JPS5991308A - Method for detecting surface configuration - Google Patents
Method for detecting surface configurationInfo
- Publication number
- JPS5991308A JPS5991308A JP57201611A JP20161182A JPS5991308A JP S5991308 A JPS5991308 A JP S5991308A JP 57201611 A JP57201611 A JP 57201611A JP 20161182 A JP20161182 A JP 20161182A JP S5991308 A JPS5991308 A JP S5991308A
- Authority
- JP
- Japan
- Prior art keywords
- light
- teaching
- dimensional
- workpiece
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Machine Tool Copy Controls (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、たとえばロボットなどの作業機械の作業端に
取付けられたツールを、ワークなどの対象物体に対して
一定の距離および姿勢に保持し、かつ溶接線や端縁など
に沿って移動させる場合において必要となる対象物体の
表面形状を検出する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention aims to maintain a tool attached to the working end of a working machine such as a robot at a constant distance and attitude relative to a target object such as a workpiece, and to The present invention relates to a method for detecting the surface shape of a target object, which is necessary when moving the target object along a path.
たとえばアーク溶接用産業用ロボットの教示作業におい
ては、現在、作業者が操作盤上のスイッチなどを操作し
て溶接トーチの先端を溶接線に沿つて誘導する方法が一
般に行なわれている。このような先行技術では、トーチ
のねらい位置を高精度で設定しなければならず、作業者
にとって大きな負担となり、教示に要する時間は長い。For example, in the teaching work of industrial robots for arc welding, a method is currently generally used in which a worker operates a switch or the like on a control panel to guide the tip of a welding torch along a welding line. In such prior art, the target position of the torch must be set with high precision, which places a heavy burden on the operator and requires a long time for teaching.
この教示作業を簡易化し、能率を向上する方法として、
従来から光学式センサを用いる方法が提案されている。As a way to simplify this teaching work and improve efficiency,
Conventionally, methods using optical sensors have been proposed.
この方法はワークにスリット光を照射して工業用テレビ
カメラで表面を撮像し、溶接線の段差を検出している。This method irradiates the workpiece with slit light and images the surface with an industrial television camera to detect steps in the weld line.
このような方法を行なうための装置は大型化する。The equipment for carrying out such a method is large in size.
また光学式センサを用いる他の従来からの方法では、ビ
ーム光を反射鏡の角変位によってワーク上で走査させ、
そのワークの反射光を検出している。このような方法で
は、反射鏡が機械的に駆動されるので、衝撃力によって
故障しやすいという問題がある。またこのような従来が
らの光学式センサを用いる方法のいずれもげ、溶接線を
検出する機能しか有せず、したがって溶接作業者がなす
べき作業の一部を補助するに過ぎない。In another conventional method using an optical sensor, a beam of light is scanned over a workpiece by the angular displacement of a reflecting mirror.
The reflected light from the workpiece is detected. In this method, since the reflecting mirror is mechanically driven, there is a problem in that it is easily damaged by impact force. In addition, all of the conventional methods using optical sensors have only the function of detecting flaws and weld lines, and therefore only assist a part of the work that the welding operator is supposed to do.
教示作業を簡易化し、能率を向上させるための他の先行
技術は、複数のスタイラスをワーク上に接触して溶接線
を検出する方法である。この方法では、スタイラスがワ
ークに接触しており、したがって耐久性が乏しくまた装
置も大型化するという問題がある。Another prior art technique for simplifying teaching operations and improving efficiency is a method of detecting weld lines by contacting a plurality of styli on a workpiece. This method has problems in that the stylus is in contact with the workpiece, resulting in poor durability and an increase in the size of the device.
本発明の目的は、対象物体の表面の3次元の形状を検出
することができ、しかも小型で耐久性が向上され、保守
が容易な改良された表面形状の検出方法を提供すること
である。An object of the present invention is to provide an improved surface shape detection method that can detect the three-dimensional shape of the surface of a target object, is compact, has improved durability, and is easy to maintain.
第1図は、本発明の一実施例の全体の系統図である。ア
ーク溶接用産業用ロボットの教示の手順は、次のように
行なわれる。FIG. 1 is an overall system diagram of an embodiment of the present invention. The procedure for teaching an industrial robot for arc welding is performed as follows.
(1)作業機械lの手に本発明に従う教示用センサ3を
設置する。(1) The teaching sensor 3 according to the present invention is installed in the hand of the working machine l.
(2)操作盤4のスイッチを操作し、制御処理装置50
によって手2に設けられている教示用センサ3を教示開
始点5に誘導する。(2) Operate the switch on the operation panel 4 to control the control processing device 50
The teaching sensor 3 provided on the hand 2 is guided to the teaching starting point 5 by the operator.
