
=1500 ガウスとした場合のラジアル変動力Fの値
を求めると、 となル、ラジアル変動力Fは約115 に減少する。
F--DL (5000"T"""...(1) However, D: Outer diameter of rotor (cm) L: Length of rotor am) B: Magnetic flux density of air gap (Gauss) Δ: Gap size (μm) δ: Eccentricity between stator and rotor (μm) An example of this radial fluctuating force is calculated for a 0.75KW class electric motor (7t, so each value is an approximate value): F = -HX 10 X 6 X (5ooo)2X-
Stone T middle school 13, 57 (Kp). Since the magnetic flux density of the air gap decreases as the air gap size is increased, it is clear from equation (1) that increasing the air gap size can significantly reduce the shirasial fluctuation force. However, when the gap size is increased, the amount of electric motor protrusion decreases. For the above example, the gap size was increased by 300 μm, and the precision of each part was further improved, Δ = 600 μm,
δ=204m, B=6000X (300/600)”
= 1500 When the value of the radial fluctuation force F is calculated as Gauss, the radial fluctuation force F decreases to approximately 115.

このように、空隙寸法を大きくすることにより、ラジア
ル変動力、即ち、振動を発生させる力を減少することが
できる。ただし、これに伴って、電動機固定子コイルの
電流が増大し、又、効率の低下によシミ動機の発熱も増
加するが、前者に対してはハンドル12の操作と関連し
て入力を減少させる手段を講ずればよく、又、後者に対
しては水ジャケット8aによシ充分に発熱を防止するこ
とができる。
In this way, by increasing the gap size, the radial fluctuation force, that is, the force that causes vibration, can be reduced. However, along with this, the current in the motor stator coil increases, and the heat generation of the stain motor also increases due to a decrease in efficiency, but for the former, the input is reduced in conjunction with the operation of the handle 12. For the latter case, the water jacket 8a can sufficiently prevent heat generation.

本実施例では、回転子外径と固定子内径を所定割合で増
加又は減少させ、固定子を出力軸に沿って摺動可能とし
たので、装置の起動時には空隙寸法を小さくすることに
よル起動トルクな大にして起動時間を短縮することがで
き、装置起動後の通常運転時には空隙寸法を大きくする
ことにょシ振動を小さくすることができ、結局、本実施
例の低振動電動機は、従来の低振動特殊電動機と同−専
有容積のものであれば起動時間を短縮することができ、
又、同一起動時間のものであれば専有容積を小さくし小
型とすることができる。
In this example, the outer diameter of the rotor and the inner diameter of the stator are increased or decreased at a predetermined ratio, and the stator is made to be able to slide along the output shaft. The starting torque can be increased to shorten the startup time, and during normal operation after the device is started, the vibration can be reduced by increasing the gap size.In the end, the low-vibration electric motor of this example is better than the conventional one. If it has the same exclusive volume as the low-vibration special electric motor, the start-up time can be shortened.
Moreover, if the activation time is the same, the dedicated volume can be reduced and the size can be reduced.

なお、上記実施例においては、固定子を移動するように
したが、回転子を移動してもよく、又、固定子と回転子
の両方を移動してもよいのは当然である。
In the above embodiment, the stator is moved, but it goes without saying that the rotor may be moved, or both the stator and rotor may be moved.

以上述べたように、本発明では、回転子外径と固定子内
径を所定の割合で増加又は減少させ、回転子および固定
子の一方又は両方を出力軸に沿って移動可能としたので
、低振動電動機の起動トルクを大にして起動時間を短縮
することができ、又、小型とすることができる。
As described above, in the present invention, the outer diameter of the rotor and the inner diameter of the stator are increased or decreased at a predetermined ratio, and one or both of the rotor and stator can be moved along the output shaft. The starting torque of the vibration motor can be increased to shorten the starting time, and the motor can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電動機の一部断面図、第2図は本発明の
実施例に係る低振動電動機の断面図、第3図は空隙部分
における回転子と固定子の断面図である。 1・・・・・・出力軸、6・・・・・・回転子、9・・
団・固定子、10・・・・・・固定子摺動機構、11・
・・・・・固定子摺動機構、11b・・・・・・連結部
材、11c・・・・・・ナツト、12・・・・・・ハン
ドル、12a・・・・・・ネジ部。
FIG. 1 is a partial cross-sectional view of a conventional electric motor, FIG. 2 is a cross-sectional view of a low-vibration electric motor according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view of a rotor and a stator in a gap portion. 1...Output shaft, 6...Rotor, 9...
Group/stator, 10...Stator sliding mechanism, 11.
... Stator sliding mechanism, 11b ... Connection member, 11c ... Nut, 12 ... Handle, 12a ... Threaded part.

