[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5983953A - Preparation of parent material of optical fiber - Google Patents

Preparation of parent material of optical fiber

Info

Publication number
JPS5983953A
JPS5983953A JP19405982A JP19405982A JPS5983953A JP S5983953 A JPS5983953 A JP S5983953A JP 19405982 A JP19405982 A JP 19405982A JP 19405982 A JP19405982 A JP 19405982A JP S5983953 A JPS5983953 A JP S5983953A
Authority
JP
Japan
Prior art keywords
core
gas
burner
optical fiber
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19405982A
Other languages
Japanese (ja)
Other versions
JPH0327493B2 (en
Inventor
Toshiro Ikuma
伊熊 敏郎
Tetsuya Yamazaki
哲也 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP19405982A priority Critical patent/JPS5983953A/en
Publication of JPS5983953A publication Critical patent/JPS5983953A/en
Publication of JPH0327493B2 publication Critical patent/JPH0327493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/54Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To prepare a parent material for optical fiber having given transmission properties, preventing cracks during preparation, by blowing a high-temperature gas upon a core part from a nozzle for blowing the high-temperature gas set between a burner for core and a burner for clad. CONSTITUTION:The base material 2 is dropped close to the bottom of the reactor 1. A combustible gas and a raw material gas for forming glass for core are fed to the burner 3 for core, respectively, and the raw material gas for forming glass is hydrolyzed in fire produced by burning the combustible gas. The formed soot 11 for core is attached to the bottom of the base material 2 and gorwn to give the porous preform 12 for core. The preform 12 is pulled up while being rotated, it is heated and shrinked by the jetting gas 13 from the nozzles 4 and 5 for blowing the high-temperature gas, to give the porous preform 14 having the lessened diameter. A combustible gas and a raw material gas for forming glass for clad are then fed to the burner 6 for clad, respectively, the prepared soot 15 is attached to the peripheral surfaces of the perform 12 and 14 to give a clad part, so that the porous preform 16 is obtained.

Description

【発明の詳細な説明】 本発明は、光ファイバへ紡糸加工される材料である光フ
ァイバ母料の製造方法に関するものである0 元ファイバ母材の製造方法の一つとして気相軸付法(V
AD )が知られているが、このVADは、酸水素バー
ナ等の酸素及び水素を含む可燃性ガス燃焼用バーナに、
5iC14、GeCl4、POCl3及びBBrs  
等の揮発性ガラス形成原料を供給し、火炎中でこれらの
ガラス形成原料を加水分解反応させることによってガラ
ス形成微粒子(以下に於いては単にスートと呼ぶ)を生
成し、出発基利の先端からその軸方向に前記スートを付
着成長させることによって略円柱状の光フアイバ母材を
得る方法である。なおこの光フアイバ母材は通常は多孔
質プリフォームのま\の未完成品であるのでこれを加熱
透明化することによって光フアイバ母材の完成品とすれ
ばよい。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber preform, which is a material that is spun into an optical fiber.As one of the methods for manufacturing a zero-element fiber preform, the present invention uses a vapor phase coaxial method ( V
AD) is known, but this VAD is a burner for burning combustible gas containing oxygen and hydrogen, such as an oxyhydrogen burner.
5iC14, GeCl4, POCl3 and BBrs
By supplying volatile glass-forming raw materials such as This is a method of obtaining a substantially cylindrical optical fiber base material by depositing and growing the soot in the axial direction. Since this optical fiber base material is usually an unfinished product in the form of a porous preform, it can be made into a finished optical fiber base material by heating and making it transparent.