(3)教示用センサ3が対象物体であるワーク6との距
離、姿勢並びに溶接線7の位置および方向を検出し、制
御処理装置50に含まれている制御装置8によってワー
ク6に対する教示用センサ3の距離およ、び姿勢を、予
め定めた一定の状態に保ち1溶接線7に沿って移動する
。(3) The teaching sensor 3 detects the distance to the workpiece 6, which is the target object, the posture, and the position and direction of the welding line 7, and the control device 8 included in the control processing device 50 controls the teaching sensor for the workpiece 6. The distance and posture of 3 are maintained in a predetermined constant state, and the welding line 1 is moved along the welding line 7.
(4)溶接線7に沿って移動しながら教示用センサ3の
出力信号をライン10からセンサ信号処理装置J1で情
報処理を行なう。これによって得られるライン9からの
教示情報を、一旦予め定めた一定の時間間隔で、バッフ
ァメモリ12に記憶する。(4) While moving along the welding line 7, the output signal of the teaching sensor 3 is sent from the line 10 to the sensor signal processing device J1 for information processing. The teaching information obtained from line 9 is once stored in buffer memory 12 at predetermined constant time intervals.
次にそのデータを教示データ編集装置13で編集し、教
示データ記憶用メモリ14にストアする。Next, the data is edited by the teaching data editing device 13 and stored in the teaching data storage memory 14.
(5)教示終了点15に教示用センサ3が達したとき、
教示終了条件を入力して溶接線7の追従動作を行なう教
示作業を終了し、ロボットの手2を所定の待機場所に移
動する。(5) When the teaching sensor 3 reaches the teaching end point 15,
After inputting the teaching end conditions, the teaching work of following the welding line 7 is completed, and the robot's hand 2 is moved to a predetermined waiting location.
(6)教示用センサ3をツールとしての溶接トーチにと
り代え、前述の教示データに基づいて再生作業を実施す
る。このようにして教示が行なわれる。(6) Replace the teaching sensor 3 with a welding torch as a tool and perform the regeneration work based on the teaching data described above. Teaching is done in this way.
教示用センサ3のワーク6との距離および姿勢並びに溶
接線7の位置および方向の検出のための本発明に従う原
理を述べる。第2図は、教示用センサ3の構成を示す簡
略化した断面図である。2次元光点位置検出器51は、
検出素子20と鴬この検出素子20の受光面にワーク6
の表面像を結像するレンズ23と、光学フィルタ22と
を含む。The principle according to the present invention for detecting the distance and attitude of the teaching sensor 3 to the workpiece 6 and the position and direction of the welding line 7 will be described. FIG. 2 is a simplified sectional view showing the configuration of the teaching sensor 3. FIG. The two-dimensional light spot position detector 51 is
The workpiece 6 is placed on the light-receiving surface of the detection element 20 and the detection element 20.
It includes a lens 23 that forms a surface image of the image, and an optical filter 22.
高指向性の赤外発光ダイオードなどの点光源21は、第
3図に示されるように少なくとも3個以上の複数個が、
周方向に間隔をあけて仮想上の単一円周上に隔置されて
いる。この光源21は1つずつ順次的に点灯され、1つ
の光源21が点灯したとき、残余の光源は消灯している
。1つの光源21が点灯されると、そのビーム光24は
ワーク6の表面で乱反射し、反射点25はレンズ23に
よって検出素子20の受光面に結像される。As shown in FIG. 3, the point light sources 21 such as highly directional infrared light emitting diodes include at least three or more point light sources 21, such as highly directional infrared light emitting diodes.
They are spaced apart on an imaginary single circumference at intervals in the circumferential direction. The light sources 21 are sequentially turned on one by one, and when one light source 21 is turned on, the remaining light sources are turned off. When one light source 21 is turned on, its light beam 24 is diffusely reflected on the surface of the workpiece 6, and a reflection point 25 is imaged by the lens 23 on the light receiving surface of the detection element 20.
第4図は、検出素子20の構成を示す。検出素子20は
仮想上の正方形の各辺に配置された4つの電極52〜5
5を有する。これらの電極52〜55は、ホトダイオー
ドを構成する高抵抗半導体内に設けられる。これらの電
極52〜55からの電流は、検出素子20に結像される
光点位置に依存する。これらの電極52〜55からの電
流を検−出することによって、単一の光点の図心の2次
元座標が検、出され、また2つの光点が結像されている
ときには、それらの図心を結ぶ直線を両者の光量に逆比
例して内分する点の2次元座標を検出することができる
。FIG. 4 shows the configuration of the detection element 20. The detection element 20 has four electrodes 52 to 5 arranged on each side of an imaginary square.
