[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5986813A - Burner device - Google Patents

Burner device

Info

Publication number
JPS5986813A
JPS5986813A JP19700782A JP19700782A JPS5986813A JP S5986813 A JPS5986813 A JP S5986813A JP 19700782 A JP19700782 A JP 19700782A JP 19700782 A JP19700782 A JP 19700782A JP S5986813 A JPS5986813 A JP S5986813A
Authority
JP
Japan
Prior art keywords
air
flame
secondary air
combustion
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19700782A
Other languages
Japanese (ja)
Other versions
JPS6343642B2 (en
Inventor
Fumitaka Kikutani
文孝 菊谷
Masahiro Indo
引頭 正博
Yukiro Komai
古米 幸郎
Eiichi Tanaka
栄一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19700782A priority Critical patent/JPS5986813A/en
Publication of JPS5986813A publication Critical patent/JPS5986813A/en
Publication of JPS6343642B2 publication Critical patent/JPS6343642B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To enable miniaturization of a combustion chamber and reduction of creation of combustion noise, and to enable reduction of the pressure of blast and an increase in a stable combustion range, by selecting the structure of the combustion chamber and the supply condition of a secondary air. CONSTITUTION:Fuel-air premixture, fed from a mixture chamber 11, is supplied in a combustion chamber 16 through a burner port part 12. Meanwhile, a secondary air enters an air chamber 13, and a part thereof, controlled into a specified flow rate by control plates 15, enters an air chamber 14. The secondary air, entering the air chamber 14, is fed approximately parallel to the flow-out direction of air-fuel premixture from a part around the burner port 12 through air ports 18 to form a stable flame F'1. The remaining secondary air within an air chamber 13, after passing through air ports 17, is fed in the combustion chamber 16 in a direction extending at an inclining angle with the injection direction of the air-fuel premixture and is forcibly mixed with unburnt gas to form a flame F'2 having the short length of a flame. In which case, if the equivalent weight ratio of an air-fuel premixture flow is set to 1.5-3.0, the velocity of flow of a parallel secondary air to 0.3-2m/S. The velocity of flow of an inclining secondary air to 1.5-10m/S, and the area load of a burner port to 1.0-18kcal/mm.<2>, the device is prevented from restriction of vibrating combustion and backfire, resulting in reduction in creation of noise.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は給湯機や暖房機などの家庭用燃焼機のうち、フ
ァンなどを用いて強制空気供給を行ない燃焼反応を促進
させることにより火炎長を小さくして燃焼部の小型化を
図る燃焼装置に関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention is a method for reducing flame length in household combustion machines such as water heaters and space heaters by supplying forced air using a fan or the like to promote the combustion reaction. The present invention relates to a combustion device that reduces the size of the combustion section.

従来例の構成とその問題点 この種の燃焼装置としては第1図に示すような構成をも
つものがある。これは熱交換器フレーム1と、混合室2
および炎口面3を備えるバーナ4と、熱交換器フレーム
1内に設けられた一対の絞り板5と、絞り板6の下流側
に火炎に近接する一対の三次空気室6と、これに連通ず
る空気噴出ロアとを有し、バーナ4の上流(lullで
熱交換器フレーム1との間に二次空気室8を、また絞り
板6で燃焼室を上流側の一次燃焼室9と下流側の二次燃
焼室1oに仕切った構成を有する燃焼装置である。
Conventional Structure and Problems There is a combustion apparatus of this type having a structure as shown in FIG. This is heat exchanger frame 1 and mixing chamber 2
and a burner 4 having a flame opening surface 3, a pair of throttle plates 5 provided in the heat exchanger frame 1, a pair of tertiary air chambers 6 adjacent to the flame on the downstream side of the throttle plates 6, and a pair of tertiary air chambers 6 adjacent to the flame on the downstream side of the throttle plates 6. It has a secondary air chamber 8 between the burner 4 upstream (lull) and the heat exchanger frame 1, and a throttle plate 6 that connects the combustion chamber between the upstream primary combustion chamber 9 and the downstream side. This combustion device has a partitioned structure into a secondary combustion chamber 1o.