このVADを更に進展させた方法として、光フアイバ母
材のコア部を構成するガラス形成微粒子を合成する為の
コア用バーナを多孔質プリフォームの成長端付近に配置
すると共に、クラッド部を構成するガラス形成微粒子を
合成する為のクラッド用バーナを前記コア用バーナの上
方に配置し、コア用多孔(Nプリフォームの周面にクラ
ッド用スートを付着成長させることによって、コア部及
びクラッド部を一体に合成する方法が特開昭54−13
4136号き(7て提案されている。
As a further development of this VAD, a core burner for synthesizing the glass-forming fine particles constituting the core portion of the optical fiber base material is placed near the growth end of the porous preform, and a cladding portion is formed. A cladding burner for synthesizing glass-forming fine particles is placed above the core burner, and the core and cladding parts are integrated by adhering and growing cladding soot on the circumferential surface of the core porous (N preform). A method for synthesizing
No. 4136 (7 proposed).

しかしながら上述の様なコア・クラッド一体合成法には
、 (1)、コア用スー トとクラッド用スートとが空間中
で混合し、コア部とクラッド部との境界付近に於ける油
折率分布が所望の形とは異ってしまうので、所望の伝送
性11ヒを借ることができない。
However, in the above-mentioned core-clad integral synthesis method, (1) the core soot and the cladding soot are mixed in space, and the oil refractive index distribution near the boundary between the core and cladding is Since the shape differs from the desired shape, the desired transmission characteristics cannot be obtained.

(2)、コア部の形成に引続いて直°らにクラッド部が
形成され、その途中でコア部が収縮されないので、単一
モードファイバの製造等に於ける様にクラツド径に対す
るコア径の比を小さくする場合は、製造後の多孔質プリ
フォームの径が大きくなり過ぎる。この為に降温或いは
加熱時をこ於いて、多孔質プリフォームの軸心付近と周
面付近とで温度差が大きくなり、収縮差或いは膨張差に
よって多孔質ブリフ、オー11が割れたシする危険性が
高くなると共に、反応容器や透明化用ヒータ等も全体に
大きくする必要がある。
(2) The cladding is formed immediately after the core is formed, and the core is not shrunk during the process, so the core diameter can be adjusted to the cladding diameter, as in the production of single mode fibers. If the ratio is made small, the diameter of the porous preform after manufacture will become too large. For this reason, when the temperature is lowered or heated, there is a large temperature difference between the axial center and the peripheral surface of the porous preform, and there is a risk that the porous brief O 11 may crack due to the difference in shrinkage or expansion. As the performance increases, the overall size of the reaction vessel, heater for transparency, etc. also needs to be increased.

(3)、スート同士の混合を防ぐ為にコア用バーナとク
ラッド用バーナとを互いに離間させると、それらの間で
多孔質プリフォームが冷却してコ差が生じる。従ってク
ラッド用スート付着後のM’ 溝、 l「!Iに於ける
収縮差や透明化の為の加熱時に於ける膨張差等によって
多孔質プリフォームが′〆川れ易い。
(3) If the core burner and cladding burner are separated from each other in order to prevent soots from mixing with each other, the porous preform cools between them, causing a difference in heat. Therefore, the porous preform tends to collapse due to differences in shrinkage in the M' grooves and l'!I after the cladding soot is attached, and differences in expansion during heating for transparency.

という問題点等がある。There are some problems.

これらの問題点を解決する為に、コア用とクラッド用と
の排気管を夫々別個に設けることによってスートの混合
を防止すると共ζこ、コア用とクラッド用とのバーナを
互いに近付けることによって両バーナ間に位置する多孔
質プリフォームの温度勾配を小さくする方法が特開昭5
5−25074号として提案されている。
In order to solve these problems, it is possible to prevent the soot from mixing by providing separate exhaust pipes for the core and for the cladding, and by moving the burners for the core and the cladding closer to each other. A method for reducing the temperature gradient of a porous preform located between burners was disclosed in Japanese Patent Application Laid-Open No. 5
No. 5-25074.