5. These electrodes 52 to 55 are provided within a high resistance semiconductor that constitutes a photodiode. The current from these electrodes 52 to 55 depends on the position of the light spot imaged on the detection element 20. By detecting the currents from these electrodes 52 to 55, the two-dimensional coordinates of the centroid of a single light spot can be detected and obtained, and when two light spots are being imaged, their coordinates can be determined. It is possible to detect the two-dimensional coordinates of a point that internally divides a straight line connecting the centroid in inverse proportion to the amount of light between the two.
第5図は、反射点25の3次元座標を検出する原理を示
す図である。レンズ23の主点を原点0とし、2次元光
点位置検出器51に含まれている検IOB紫子20の受
光面に垂直な縦の方向をY軸とし、横方向に互いに直交
するX軸およびz軸をとる。第5図(a)は光源21の
照射光および反射光をX−Y平面に投影した図である。FIG. 5 is a diagram showing the principle of detecting the three-dimensional coordinates of the reflection point 25. The principal point of the lens 23 is the origin 0, the vertical direction perpendicular to the light receiving surface of the detection IOB Shiko 20 included in the two-dimensional light spot position detector 51 is the Y axis, and the X axis is orthogonal to each other in the horizontal direction. and take the z-axis. FIG. 5(a) is a diagram in which the irradiated light and reflected light from the light source 21 are projected onto the XY plane.
照射光に関しては第1式が成立する。Regarding the irradiation light, the first equation holds true.
y=tanθx (−x+lx ) −(1)
ここでθXは線分PQがX軸となす角、ixは線分OQ
の長さである。y=tanθx (-x+lx) -(1)
Here, θX is the angle that line segment PQ makes with the X axis, and ix is line segment OQ
is the length of
検出素子20の受光面の結像位置只の座標を(h、v)
とし、原点0から受光面までの距離を7とすると、これ
らの値と反射点P (x、y、z) の座標値との間
には次の関係式が成り立つ。The coordinates of the imaging position of the light receiving surface of the detection element 20 are (h, v)
Assuming that the distance from the origin 0 to the light receiving surface is 7, the following relational expression holds between these values and the coordinate values of the reflection point P (x, y, z).
第1式および第2式から第3式が成立する。The third equation is established from the first equation and the second equation.
xp= (x−h+Az)tanθx
−(3)第3式から値Kを求める。xp= (x-h+Az)tanθx
-(3) Find the value K from the third equation.
K(F−h*tan θx)=4x*taxX θx
−(4)第5式を第2式に代入して、x
、7.zを求めると、第6式〜第8式のようになる。K(F-h*tan θx)=4x*taxX θx
-(4) Substituting the fifth equation into the second equation, x
,7. When z is determined, the equations 6 to 8 are obtained.
第5図(1))は、光源21の照射光および反射光をz
−y平面に投影した図である。反射点P (X、7゜
2)は次のようにして求まる。FIG. 5 (1)) shows the irradiation light and reflected light from the light source 21
- It is a figure projected on the y plane. The reflection point P (X, 7°2) is found as follows.
y=tanθz (z+zz ) ・
(9)ここでO2は線分PRがZ軸となす角、t!zは
線分OR−の長さである。y=tanθz (z+zz) ・
(9) Here, O2 is the angle that line segment PR makes with the Z axis, t! z is the length of the line segment OR-.
第(9)式を第(1)式の変わりに用いると第10式〜
第12式が得られる。Using equation (9) instead of equation (1), equation 10 ~
Equation 12 is obtained.
長さlx、lzは、大きい程検出精度を向上することが
できる。したがって円形上に配置された光源21のうち
ljx≧lzの関係が成り立つものに対しては、第6式
〜第8式が用いられ、lX<lzの関係が成り立つもの
に対しては、第10式〜第12式を用いる。The larger the lengths lx and lz, the more the detection accuracy can be improved. Therefore, for the light sources 21 arranged in a circle, for which the relationship ljx≧lz holds, Equations 6 to 8 are used, and for those for which the relationship lX<lz holds, the 10th equation is used. Formulas to Formula 12 are used.
3つの反射点25から、その3点を含む平面を求め、教
示用センサ3およびワーク6との距離、ならびに教示用
センサ3およびワーク6との相対的な姿勢を求めるため
の原理を説明する。ただし距離は、第6図に示されるよ
うに原点0からy軸が平面と交わる点までの距離dで表
わすことにする。また姿勢は第7図(a)〜第7図(0
)に示されるようにX軸、y軸および2軸まわりの回転
角α、βおよびrで表わすことにする。このうち回転角
βは、溶接作業の場合、溶接トーチの軸線まわりの回転
に対応させ、したがって回転角βは演算に必要なくこの
実施例では用いられない。The principle for finding a plane including the three reflection points 25 and finding the distance between the teaching sensor 3 and the workpiece 6 and the relative posture between the teaching sensor 3 and the workpiece 6 will be explained. However, the distance will be expressed as the distance d from the origin 0 to the point where the y-axis intersects the plane, as shown in FIG. Also, the posture is shown in Figures 7(a) to 7(0).