Claims (1)

【特許請求の範囲】[Claims] 出力軸と、この出力軸に取付けられるとともにその外径
が前記出力軸の一方向に沿って一定の割合で変化する回
転子と、この回転子に対し空隙を介して取付けられると
ともにその内径が前記出力軸の一方向に沿って前記一定
割合で変化する固定子と、前記回転子と前記固定子の少
なくとも一方を前記出力軸に沿って移動する手段とを備
えたことを特徴とする低振動電動機。
an output shaft; a rotor that is attached to the output shaft and whose outer diameter changes at a constant rate along one direction of the output shaft; and a rotor that is attached to the rotor through a gap and whose inner diameter A low-vibration electric motor comprising: a stator that changes at the constant rate along one direction of the output shaft; and means for moving at least one of the rotor and the stator along the output shaft. .
JP20543182A 1982-11-25 1982-11-25 Low vibration motor Pending JPS5996846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20543182A JPS5996846A (en) 1982-11-25 1982-11-25 Low vibration motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20543182A JPS5996846A (en) 1982-11-25 1982-11-25 Low vibration motor

Publications (1)

Publication Number Publication Date
JPS5996846A true JPS5996846A (en) 1984-06-04

Family

ID=16506742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20543182A Pending JPS5996846A (en) 1982-11-25 1982-11-25 Low vibration motor

Country Status (1)

Country Link
JP (1) JPS5996846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1542343A1 (en) * 2002-08-16 2005-06-15 Yamaha Hatsudoki Kabushiki Kaisha Axial gap type motor generator
EP3232548A1 (en) * 2016-04-13 2017-10-18 Hamilton Sundstrand Corporation Variable gap electrical machines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1542343A1 (en) * 2002-08-16 2005-06-15 Yamaha Hatsudoki Kabushiki Kaisha Axial gap type motor generator
EP1542343A4 (en) * 2002-08-16 2006-08-09 Yamaha Motor Co Ltd Axial gap type motor generator
EP3232548A1 (en) * 2016-04-13 2017-10-18 Hamilton Sundstrand Corporation Variable gap electrical machines
US9825510B2 (en) 2016-04-13 2017-11-21 Hamilton Sundstrand Corporation Variable gap electrical machines

Similar Documents

Publication Publication Date Title
US10903763B2 (en) Built-in piezoelectric-type online dynamic balance actuator
US6215217B1 (en) Dynamic pressure bearing motor
US3894255A (en) Synchronous machine for stepping motor and other applications and method of operating same
US20110299806A1 (en) Spindle, shaft supporting device and method of supporting a rotatable shaft
US5462470A (en) Grinding wheel spindle assembly
JPS5996846A (en) Low vibration motor
JPH03253272A (en) Oscillation wave motor
JP2010057229A (en) Electric actuator
CN207753635U (en) A kind of built-in piezo-electric type on-line dynamic balancing execution structure
US5874793A (en) High speed rotor assembly
US3173039A (en) Driving systems for electric generators
JP2001268859A (en) High-speed rotation spindle
JP2759232B2 (en) Bearing device
JPH05180217A (en) Bearing structure for scanner motor
JPH02155452A (en) Motor
KR100414907B1 (en) High Speed Spindle System Used Hybrid Air Bearing
JPH05209615A (en) Bearing holding device
RU2230652C1 (en) Spindle with electric drive
JPH11289713A (en) Static pressure pneumatic bearing spindle device
JPH0633940A (en) Fluid rotating machine
JPH07305697A (en) Axial flow fluid electric machine
SU345562A1 (en) ELECTRIC MACHINE
JP2000060056A (en) Motor and rotary element device
JPH06284682A (en) Stepping motor
JPH0325841Y2 (en)