しかしこの方法でも、コア用とクラッド用との近 バーナを互いに付ける為にコア用及びクラッド用スート
の混合防止がまだ不充分であり、更にまた多孔質プリフ
ォームの径が大きくなシ過ぎる為にクラッド部をあまり
厚く付着できないという問題点が依然として残されてい
る。
However, even with this method, since the core and cladding burners are attached close to each other, it is still insufficient to prevent the core and cladding soots from mixing, and furthermore, the diameter of the porous preform is too large. There still remains the problem that the cladding cannot be attached very thickly.

これに対し′C1コア用バーナとクラッド用バーナとの
間に電気炉等を配置して、ガラス形成微粒子を付着成長
させた円柱状のコア用多孔質プリフォームを・この電気
炉等で加熱し、互いに融着しているスートを若干融解し
てスート同士の接着面積を大きくしスート間の空@を小
さくすることによって前記コア用多孔質プリフォームの
径を縮小し、その後、クラッド用バーナでその外周面に
クラッド用スートを堆積させ、次いで加熱することによ
って透明ガラス化する方法が特開昭55−154556
号として提案されている。
On the other hand, an electric furnace or the like is placed between the burner for the C1 core and the burner for the cladding, and a cylindrical porous preform for the core on which glass-forming fine particles are attached and grown is heated in the electric furnace or the like. The diameter of the porous preform for the core is reduced by slightly melting the soots that are fused together to increase the adhesion area between the soots and reducing the space between the soots. JP-A-55-154556 discloses a method of depositing soot for cladding on the outer peripheral surface and then heating it to make it transparent vitrified.
It has been proposed as a number.

この方法によれば、一旦コア用多孔質プリフォームを収
縮させた後にクラッド部を利着させるので、最終的に得
られる多孔質プリフォームの径が犬きくなシすぎるとい
う問題点はない。
According to this method, the cladding portion is bonded after the core porous preform is once shrunk, so there is no problem that the diameter of the finally obtained porous preform is too small.

しかしながらこの方法に於いても、コア用及びクラッド
用スートの混合防止対策がなされていない為にコア部と
クラッド部との境界が未だ不鮮明であること、また電気
炉が一般に複雑かつ大型である為に製造装置全体も接離
かつ大型になり実用的でないこと、更にまたこの様に大
型の電気炉の炉材があると加水分解反応で生成された霧
状のHClによってこの炉材が浸食されその生成物が異
物として多孔質プリフォームに混入するおそれが多くこ
の為に光ファイバの伝送性能が低下すること等の問題点
がある。
However, even with this method, the boundary between the core part and the cladding part is still unclear because no measures are taken to prevent the core and cladding soots from mixing, and also because electric furnaces are generally complex and large. In addition, the entire manufacturing equipment has to be separated and becomes large, making it impractical.Furthermore, if there is a furnace material of such a large electric furnace, the furnace material will be eroded by the HCl mist generated by the hydrolysis reaction. There is a high possibility that the products will be mixed into the porous preform as foreign matter, which causes problems such as a decrease in the transmission performance of the optical fiber.

本発明は、上述の問題点に鑑み、比較的小型で且つ簡単
な構成であるにも拘らず、コア用スートとクラッド用ス
ートとの混合を防止してコアとクラッドとの境界付近に
於ける屈折率分布を所望の形にできるので所望の伝送性
能を得ることが可能であシ、また製造時に於ける光フア
イバ母材の温度勾配を小さくしてその割れを防止でき、
また得られる光フアイバ母材の径をあマシ大きくするこ
となくクラツド径に対するコア径の比を小さくできるの
で単一モードファイバの製造等にも適すると共にガラス
形成微粒子を付着成長させて光フアイバ母材を得る為の
反応容器や透明化用ヒータ等も全体に大きくする必要が
なく、更にまた光コアを目的としている。
In view of the above-mentioned problems, the present invention prevents mixing of core soot and cladding soot, and prevents mixing of core soot and cladding soot in the vicinity of the boundary between the core and cladding, although it is relatively small and has a simple configuration. Since the refractive index distribution can be made into the desired shape, it is possible to obtain the desired transmission performance, and the temperature gradient of the optical fiber base material during manufacturing can be reduced to prevent cracking.
In addition, since the ratio of the core diameter to the cladding diameter can be made small without increasing the diameter of the resulting optical fiber base material, it is suitable for manufacturing single mode fibers, etc., and it is also possible to make the optical fiber base material by adhering and growing glass-forming particles. There is no need to increase the overall size of the reaction vessel and heater for transparency, and furthermore, the purpose is to form an optical core.