), the angles of rotation around the X-axis, y-axis, and two axes are represented by α, β, and r. Of these, the rotation angle β corresponds to the rotation of the welding torch around the axis in the case of welding work, and therefore the rotation angle β is not necessary for calculation and is not used in this embodiment.
平面の方程式は、一般に第13式で示される。The plane equation is generally expressed by Equation 13.
ax+by+c z==dp −・・O3
今、3点P 1 (xl、yl、zl)、P 2(x2
sy2ez2)、P 3(x3.y3.z3) を含
む平面の方程式を考えると、各係@IL、b、Q、dl
)と3点p1゜P2 、P3の座標(xi、yi、zi
)(ただし1=1〜3)の間には次の関係がある。ax+by+c z==dp −・・O3
Now, three points P 1 (xl, yl, zl), P 2 (x2
sy2ez2), P 3(x3.y3.z3), each coefficient @IL, b, Q, dl
) and the coordinates of the three points p1゜P2, P3 (xi, yi, zi
) (where 1=1 to 3) has the following relationship.
この平面と、レンズ23の主点0との距離d1x@に対
する回転角aおよびz軸に対する回転角γ、ならびに各
係数の間には、第18式〜第20式の関係がある。The relationships expressed by Equations 18 to 20 exist between the rotation angle a with respect to the distance d1x@ between this plane and the principal point 0 of the lens 23, the rotation angle γ with respect to the z-axis, and each coefficient.
さらに座標(xl、yl、=1)(ただし1=1〜3)
を教示用センサ3の検出素子20の受光面の座標(hi
、F、v)(ただしi=1〜3)およびに1(ただし1
=1〜3)を用いて表わすと1第21式〜第24式のと
おりとなる。Furthermore, the coordinates (xl, yl, = 1) (however, 1 = 1 to 3)
The coordinates (hi
, F, v) (where i=1 to 3) and 1 (where 1
=1 to 3), it becomes as shown in Equations 1 to 24.
p
(1=−
−−((h’1v2−h2vi)+(h3vl−hlv
3)+(h2v3−h3v2)) −H第8図は、
重ね合せ溶接を行なう溶接線7の検出を行なうための原
理を示す図である。第811(a)はその斜視図であり
、第8図(b)は平面図である。p (1=- --((h'1v2-h2vi)+(h3vl-hlv
3)+(h2v3-h3v2)) -HFigure 8 is
FIG. 3 is a diagram showing the principle for detecting a weld line 7 for lap welding. 811(a) is a perspective view thereof, and FIG. 8(b) is a plan view thereof.
上のワーク5mと下のワーク6bとを総括して参照符6
で表わす。ワーク6に対して、光源21の光軸が傾−斜
している。そのため重ね合わせ部すなわち溶接線7に照
射されたビーム光は、重ね合わせ部の上方のワーク6a
上における反射光と、下ワーク6b上の反射光とに分か
れ、2つの割円30.31は不連続となる。The upper workpiece 5m and the lower workpiece 6b are collectively referred to as reference mark 6.
It is expressed as The optical axis of the light source 21 is inclined with respect to the workpiece 6. Therefore, the beam light irradiated to the overlapping part, that is, the welding line 7, is transmitted to the workpiece 6a above the overlapping part.
The light is divided into the reflected light on the upper part and the reflected light on the lower workpiece 6b, and the two divided circles 30 and 31 become discontinuous.
したがってこの割円30,31は、第8図(b)に示さ
れるように検出素子20の受光面に結像される。2つの
割円30,31の弦の方向にy軸をとり、分割された位
置と検出素子20のy軸成分の出力値との関係を求める
と、第25式のとおりとなる。Therefore, the divided circles 30 and 31 are imaged on the light receiving surface of the detection element 20 as shown in FIG. 8(b). If the y-axis is taken in the direction of the chord of the two divided circles 30 and 31, and the relationship between the divided position and the output value of the y-axis component of the detection element 20 is determined, it is as shown in Equation 25.
ここでAl、A2は割円30,31に対応した像Ll、
L2の面積、
Kol、KO2は6像Ll、112の輝度、VGI、V
C)2は像Ll、L2(7)図心のX座標、■は検出素
子20のy軸成分の出力値である。Here, Al and A2 are images Ll corresponding to the split circles 30 and 31,
The area of L2, Kol, KO2 is the brightness of 6 images Ll, 112, VGI, V
C) 2 is the X coordinate of the image Ll, L2 (7) centroid, and ■ is the output value of the y-axis component of the detection element 20.