炎口面3より噴出された予混合気は、二次空気室8より
流出し炎口面3の両側より供給される二次空気により一
次燃焼室9内で安定した火炎F1 を形成する。その後
燃焼ガス、未然ガスおよび一部の二次空気は絞り板5で
同時に縮流を受けた後二次燃焼室1o内に流入する。三
次空気室6から空気噴出ロアを通り比較的高速でかつ燃
焼ガスの流れに対して直角方向から再び供給される二次
空気により未然ガスは強制混合を受は火炎長の小さな火
炎F2 を形成する。従って燃焼室の高さを低く構成で
き燃焼装置の小型化が図れるものである。
The premixed gas ejected from the flame port surface 3 flows out from the secondary air chamber 8 and forms a stable flame F1 in the primary combustion chamber 9 by secondary air supplied from both sides of the flame port surface 3. Thereafter, the combustion gas, the unused gas, and a portion of the secondary air undergo contraction at the same time at the throttle plate 5, and then flow into the secondary combustion chamber 1o. The secondary air is supplied again from the tertiary air chamber 6 through the air jet lower at a relatively high speed and from a direction perpendicular to the flow of combustion gas, and the gas is forcibly mixed to form a flame F2 with a small flame length. . Therefore, the height of the combustion chamber can be configured to be low and the size of the combustion device can be reduced.

ここで発明者等の実験によれば第2図に示すように炎口
面3がら空気噴出ロアまでの距離Hに、二次空気流の流
速v2が同じであればHが小さい程火炎長が小さくなり
、また火炎長を同じにするためにはHが大きくなる程流
速v2を大きくする必要があることが分かった。従って
第一図で示した従来例ではHが比較的大きなため、流速
v2 を大きくしないと火炎長は大きくなってしまう。
According to the experiments conducted by the inventors, as shown in Fig. 2, if the distance H from the flame outlet surface 3 to the air jet lower and the flow velocity v2 of the secondary air flow are the same, the smaller H is, the longer the flame length is. It was found that as H becomes larger, the flow velocity v2 needs to be increased in order to make the flame length smaller and the flame length the same. Therefore, in the conventional example shown in FIG. 1, since H is relatively large, the flame length will become large unless the flow velocity v2 is increased.

この場合流速■2を大きくし過ぎると上流の安定火炎F
1  を乱す恐れがあるが絞り板5によりその影響を防
いでいる。しかし絞り板5を設けることにより火炎F1
 の両側に燃焼反応促進に寄与しない非有効領域Aを形
成してしまうことになり、燃焼室の小型化の妨げとなる
。壕だ絞り板5による縮流作用と高速の二次空気流速v
2により火炎F2の上流側は非常に乱され燃焼騒音を高
くする恐れがある。さらに絞り板5の先端は火炎F1 
 に近接するため耐熱性が問題となることや、流速v2
 を大きくするために大型のファンか要求されるなどの
問題点−も有している。
In this case, if the flow velocity ■2 is too large, the upstream stable flame F
1 may be disturbed, but the aperture plate 5 prevents this effect. However, by providing the aperture plate 5, the flame F1
Ineffective regions A that do not contribute to the promotion of combustion reaction are formed on both sides of the combustion chamber, which hinders miniaturization of the combustion chamber. Contraction effect due to trench aperture plate 5 and high secondary air flow velocity v
2, the upstream side of the flame F2 is greatly disturbed and there is a possibility that the combustion noise will be increased. Furthermore, the tip of the aperture plate 5 is a flame F1.
Heat resistance is a problem because it is close to the flow rate v2
It also has problems such as requiring a large fan to increase the size of the fan.

以上説明したように従来の燃焼装置では火炎に強制的に
二次空気を供給することにより火炎長が小さくなり燃焼
室の小型化は図れるが、反面未だ非有効領域を有してい
る。相反作用として燃焼騒音が高くなる2部材の一部に
耐熱的な問題がある。
As explained above, in conventional combustion apparatuses, by forcibly supplying secondary air to the flame, the flame length can be reduced and the combustion chamber can be downsized, but on the other hand, there is still an ineffective area. There is a problem with heat resistance in some of the two members that cause a conflicting effect and increase combustion noise.