以下、本発明の一実施例を第1図及び第2図を参照しな
がら説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明を実施する為の光フアイバ母材の製造装
置の一例を示している。この第1図に示す様に、反応容
器(1)は上底面及び下底面が閉塞された略円筒状をな
しておシ且り略垂直に配置されている。そしてこの反応
容器(1)の上底面の略中心には回転しながら上下動可
能な保持具(図示せず)によって略円柱状の基材(2)
が保持されている。また下底面の中心付近には夫々径が
異なる4つの円筒が同心状に配され多重円筒状をなすコ
ア用バーナ(3)が設けられている。即ちこのコア用バ
ーナ(3)は、中心ノズルと、この中心ノズルを取囲む
第2層ノズルと、この第2層ノズルを取囲む第6層ノズ
ルと、この第6層ノズルを取囲む最外層ノズルとを有し
ている。
FIG. 1 shows an example of an optical fiber preform manufacturing apparatus for carrying out the present invention. As shown in FIG. 1, the reaction vessel (1) has a substantially cylindrical shape with a closed upper and lower bottom surface, and is arranged substantially vertically. A substantially cylindrical base material (2) is attached to the approximate center of the upper bottom surface of the reaction vessel (1) by a holder (not shown) that can be moved up and down while rotating.
is retained. Further, near the center of the lower bottom surface, there is provided a core burner (3) having a multi-cylindrical shape in which four cylinders each having a different diameter are arranged concentrically. That is, this core burner (3) includes a center nozzle, a second layer nozzle surrounding this center nozzle, a sixth layer nozzle surrounding this second layer nozzle, and an outermost layer surrounding this sixth layer nozzle. It has a nozzle.

また反応容器(1)の局面でコア用バーナ(3)の近く
には、円筒状をなす2本の高温ガス吹出し用ノズル(4
) (5)及びコア用バーナ(3)と同様の構造を有す
るクラッド用バーナ(6)が、反応容器(11の軸心方
向に所定の間隔で順次配設されている。
In addition, two cylindrical high-temperature gas blowing nozzles (4) are located near the core burner (3) in the reaction vessel (1).
) (5) and cladding burners (6) having the same structure as the core burner (3) are sequentially arranged at predetermined intervals in the axial direction of the reaction vessel (11).

更に反応容器(1)の周面で高温ガス吹出し用ノズル(
4)及びクラッド用バーナ(6)に夫々略対向する位置
には、円筒状をなす2本の排気用フード(力(8)が設
けられている。
Furthermore, a high temperature gas blowing nozzle (
4) and the cladding burner (6), two cylindrical exhaust hoods (force (8)) are provided at positions substantially opposite to the cladding burner (6).

上述の様な製造装置で光フアイバ母材の多孔質プリフォ
ームを製造するには、まず最初に基材(2)を反応容器
(1)の下底面近くまで降下させる。次いでコア用バー
ナ(3)に可燃性ガスと5IC14、GeC14等のコ
ア用のガラス形成原料ガスとを夫々供給し、この可燃性
ガスが燃焼することによって生ずる火炎中で前記ガラス
形成原料ガスを加水分解反応させ、これによってヰ成さ
れたコア用スート(1υを基材(2)の下端に付着成長
させてコア用多孔質プリフォーム(17Jを得る。
In order to manufacture a porous preform of an optical fiber base material using the manufacturing apparatus as described above, the base material (2) is first lowered to near the bottom surface of the reaction vessel (1). Next, a flammable gas and a core glass forming raw material gas such as 5IC14 and GeC14 are respectively supplied to the core burner (3), and the glass forming raw material gas is hydrated in the flame generated by the combustion of the combustible gas. A decomposition reaction is carried out, and the resulting core soot (1υ) is attached and grown on the lower end of the base material (2) to obtain a porous core preform (17J).