第25式から第26式が得られる。Equation 26 is obtained from Equation 25.
K1・AI
V = 、 (VGI−VC2)+
VG2=K(VGI −VC2)十VG2 −GlK
l・A1+に2@A2
ここでKOI、KO2は光源21からの距離の2乗に反
比例するので、第27式が成立する。K1・AI V=, (VGI−VC2)+
VG2 = K (VGI - VC2) + VG2 - GlK
2@A2 for l·A1+ Since KOI and KO2 are inversely proportional to the square of the distance from the light source 21, Equation 27 holds true.
ここでR1,R2は像Lj、L2の半径である。Here, R1 and R2 are the radii of the images Lj and L2.
したがって第26式で示されるKは第28式のとおりと
なる。Therefore, K shown in Equation 26 is as shown in Equation 28.
ここでωl、ω2は、像LI、L2の拡がり角であって
1
ω1+ω2−π ・・・翰と
みなせるので
すなわち
光軸をX座標の原点0にとり、弦までの距離をxGとす
ると、
であり、゛第31式と第32式とから、xGとVとの関
係が求められる。Here, ωl and ω2 are the spread angles of the images LI and L2, and can be regarded as 1 ω1 + ω2 - π.That is, if the optical axis is set at the origin 0 of the X coordinate and the distance to the string is xG, then , ``The relationship between xG and V can be found from Equations 31 and 32.
第9図は、重ね合せ開先である溶接線7に垂直な方向に
スポット光を移動させた場合における動作を説明するた
めの図である。第9図(C)に示されるようにワーク6
の開先が示されているとき、第91J(a)に示される
ように検出素子20の受光面には、スポット光が結像さ
れる。これによって検出−素子20の出力は第9ffl
(b)に示されるように変化する。ここで
ωl=−・・・に)
tてさく
の位置が開先である溶接線7であり、
−R1<x<R2・・・(至)
におけるVの値が求まれば、開先である溶接線7のX座
標が算出することができる。したがって複数の光源21
を円形状に前述のように配置し、ワーク6上のスポット
光が第10図に示されるように重なり合っていれば、こ
の円形状のスポット光の輪と開先が交差するとき、いず
れかの光源21の反射光によって開先の位置がわかるこ
とが理解される。FIG. 9 is a diagram for explaining the operation when the spotlight is moved in a direction perpendicular to the weld line 7, which is the overlapping groove. Work 6 as shown in Figure 9(C)
When the groove is shown, a spot light is imaged on the light receiving surface of the detection element 20 as shown in No. 91J(a). This causes the output of the detection element 20 to change to the 9th ffl
It changes as shown in (b). Here, ωl=-...) The position of the t edge is the weld line 7, which is the groove, and if the value of V at -R1<x<R2... (to) is found, then The X coordinate of a certain welding line 7 can be calculated. Therefore, a plurality of light sources 21
are arranged in a circular manner as described above, and if the spotlights on the workpiece 6 overlap as shown in FIG. It is understood that the position of the groove can be determined by the reflected light from the light source 21.
第11図はロボットである作業機械1によって移動され
る教示用センサ3の移動方向を示す図である。重ね合せ
開先を溶接する場合には、検出素子20の受光面の結像
状況は光源21に個別的に対応して第11図の黒点のよ
うになり、この教示用センサ3の移動方向はΔXV(Δ
XV、Δyv、Δzv)である。FIG. 11 is a diagram showing the moving direction of the teaching sensor 3 moved by the working machine 1, which is a robot. When welding overlapping grooves, the image formation state of the light receiving surface of the detection element 20 corresponds to the light source 21 individually, as shown by the black dots in FIG. 11, and the direction of movement of the teaching sensor 3 is ΔXV(Δ
XV, Δyv, Δzv).
このような本発明に従う検出原理によって求めた教示用
センサ3およびワーク6との距離、姿勢並びに溶接線7
の位置および方向を利用して、第12図に示される制御
装置を用いて作業機械の手2に従って教示用センサ3は
ワーク6に対して予め定めた距離と姿勢で溶接線7を追
従することができる。検出素子20からの出力は、処理
装置57(第4図参照)に与えられ、教示用センサ3の
状態を示す値ΔX、Δy、Δ2.Δα、Δβ、ΔXV、
Δyv。The distance between the teaching sensor 3 and the workpiece 6, the posture, and the welding line 7 determined by the detection principle according to the present invention.