送風圧の大きなファンが必要となるなどといったような
欠点を有したものであった。
This had drawbacks such as the need for a fan with high blowing pressure.

発明の目的 本発明はかかる従来の問題を解消するもので、従来相反
関係にあった燃焼室の小型化と燃焼騒音の低減化を実現
し、合わせて送風圧の低減化と安定燃焼域の拡大を目的
とする。
Purpose of the Invention The present invention solves these conventional problems, and achieves miniaturization of the combustion chamber and reduction of combustion noise, which were contradictory in the past, as well as reduction of blowing pressure and expansion of stable combustion range. With the goal.

発明の構成 既に第2図で説明したように炎口と二次空気を供給する
空気口までの距離Hは小さい程火炎長を小さくする効果
は大きいが、反面うまく供給条件を定めなければ振動燃
焼を発生したり、燃焼騒音が大きくなったり、火炎安定
域が狭くなってしまう。そこで本発明の燃焼装置では多
数の炎口を並べてなる炎口部の周辺に炎口より噴出され
る予混合気流に対して、はぼ平行に供給される平行二次
空気の供給手段と、これよりも下流側で炎口部よりの距
離が20覇以内に設けられた予混合気流に傾斜角をもっ
て供給される傾斜二次空気の供給手段を有し、予混合気
流の当量比を1.5〜3.0とし、平行二次空気の流速
を0.3〜2 m/s 、傾余に二次空気の流速を1.
5〜10+n/s、かつ炎口面積負荷を1.0〜18k
cal/h〆一としたものである。この燃焼装置構成な
らびに二次空気供給条件により、炎口部と傾斜二次空気
の供給手段との距離が小さくなりより小さな二次空気の
流速v2で火炎長を小さくすることが可能となる。また
傾斜角をもって二9次空気を供給するため上流側の火炎
基部への影響を少くできる。さらに当量比が1より太き
くなるにつれ燃焼速度は低下するか、炎口部周辺に供給
される平行二次空気により炎口部より噴出する予混合気
は拡散や渦の作用により二次空気と混合し極所的に当量
比が下がり燃焼速度を上昇させるので当量比の広い範囲
での火炎基部の安定化が可能になる。寸だ平行二次空気
により形成された火炎面か、傾斜二次空気により形成さ
れた火炎面と連続するようになれば火炎面の乱れが少な
くなり、燃焼騒音が低下することとなる。
Structure of the Invention As already explained in Fig. 2, the smaller the distance H between the flame port and the air port that supplies secondary air, the greater the effect of reducing the flame length. , combustion noise becomes louder, and the flame stability range becomes narrower. Therefore, the combustion apparatus of the present invention includes a means for supplying parallel secondary air that is supplied approximately in parallel to the premixed air flow jetted from the flame ports around a flame port formed by arranging a large number of flame ports; It has an inclined secondary air supply means that is supplied at an inclined angle to the premixed airflow provided at a distance of less than 20 mm from the flame outlet on the downstream side of the burner, and the equivalence ratio of the premixed airflow is set to 1.5. ~3.0, the flow velocity of the parallel secondary air is 0.3 to 2 m/s, and the flow velocity of the secondary air is 1.0 m/s.
5 to 10+n/s, and the flame area load is 1.0 to 18k.
The cal/h ratio is the same. With this combustion device configuration and secondary air supply conditions, the distance between the flame port and the inclined secondary air supply means is shortened, making it possible to reduce the flame length with a smaller secondary air flow velocity v2. Furthermore, since the secondary air is supplied at an angle of inclination, the influence on the flame base on the upstream side can be reduced. Furthermore, as the equivalence ratio becomes larger than 1, the combustion speed decreases, or the premixture ejected from the flame nozzle due to parallel secondary air supplied around the flame nozzle becomes secondary air due to diffusion and vortex action. By mixing, the equivalence ratio locally decreases and the combustion rate increases, making it possible to stabilize the flame base over a wide range of equivalence ratios. If the flame front is made to be continuous with the flame front formed by the parallel secondary air or the flame front formed by the inclined secondary air, the turbulence of the flame front will be reduced and the combustion noise will be reduced.