なおコア用バーナ(3)は上述の様に多重円筒状をなし
ているが、これは中心ノズルからガラス形成原料ガスを
、第2層ノズルからに等の不活性ガスを、第6層ノズル
からH2を、更に最外層ノズルから02を夫々噴出させ
る為である。従って不活性ガスが障壁となってガラス形
成原料ガスとH2及び02とがコア用バーナ(3)の出
口付近で直ちに反応してこのコア用バーナ(3)に目詰
まシを生ずるのを防止することができる。
The core burner (3) has a multi-cylindrical shape as described above, and this is because the glass forming raw material gas is supplied from the center nozzle, the inert gas such as from the second layer nozzle, and the inert gas from the sixth layer nozzle. This is to inject H2 and 02 from the outermost layer nozzle. Therefore, the inert gas acts as a barrier to prevent the glass forming raw material gas and H2 and 02 from immediately reacting near the outlet of the core burner (3) and clogging the core burner (3). be able to.

その後、コア用多孔質プリフォーム(lりを図外の保持
具によって回転させながら引き上げ、高温ガス吹出し用
ノズル(4) (5)からの噴出ガス(131によって
加熱収縮させ、径が小さくなったコア用多孔質プリフォ
ーム(1荀を得る。
After that, the porous preform for the core was pulled up while rotating with a holder (not shown), and the diameter was reduced by heating and shrinking it with the jet gas (131) from the hot gas blowing nozzles (4) and (5). Porous preform for core (obtain 1 piece).

なおこの時、高温ガス吹出し用ノズル(4) (5)に
C12,5OC12等のハロゲンガス或いはハロゲン化
合物ガスを供給することによって、コア用スート旧)の
付着時にコア用多孔質ブリフメーム(1つの低温部に付
着した結晶化GeO2佃eC14として揮発除去してい
る。
At this time, by supplying halogen gas or halogen compound gas such as C12, 5OC12 to the high temperature gas blowing nozzles (4) and (5), the core porous brifumeme (one low temperature The crystallized GeO2 adhering to the surface is removed by volatilization as eC14.

即ち、コア用スー)tlυの付着成長面の温度は、コア
用バーナ(3)の中心軸と交わる而つまシ付着成長面の
中心で最も高く、周辺になるにつれて低い。
That is, the temperature of the adhesion growth surface of the core tlυ is highest at the center of the core adhesion growth surface that intersects with the central axis of the core burner (3), and decreases toward the periphery.

そしてガラス形成原料ガスの1つであるGeCl4が加
水分解反応して生成されたGeO2は、高温部では非晶
質となり 810.、  との固溶体として付着し、低
温部では結晶化GeO2として単独で付着することが知
られている。つまシ付着成長面周辺の低温部には、この
結晶化GeO2が多量に付着している。
GeO2, which is produced by a hydrolysis reaction of GeCl4, which is one of the raw material gases for forming glass, becomes amorphous in the high temperature section.810. It is known that GeO2 adheres as a solid solution with , and in low temperature regions it adheres alone as crystallized GeO2. A large amount of this crystallized GeO2 adheres to the low-temperature area around the growth surface of the pick.

この結晶化Ge02は多孔質プリフォームを加熱透明化
しても不透明のままで残シ、また紡糸の為の加熱時に発
泡したシして、光ファイバの伝送性能を著しく低下させ
る。
This crystallized Ge02 remains opaque even when the porous preform is heated to make it transparent, and is foamed during heating for spinning, significantly reducing the transmission performance of the optical fiber.