Using the position and direction of , the teaching sensor 3 follows the welding line 7 at a predetermined distance and attitude relative to the workpiece 6 according to the hand 2 of the working machine using the control device shown in FIG. I can do it. The output from the detection element 20 is given to the processing device 57 (see FIG. 4), and the values ΔX, Δy, Δ2 . Δα, Δβ, ΔXV,
Δyv.
Δ27 が得られる。これらの値は、係数回路58に
おいて演算される。この係数回路58において、Kl、
に2.に3.にα、にγは、位置および姿勢を表わすゲ
インを有する回路であり、KVI、KV2゜k■3 は
速度のゲインを有する回路である。ゲインKl、に2.
に3 を有する回路からの信号と、ゲインKVI、K
V2.KV3 を有する回路からの出力とは、加算回
路59,60.61において加算され、座標変換回路4
0に与えられる。座標変換回路40では、作業機械1に
おける絶対座標系における位置偏差Δxa、Δya、Δ
za および姿勢偏差Δaa、Δγa が算出される。Δ27 is obtained. These values are calculated in coefficient circuit 58. In this coefficient circuit 58, Kl,
2. 3. α and γ are circuits with gains representing position and orientation, and KVI and KV2°k■3 are circuits with gains of velocity. Gain Kl, 2.
A signal from a circuit with 3 and gains KVI, K
V2. The outputs from the circuit having KV3 are added in addition circuits 59, 60, 61, and coordinate conversion circuit 4.
given to 0. The coordinate conversion circuit 40 calculates positional deviations Δxa, Δya, Δ in the absolute coordinate system of the working machine 1.
za and posture deviations Δaa and Δγa are calculated.
作業機械1の5軸の各間部の角度θ1〜θ5は、座標変
換回路41によって演算され、絶対座標系における現在
の教示用センサ3の位置および姿勢X 、 y 、 z
、α、γが演算される。座標変換回路40.41からの
出力は、加算回路62〜66において加算され、絶対座
標系における位置および姿勢の指令値xr。The angles θ1 to θ5 between the five axes of the work machine 1 are calculated by the coordinate conversion circuit 41, and the current position and orientation of the teaching sensor 3 in the absolute coordinate system are calculated by the coordinate conversion circuit 41.
, α, and γ are calculated. The outputs from the coordinate conversion circuits 40 and 41 are added in addition circuits 62 to 66 to obtain a position and orientation command value xr in the absolute coordinate system.
yr、zr、αr、γr を求め、座標変換回路42に
与えられる。座標変換回路42では、各間部の角の指令
値θlr、θ2r、θ3r、θ4r、θ5r が得られ
る。これらの指令値θ1r〜θ5r は、各間部ごとの
制御装置43〜47に与えられる。制御装置43は比例
、積分、演算などの制御要素Hcと、伝達関数Gaを有
する駆動手段と、演算素子Eとを有し、残余の制御装置
44〜47もまた同様な構成を有する。yr, zr, αr, and γr are determined and provided to the coordinate conversion circuit 42. The coordinate conversion circuit 42 obtains command values θlr, θ2r, θ3r, θ4r, and θ5r for the angles of the respective spaces. These command values θ1r to θ5r are given to the control devices 43 to 47 for each section. The control device 43 has a control element Hc for proportional, integral, arithmetic, etc., a drive means having a transfer function Ga, and an arithmetic element E, and the remaining control devices 44 to 47 also have a similar configuration.
上記の実施例では、多数の光源を用いる構成で説明し・
たp≦、1つの光源とその光を走査する機構との組合せ
によって同様の機能をもたせてもよい。In the above embodiment, a configuration using a large number of light sources is explained.
If p≦, the same function may be provided by a combination of one light source and a mechanism for scanning the light.
また光源の配置を円形状にしたが、対象、目的に応じて
、三角形や四角形などの形状にしてもよい。Further, although the light source is arranged in a circular shape, it may be arranged in a triangular or quadrangular shape depending on the object and purpose.
なお上記の説明はアーク溶接作業の教示を例にとって行
なったが、充填剤をすき間に塗装するシーリング作業な
どの教示時にも適用でき、さらに再生時のツールの位置
、姿勢の補正や、その他の用途にも適用できることはい
うまでもない。The above explanation has been made using the teaching of arc welding work as an example, but it can also be applied to teaching of sealing work where filler is applied to gaps, etc. Furthermore, it can also be applied to teaching work such as sealing work where filler is applied to gaps, etc. Furthermore, it can be applied to correction of the position and posture of tools during playback, and other uses. Needless to say, it can also be applied to
これら上述の実施例によれば、次のような利点がある。These embodiments described above have the following advantages.
(1)教示に要する時間を短縮できる。(1) The time required for teaching can be shortened.
(2)非接触で教示に必要な情報を検出できるので、信
頼性が高い。(2) High reliability because information necessary for teaching can be detected without contact.