実施例の説明 以下本発明の一実施例について第3図〜第6図を用いて
説明する。第3図において中央に混合室11と炎口部1
2が設けられ、その両側に一対の傾斜二次空気用の空気
室13が設けられている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 3 to 6. In Fig. 3, the mixing chamber 11 and flame outlet 1 are in the center.
2 is provided, and a pair of inclined secondary air air chambers 13 are provided on both sides thereof.

炎口部120両側には平行二次空気用の一対の空気室1
4が制御板15を介して空気室13と接している。頃斜
および平行二次空気室13.14には燃焼室16へ開口
したそれぞれの空気口17゜18が設けられている。こ
こで空気口17は炎口部1′I2より下流側で、かつ炎
口部12より噴出される予混合気に傾斜角をもって設け
られ、空気口18は炎口部12と同一平面上にほぼ平行
に設けられている。燃焼室16は周囲を熱交換用ドラム
19で下流側を熱交換器用フィン20で四重れている。
A pair of air chambers 1 for parallel secondary air are provided on both sides of the flame port 120.
4 is in contact with the air chamber 13 via the control plate 15. The oblique and parallel secondary air chambers 13 , 14 are provided with respective air openings 17 , 18 opening into the combustion chamber 16 . Here, the air port 17 is provided on the downstream side of the burner port 1'I2, and is provided at an angle of inclination to the premixed air jetted from the burner port 12, and the air port 18 is provided approximately on the same plane as the burner port 12. are placed in parallel. The combustion chamber 16 is surrounded by a heat exchange drum 19 and is quadrupled by heat exchanger fins 20 on the downstream side.

第3図における作用を説明すると、混合室11より供給
された予混合気は炎口部12を通り燃焼室16内に供給
される。一方二次空気は先づ空気室13に入り、一部が
制御板16で所定の流量に制御され空気室14に入る。
To explain the operation in FIG. 3, the premixture supplied from the mixing chamber 11 is supplied into the combustion chamber 16 through the flame port 12. On the other hand, the secondary air first enters the air chamber 13, and a portion thereof is controlled to a predetermined flow rate by the control plate 16 and enters the air chamber 14.

空気室14に入った二次空気は空気口18より炎口部1
20周辺より予混合気の流出方向とほぼ平行に供給され
安定した火炎F1′を形成する。
The secondary air that has entered the air chamber 14 is sent to the flame port 1 through the air port 18.
The flame F1' is supplied from around 20 approximately parallel to the outflow direction of the premixture to form a stable flame F1'.

また空気室13内の残りの二次空気は空気口17を通り
、予混合気の噴出方向に対し傾斜角をもって燃焼室16
内に供給され未燃ガスと強制混合し火炎長の小さな火炎
F2′を形成する。燃焼反応を完了した燃焼ガスは熱交
換器用ドラム19およびフィン2oで熱交換を行なった
後外気に放出される。
In addition, the remaining secondary air in the air chamber 13 passes through the air port 17 and enters the combustion chamber 16 at an inclination angle with respect to the injection direction of the premixture.
The gas is forcibly mixed with the unburned gas to form a flame F2' with a small flame length. The combustion gas that has completed the combustion reaction exchanges heat with the heat exchanger drum 19 and the fins 2o, and then is released into the outside air.

このような燃焼方式の特性について第4図〜第6図に基
づいて説明する。
The characteristics of such a combustion method will be explained based on FIGS. 4 to 6.

第4図は横軸に当量比φ、縦軸に予混合気の噴出速度V
m i xをとって火炎挙動を示したものである。
In Figure 4, the horizontal axis shows the equivalence ratio φ, and the vertical axis shows the injection velocity V of the premixture.
The flame behavior is shown by taking m i x.