結晶化GeO2はSiO□との固溶体として付着した非
晶質GeO2より蒸気圧が高いので、通常は透明化の為
の加熱時に揮発除去されてしまう。しかしコア用多孔質
プリフォームの周面をこクラッド用スートを付着成長さ
せる所謂コア・クラッド一体成長しまうことが困難であ
る。従って、本実施例に於ける様にクラッド部形成前に
結晶化G602を揮発除去する必要がある。
Since crystallized GeO2 has a higher vapor pressure than amorphous GeO2 deposited as a solid solution with SiO□, it is usually removed by volatilization during heating for transparency. However, it is difficult to adhere and grow the soot for the cladding on the peripheral surface of the porous preform for the core, which is called integral growth of the core and the cladding. Therefore, as in this embodiment, it is necessary to volatilize and remove the crystallized G602 before forming the cladding portion.

この様にして結晶化GeO2が揮発除去され且つ径が小
さくなったコア用多孔質プリフォーム側を図外の保持具
によって更に回転させながら引き上げる。そしてクラッ
ド用バーナ(6)に可燃性ガスと5IC14を主体とす
るクラッド用のガラス形成原料ガスとを夫々供給し、こ
の可燃性ガスが燃焼することによって生ずる火炎中で前
記ガラス形成原料ガスを加水分解反応させ、これによっ
て生成されたクラッド用スート(19をコア用多孔質プ
リフォーム(13)の周面に付着させてクラッド部とし
、多孔質プリフォーム+16)を得る。
In this way, the core porous preform side, in which the crystallized GeO2 has been volatilized and removed and whose diameter has become smaller, is pulled up while being further rotated by a holder (not shown). Then, a flammable gas and a glass-forming raw material gas for the cladding mainly composed of 5IC14 are supplied to the cladding burner (6), and the glass-forming raw material gas is hydrated in the flame generated by the combustion of the flammable gas. A decomposition reaction is carried out, and the soot for cladding (19) thus produced is adhered to the circumferential surface of the porous preform for core (13) to form a cladding part, thereby obtaining a porous preform +16.

クラッド用バーナ(6)がコア用バーナ(3)と同様に
多重円筒状をなしているのは、コア用バーナ(3)と同
様の理由によるものである。
The reason why the cladding burner (6) has a multi-cylindrical shape like the core burner (3) is due to the same reason as the core burner (3).

以上の様iこして暴利(2)を回転させながら次第に引
き上げると、コア部の外周にクラッド部が形成された多
孔質プリフォーム叫が基材(2)の下端から次第に形成
されてゆく。
As the material (2) is rotated and gradually pulled up in the above manner, a porous preform having a cladding portion formed around the outer periphery of the core portion is gradually formed from the lower end of the base material (2).

このようにして得られた多孔質プリフォーム(Iliを
別の加熱工程に於いて加熱すると透明な光フアイバ母材
となシ、梃にこの透明な光フアイバ母材を紡糸すると最
終的な光ファイバとなる。
When the porous preform (Ili) obtained in this way is heated in a separate heating step, it becomes a transparent optical fiber preform, and when this transparent optical fiber preform is spun into a final optical fiber. becomes.

なお上記多孔質プリフォーム(1,6)を得る為の上述
の工程に於いて、基材(2)或いは多孔質プリフォーム
ft、 +1311こ付宥しなかったコア用スート(1
υ及びクラッド用スー) t15)は、夫々排気用フー
ド(力(8)によって直ちに排気される。
In addition, in the above-mentioned process for obtaining the porous preform (1, 6), the base material (2) or the porous preform ft.
υ and cladding soot) t15) are immediately evacuated by the exhaust hood (force (8)), respectively.