(3)センサ3が小形軽量であるので、作業時の障害に
ならない。(3) Since the sensor 3 is small and lightweight, it does not become an obstacle during work.
(4)他の化学式センサと比べて検出時間が短く、作業
機械1を高速度で動作させることができる。(4) The detection time is shorter than that of other chemical sensors, and the working machine 1 can be operated at high speed.
以上のように本発明によれば、構成が小形化され、また
機械的衝撃力によっても故障することはなく耐久性が優
れており、また比較的広範囲における3次元の検出を行
なうことができる。As described above, according to the present invention, the structure is miniaturized, the device does not break down even under mechanical impact force, has excellent durability, and three-dimensional detection can be performed over a relatively wide range.
第1図は本発明の一実施例の全体の系統図、第2図は教
示用センサ3の簡略化した構成を示す断面図、第3図は
光源21の配置を示す第2図の下方の面■−■から見た
教示用センサの底面図、第4図は検出素子20と処理回
路57とを示す回路図、第5図は反射点の3次元座標の
検出原理を示す図、第6図は距離の表わし方を説明する
ための図、第7図は姿勢角α、β、γの表わし方を説明
するための図、第8図は溶接線7の検出原理を示す図、
第9図はスポット光の光軸と2次元光点検出器51の出
力との関係を示す図、第10図はワーク6上のスポット
光を示す図、第11図は作業機械の手2の移動方向を説
明するための図、第12図は作業機械1に関連する制御
系を示すブロック図である。
l・・・作業機械、3・・・教示用センサ、6・・・ワ
ーク17・・・溶接続、20・・・検出素子、21・・
・光源、51・・・2灰元、光点位置検出器
代理人 弁理士 西教圭一部
第1図
第2図
/
第3図
−第4図
(a)
■
5図
(b)
第6図
第7図
(a) (b) (c)第8図FIG. 1 is an overall system diagram of an embodiment of the present invention, FIG. 2 is a sectional view showing a simplified configuration of the teaching sensor 3, and FIG. 3 is a lower part of FIG. 2 showing the arrangement of the light source 21. FIG. 4 is a circuit diagram showing the detection element 20 and the processing circuit 57, FIG. 5 is a diagram showing the principle of detecting the three-dimensional coordinates of the reflection point, and FIG. 7 is a diagram for explaining how to represent distance, FIG. 7 is a diagram for explaining how to represent attitude angles α, β, and γ, and FIG. 8 is a diagram for explaining the principle of detecting weld line 7.
FIG. 9 is a diagram showing the relationship between the optical axis of the spot light and the output of the two-dimensional light spot detector 51, FIG. 10 is a diagram showing the spot light on the workpiece 6, and FIG. FIG. 12, which is a diagram for explaining the movement direction, is a block diagram showing a control system related to the working machine 1. l... Working machine, 3... Teaching sensor, 6... Workpiece 17... Welding connection, 20... Detection element, 21...
・Light source, 51...2 Ash source, light spot position detector Patent attorney Kei Nishi Part 1 Figure 2/ Figure 3 - Figure 4 (a) ■ Figure 5 (b) Figure 6 Figure 7 (a) (b) (c) Figure 8
Claims (1)
するとともに、この光源の反射光を2次元光点位置検出
器で受光し、この2次元光点位置検出器の出力に基づい
て反射点の3次元位置を検出し、これによって対象物体
の表面形状を検出することを特徴とする表面形状の検出
方法。The light from three or more point light sources is sequentially irradiated onto the surface of the target object, and the reflected light from the light sources is received by a two-dimensional light spot position detector, and based on the output of this two-dimensional light spot position detector. A method for detecting a surface shape, characterized in that the three-dimensional position of a reflection point is detected using a three-dimensional position of a reflection point, and the surface shape of a target object is thereby detected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57201611A JPS5991308A (en) | 1982-11-16 | 1982-11-16 | Method for detecting surface configuration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57201611A JPS5991308A (en) | 1982-11-16 | 1982-11-16 | Method for detecting surface configuration |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5991308A true JPS5991308A (en) | 1984-05-26 |
JPH0418601B2 JPH0418601B2 (en) | 1992-03-27 |
Family
ID=16443926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57201611A Granted JPS5991308A (en) | 1982-11-16 | 1982-11-16 | Method for detecting surface configuration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5991308A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60191745A (en) * | 1984-03-13 | 1985-09-30 | Okuma Mach Works Ltd | Three-dimensional copying |
JPS61274852A (en) * | 1985-05-28 | 1986-12-05 | Agency Of Ind Science & Technol | Non-contact curved surface copying sensor |
JPS61274853A (en) * | 1985-05-28 | 1986-12-05 | Shin Meiwa Ind Co Ltd | Layout line follow-up device |