傾斜二次空気の流速v2 が■2−oの場合、火炎安定
域はφ≦1.5の狭い範囲しかなく、かつ燃焼量可変幅
即ちVm i xの可変幅は振動燃焼領域と逆火領域で
上下限界の制約を受けるためTDR(絞り比=最小燃焼
量/最犬燃焼量)も大きくとれない。
When the flow velocity v2 of the inclined secondary air is ■2-o, the flame stability region is only a narrow range of φ≦1.5, and the combustion amount variable width, that is, the variable width of Vm i x is the oscillating combustion region and the flashback region. Since the engine is constrained by upper and lower limits, TDR (throttle ratio = minimum combustion amount / maximum combustion amount) cannot be made large.

次にv2 を増加すると黄火限界線がφとVm i x
の大きい方に移動し火炎安定域がv2の増加とともに拡
大してゆくことが実験により確かめられた。
Next, when v2 is increased, the yellow flame limit line becomes φ and Vm i x
It was confirmed through experiments that the flame stability region expands as v2 increases.

従って後述するように燃焼騒音の制約から限界と考えら
れるφ=3.o fでの1.6≦φ≦3.0に当量比を
設定すればTDRを大きくとっても振動燃焼や逆火の制
約を受けないことが分かる。また第4図には同燃焼量の
線、即ち同炎口負荷線が示しであるが最大値は1.6≦
φ3.0で吹飛びを生じない値で18 k Ca l 
/h/III# 、最小値は燃焼制御時の過渡域も含め
て逆火を生じない値で1 、0kca l/h 7m4
である。第6図は縦軸に予混合気流速と傾斜二次空気流
速の比vmix/v2を横軸に傾斜二次空気流速v2 
をとって、前述の炎口負荷の実使用範囲と燃焼制御時に
、供給空気量とガス量の制御精度で決まる最大および最
小の空気過剰率の範囲で囲まれたひし形状の実使用領域
を示したものである。
Therefore, as will be explained later, φ=3, which is considered to be the limit due to combustion noise constraints. It can be seen that if the equivalence ratio is set to 1.6≦φ≦3.0 at o f, there will be no restrictions on oscillatory combustion or flashback even if the TDR is made large. In addition, Fig. 4 shows the line of the same combustion amount, that is, the line of the same flame load, and the maximum value is 1.6≦
18k Cal at a value that does not cause blow-off at φ3.0
/h/III#, the minimum value is the value that does not cause flashback, including the transient region during combustion control, 1, 0kcal/h 7m4
It is. Figure 6 shows the ratio vmix/v2 between the premixture flow velocity and the inclined secondary air flow velocity on the vertical axis, and the inclined secondary air flow velocity v2 on the horizontal axis.
shows the rhombus-shaped actual usage area surrounded by the actual usage range of the flame port load mentioned above and the maximum and minimum air excess ratio range determined by the control accuracy of the supply air amount and gas amount during combustion control. It is something that

図中には実使用上問題となる黄火限界と、火炎の一部が
吹飛ぶ部分吹飛び限界も示しである。この図より実使用
上の問題を生じさせないためには1.6≦v2≦10m
/secとする必要のあることが分かる。
The figure also shows the yellow flame limit, which is a problem in practical use, and the partial blow-off limit, where part of the flame blows out. From this figure, in order to avoid problems in actual use, 1.6≦v2≦10m is required.
It can be seen that it is necessary to set the value to /sec.

第6図は平行二次空気による燃焼騒音の低減効果を示し
たもので縦軸に燃焼騒音を横軸に平行二次空気流速v1
  をとって示したものである。当量比φが1.5と3
.0の場合を示しであるがφが大きくなる程燃焼騒音は
大きくなりφ〉3.0では著しく増加する。これは第3
図で示した火炎F2′の乱れが激しくなるためである。
Figure 6 shows the combustion noise reduction effect of parallel secondary air, where the vertical axis represents the combustion noise and the horizontal axis represents the parallel secondary air flow velocity v1.
This is what is shown. Equivalence ratio φ is 1.5 and 3
.. Although the case where φ is 0 is shown, the combustion noise becomes larger as φ becomes larger, and increases significantly when φ>3.0. This is the third
This is because the turbulence of the flame F2' shown in the figure becomes severe.