以下に第1図に示す光フアイバ母材の1q造装置と略同
様の装置を用いて行った本発明の比較例及実施例 比較例1 〔コア用バーナ〕 中心ノズル  5tc14= 140 cc 7分、G
eCl4 = 40 cc 7分、POC15=2cc
/分、Ar=360cc/分 第2層ノズ/I/  Ar=400cc/分第6層ノズ
、71/  H2=3000cc/分最外層ノズ#  
02=6000cc/分〔クラッド用バーナ〕 中心ノズル  5ic14=150 cc 7分、PO
CI3= 2 cc 7分、Ar =200 cc 7
分 第2層ノズ/l/  Ar=500cc/分第6層ノズ
A/  H2=3000cc/分最外層ノズル 02=
 50 [lOcc /分位置     1=80朋 〔高温ガス吹出し用ノズル〕 使用せず 〔結果〕 多孔質プリフォーム(1(9に割れが発生した。
Comparative examples and examples of the present invention Comparative example 1 [Core burner] Center nozzle 5tc14 = 140 cc 7 minutes, which was carried out using a device substantially similar to the 1q production device for optical fiber base material shown in Fig. 1. G
eCl4 = 40 cc 7 min, POC15 = 2 cc
/min, Ar=360cc/min 2nd layer nozzle/I/ Ar=400cc/min 6th layer nozzle, 71/ H2=3000cc/min outermost layer nozzle #
02=6000cc/min [Burner for cladding] Center nozzle 5ic14=150 cc 7 minutes, PO
CI3 = 2 cc 7 min, Ar = 200 cc 7
min 2nd layer nozzle/l/Ar=500cc/min 6th layer nozzle A/H2=3000cc/min outermost layer nozzle 02=
50 [lOcc/min position 1=80] [High-temperature gas blowing nozzle] Not used [Results] Porous preform (1 (cracks occurred at 9).

但し l=40朋 〔結果〕 直径−90rhn、嵩密度−0,16’i/cm’の多
孔質フリフオーム(10を得た。これを約1,550°
Cの実施例1 〔高温ガス吹出し用ノズル〕 1本使用 Ar=8000cc/分 ノズル吹出し直後の温度=1000°C〔結果〕 直径″==、80 am、嵩密度L=、0.18P/z
の多孔質プリフォーム(16)を得た。比較例2と同様
に屈折実施例 〔高温ガス吹出し用ノズル〕 2本使用 Ar=4000cc/分、 N2=2000cc/分、
Cl2= 200cc 7分 ノズル吹出し直後の温度−1100°C〔結果〕 直径−76曲、嵩密度−0,19P/cm’の多孔質プ
リフォーム1則を得た。比較例2と同様に屈折率分布を
測定したところ、第2図Cに示す結果を得た。
However, l = 40 [Results] A porous friform (10) with a diameter of -90rhn and a bulk density of -0.16'i/cm' was obtained.
Example 1 of C [High-temperature gas blowing nozzle] One piece used Ar = 8000 cc/min Temperature immediately after nozzle blowing = 1000°C [Results] Diameter ″==, 80 am, bulk density L=, 0.18 P/z
A porous preform (16) was obtained. Similar to Comparative Example 2, refraction example [high-temperature gas blowing nozzle] 2 used Ar = 4000 cc/min, N2 = 2000 cc/min,
Cl2 = 200 cc Temperature immediately after 7 minutes of nozzle blowing -1100°C [Results] A porous preform with a diameter of -76 curves and a bulk density of -0.19 P/cm' was obtained. When the refractive index distribution was measured in the same manner as in Comparative Example 2, the results shown in FIG. 2C were obtained.

以」二の様に、本発明の実施例1及び2によれば、コア
用多孔質プリフォーム(121を加熱収縮する為の手段
が高温ガス吹出し用ノズル(4) (5)であるので、
電気炉等に比べて比較的小型で且つ簡単な構成で済む。
As described below, according to Examples 1 and 2 of the present invention, the means for heat-shrinking the core porous preform (121) is the hot gas blowing nozzle (4) (5).
Compared to electric furnaces and the like, it is relatively small and has a simple configuration.