JPS6215063A (en) * | 1985-07-10 | 1987-01-23 | Shin Meiwa Ind Co Ltd | Distance and attitude controller of ruled line followup device |
WO1991008861A1 (en) * | 1989-12-19 | 1991-06-27 | Fanuc Ltd | Noncontact profile controller |
JP2012251790A (en) * | 2011-05-31 | 2012-12-20 | Honda Motor Co Ltd | Measurement method for sensor angle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002535377A (en) * | 1999-01-27 | 2002-10-22 | ユニバーシテイ・カレツジ・ロンドン | Formulations containing antisense nucleotides to connexin |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5264959A (en) * | 1975-11-25 | 1977-05-28 | Atsunori Miyamura | Distance conversion apparatus with photoelectric method |
-
1982
- 1982-11-16 JP JP57201611A patent/JPS5991308A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002535377A (en) * | 1999-01-27 | 2002-10-22 | ユニバーシテイ・カレツジ・ロンドン | Formulations containing antisense nucleotides to connexin |
Non-Patent Citations (4)
Title |
---|
JPN6013025156; ONIFER,S.M. et al: 'Combining methylprednisolone, peripheral nerves, FGF1, fibrin, and vertebral wiring for spinal cord' Society for Neuroscience Abstracts Vol.25, No.1-2, 1999, p.492 * |
JPN6013025157; BREGMAN,B.S. et al: Experimental Neurology Vol.149, No.1, 1998, p.13-27 * |
JPN6013025159; DATABASE EMBASE ON STN , 2001 * |
JPN6013025161; JIN,Y. et al: 'Combination of fetal tissue transplantation and gene therapy to promote spinal cord regeneration' Society for Neuroscience Abstract , 2003 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60191745A (en) * | 1984-03-13 | 1985-09-30 | Okuma Mach Works Ltd | Three-dimensional copying |
JPH059223B2 (en) * | 1984-03-13 | 1993-02-04 | Ookuma Kk | |
JPS61274852A (en) * | 1985-05-28 | 1986-12-05 | Agency Of Ind Science & Technol | Non-contact curved surface copying sensor |
JPS61274853A (en) * | 1985-05-28 | 1986-12-05 | Shin Meiwa Ind Co Ltd | Layout line follow-up device |
JPH055628B2 (en) * | 1985-05-28 | 1993-01-22 | Kogyo Gijutsuin | |
JPS6215063A (en) * | 1985-07-10 | 1987-01-23 | Shin Meiwa Ind Co Ltd | Distance and attitude controller of ruled line followup device |
WO1991008861A1 (en) * | 1989-12-19 | 1991-06-27 | Fanuc Ltd | Noncontact profile controller |
EP0458983B1 (en) * | 1989-12-19 | 1996-06-05 | Fanuc Ltd. | Noncontact profile controller |
JP2012251790A (en) * | 2011-05-31 | 2012-12-20 | Honda Motor Co Ltd | Measurement method for sensor angle |
Also Published As
Publication number | Publication date |
---|---|
JPH0418601B2 (en) | 1992-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4822163A (en) | Tracking vision sensor | |
JP3556589B2 (en) | Position and orientation recognition device | |
US6044308A (en) | Method and device for robot tool frame calibration | |
JP5290324B2 (en) | Method and system for accurately positioning at least one object in a final pose in space | |
JPH07104692B2 (en) | Preview tracking control type robot | |
JP2004508954A (en) | Positioning device and system | |
JP4015161B2 (en) | Industrial robot controller | |
JP2004050356A (en) | Position and attitude sensor of movable structure | |
JPH03213251A (en) | Workpiece position detecting device | |
JP2002144278A (en) | Legged mobile robot | |
JPH0816221A (en) | Method for changing teaching route for robot using laser sensor | |
JPS5991308A (en) | Method for detecting surface configuration | |
JP3517529B2 (en) | Image input type robot system | |
JP2000194418A (en) | Position correction system for ummanned carriage | |
JPH055628B2 (en) | ||
JP2502533B2 (en) | Welding robot with sensor | |
JPH0394979A (en) | Welding position detector | |
JPH0830319A (en) | Detected angle control method for laser sensor | |
JPH0731536B2 (en) | Teaching data correction robot | |
JP2543091B2 (en) | Robot copy control device | |
JPH0474642B2 (en) | ||
JPH0367792B2 (en) | ||
CN107414287A (en) | A kind of laser welding defocus amount determining device and assay method | |
JPS63251182A (en) | Method of detecting position of bevel of working-line start end | |
JPS63149075A (en) | Articulated welding robot device supplemented by image processing function |