1.5≦φ3.0でv1f!c増していくと急激に騒音
の低下する所があり、その後■1  の増加とともにあ
まり大きくは変化しないがv1≧20αa/!1で再び
騒音が上昇し始める。
1.5≦φ3.0, v1f! As c increases, there is a point where the noise suddenly decreases, and then ■1 As c increases, it does not change much, but v1≧20αa/! At 1, the noise starts to rise again.

火炎観察によれば第3図に示すようにvlが増加してい
くとそれ゛ぞれの空気口18および17の近傍に形成さ
れた別々の火炎F1′およびF2′ が連続するように
なり、この時急激な騒音の低下がみられた。第6図で示
したように1.5≦φ≦3.0の範囲では30≦v1≦
200cm/sとすれば燃焼騒音が低下することが分か
る。
According to flame observation, as shown in FIG. 3, as vl increases, separate flames F1' and F2' formed near the respective air ports 18 and 17 become continuous. At this time, a sudden decrease in noise was observed. As shown in Fig. 6, in the range of 1.5≦φ≦3.0, 30≦v1≦
It can be seen that combustion noise is reduced when the speed is set to 200 cm/s.

次に本発明の他の実施例を第7図に示す。第7図におい
て前記実施例と相違する点は炎口部を並列に設けた点に
あり、その為中央の予混合室21の下流側にもう一つの
傾斜二次空気用の空気室22とその両側に一対の平行二
次空気用の空気室23を設けたものである。この構成に
よれば同じ燃焼量の装置であれば長手方向の寸法が半分
になり、混合気の分布対策や長手方向の熱歪量を小さく
することができる。
Next, another embodiment of the present invention is shown in FIG. The difference in FIG. 7 from the previous embodiment is that the flame ports are provided in parallel, and therefore, there is another inclined secondary air air chamber 22 on the downstream side of the central premixing chamber 21. A pair of parallel air chambers 23 for secondary air are provided on both sides. According to this configuration, if the device has the same combustion amount, the longitudinal dimension is halved, and it is possible to take measures against air-fuel mixture distribution and to reduce the amount of thermal distortion in the longitudinal direction.

なお以上の実施例においては平行二次空気用の空気供給
を傾斜二次空気用空気室から分配する方用領域を示した
説明図、第6図は平行空気流速の燃焼騒音に及ぼす影響
を示す説明図、第7図は本発明の他の実施例を示す一断
面図である。
In addition, in the above embodiment, an explanatory diagram showing the area in which the air supply for parallel secondary air is distributed from the inclined secondary air air chamber, and FIG. 6 shows the influence of parallel air flow velocity on combustion noise. The explanatory diagram, FIG. 7, is a sectional view showing another embodiment of the present invention.

12・・・・・・炎口部、13・・・・・・傾斜二次空
気用空気室、14・・・・・・平行二次空気用空気室、
17・・・・・・傾斜二次空気用空気口、18・・・・
・・平行二次空気用空気口。
12...flame mouth part, 13...air chamber for inclined secondary air, 14...air chamber for parallel secondary air,
17... Inclined secondary air air port, 18...
...Air port for parallel secondary air.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 炎口とT入口の間の距離 11−1(−?yL)第3図 2θ 第4図 当  量 rし φ 第5図 准頁斜二;ズ空気流速V2()ノ 第6図 平行二次ケ気i速 Vt  Ccルリ 第7図
Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Distance between flame outlet and T inlet 11-1 (-?yL) Figure 3 2θ Figure 4 Equivalent r φ Figure 5 Associate page slant 2; Figure parallel secondary air i speed Vt Cc Luli Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)  多数の炎口を並べてなる炎口部の周辺に前記
炎口より噴出される予混合気流に対してほぼ平行に供給
される平行二次空気の供給手段と、前記平行二次空気の
供給手段よりも下流側に前記予混合気流に対して傾斜角
をもって供給される傾斜二次空気の供給手段を備え、前
記予混合気流の当量比を1.5〜3.0とし、前記平行
二次空気の流速を0.3〜2m/S、  前記傾斜二次
空気の流速を1,5〜10m/S、かつ炎口面積負荷を
1.0〜18kcalAIMとした燃焼装置。 (噂 傾斜二次空気の供給手段が、炎口部より下流側の
20.以内に設けた特許請求の範囲第1項記載の燃焼装
置。
(1) A means for supplying parallel secondary air that is supplied to the periphery of a flame port formed by arranging a large number of flame ports in a manner substantially parallel to the premixed airflow ejected from the flame ports; A supply means for supplying inclined secondary air is provided downstream of the supply means and is supplied at an inclined angle with respect to the premixed airflow, and the equivalence ratio of the premixed airflow is set to 1.5 to 3.0, and the parallel secondary air A combustion device in which the flow velocity of the secondary air is 0.3 to 2 m/S, the flow velocity of the inclined secondary air is 1.5 to 10 m/S, and the flame opening area load is 1.0 to 18 kcal AIM. (Rumor) The combustion device according to claim 1, wherein the inclined secondary air supply means is provided within 20 minutes downstream of the flame port.
JP19700782A 1982-11-10 1982-11-10 Burner device Granted JPS5986813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19700782A JPS5986813A (en) 1982-11-10 1982-11-10 Burner device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19700782A JPS5986813A (en) 1982-11-10 1982-11-10 Burner device

Publications (2)

Publication Number Publication Date
JPS5986813A true JPS5986813A (en) 1984-05-19
JPS6343642B2 JPS6343642B2 (en) 1988-08-31

Family

ID=16367236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19700782A Granted JPS5986813A (en) 1982-11-10 1982-11-10 Burner device

Country Status (1)

Country Link
JP (1) JPS5986813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219614A (en) * 1983-05-27 1984-12-11 Matsushita Electric Ind Co Ltd High load burner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787513A (en) * 1980-11-19 1982-06-01 Matsushita Electric Ind Co Ltd Combustion device
JPS5787512A (en) * 1980-11-19 1982-06-01 Matsushita Electric Ind Co Ltd Combustion device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787513A (en) * 1980-11-19 1982-06-01 Matsushita Electric Ind Co Ltd Combustion device
JPS5787512A (en) * 1980-11-19 1982-06-01 Matsushita Electric Ind Co Ltd Combustion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219614A (en) * 1983-05-27 1984-12-11 Matsushita Electric Ind Co Ltd High load burner
JPS6343643B2 (en) * 1983-05-27 1988-08-31 Matsushita Electric Ind Co Ltd

Also Published As

Publication number Publication date
JPS6343642B2 (en) 1988-08-31

Similar Documents

Publication Publication Date Title
JPH09184629A (en) Pre-mixing device for gas turbine combustion apparatus
JPS5986813A (en) Burner device
JP2956242B2 (en) Combustion equipment
JPH0875127A (en) Combustion device
JP3403826B2 (en) Burner flame stabilizer
JP2956215B2 (en) Combustion equipment
KR0126903B1 (en) Anti-back fire structure of low nitrogen oxides burner
JP2998357B2 (en) Combustion equipment
JP3109354B2 (en) Combustion equipment
JP2956243B2 (en) Combustion equipment
JPS631493B2 (en)
JP2998291B2 (en) Combustion equipment
JPH05302705A (en) Premixed combustion apparatus
JPS5883111A (en) Burner
JPH07151319A (en) Combustion device
JPH0221111A (en) High load-burner
JPH0882406A (en) Combustion device
JPH0821606A (en) Combustion device for liquid fuel
JPH0618036A (en) Premixing chamber for gas turbine combustor
JPS59109710A (en) Burner
JPH06281146A (en) Burner for combustor
JPH04332306A (en) Gas burner
JPH04129613U (en) combustion device
JPS60223910A (en) Structure of gas burner
JPH0311213A (en) Combustion equipment