またコア用バーナ(3)とクラッド用バーナ(6)との
間に高温ガス吹出し用ノズル(4)(5)を配置するこ
とによって双方のバーナ(3) (6)を離間させ、し
かも高温ガス吹出し用ノズル(4) (51からの噴出
ガス(13)が障壁トするので、コア用スート(Ipと
クララh”用スート(1ωとの混合が防止される。更に
また排気用フード(7) (8)が基材(2)或いはコ
ア用多孔質プリフォーム(121(14)に付着しなか
ったコア用スート旧)及びクラッド用スート(151を
直ちに排気することによってもこれらの混合が防止され
る。従ってコア部とクラッド部との境界付近に於ける屈
折率分布を所望の形にできるので、所望の伝送性能を有
する光ファイバの母材を製造することが可能である。
In addition, by arranging the high temperature gas blowing nozzles (4) and (5) between the core burner (3) and the cladding burner (6), both burners (3) and (6) can be spaced apart, and the high temperature gas Since the ejected gas (13) from the blow-off nozzle (4) (51) is blocked, mixing of the core soot (Ip and Clara h'' soot (1ω) is prevented.Furthermore, the exhaust hood (7) Mixing of (8) with base material (2) or porous preform for core (old core soot that did not adhere to 121 (14)) and cladding soot (151) can also be prevented by immediately exhausting the soot. Therefore, the refractive index distribution near the boundary between the core portion and the cladding portion can be made into a desired shape, making it possible to manufacture an optical fiber base material having desired transmission performance.

また上述の様にコア用バーナ(3)とクラッド用バーナ
(6)とを離間させても、それらの間に配置された高温
ガス吹出し用ノズル+4) (5+からの噴出ガス(1
〜が高温であるので、双方のバーナ(3) +6)間に
於ける温度勾配が小さい。従って製造途中の多孔質プリ
フォーム・が温度勾配の為に割れるのを防止できる。
Furthermore, even if the core burner (3) and cladding burner (6) are separated as described above, the hot gas blowing nozzle (+4) (5+) disposed between them will emit gas (1
Since ~ is high temperature, the temperature gradient between both burners (3) +6) is small. Therefore, it is possible to prevent the porous preform during manufacture from cracking due to temperature gradients.

またコア用多孔質プリフォーム(+2を高温ガス吹出し
用ノズル(4) (5)からの噴出ガス(131によっ
て加熱収縮させ、径の小さいコア用多孔質プリフォーム
(14)を形成している。従って得られる光フアイバ母
材の径をあまシ大きくすることなくクラツド径に対する
コア径の比を小さくできるので、単一モードファイバの
製造等にも適すると共に、反応容器や透明化用ヒータ等
も全体に大きくする必要がないO また電気炉に於ける様に比較的大型の炉材等がないので
、加水分解反応で生成された霧状のHClによる浸食が
少ない。従って浸食による生成物が異物として多孔質プ
リフォームに混入するおそれが少なく、この為に伝送性
能の優れた光フアイバ母材を製造することができる。
Further, the porous core preform (+2) is heated and shrunk by the blowing gas (131) from the high temperature gas blowing nozzles (4) (5) to form a small diameter core porous preform (14). Therefore, the ratio of the core diameter to the cladding diameter can be made small without increasing the diameter of the resulting optical fiber base material, making it suitable for the production of single mode fibers, as well as the overall use of reaction vessels, heaters for transparency, etc. Also, since there is no need for relatively large furnace materials like in electric furnaces, there is less erosion by the mist of HCl generated in the hydrolysis reaction.Therefore, the products of erosion can be treated as foreign matter. There is little risk of contamination with the porous preform, and therefore an optical fiber base material with excellent transmission performance can be manufactured.

更にまた高温ガス吹出し用ノズル(4)(5)にC12
,5OC12等のハロゲンガス或いはハロゲン化合物ガ
スを供給しているので、コア用多孔質プリフォーム(1
3に付着した結晶化Ge02をクラッド部形成前にGe
Ce4としてイ・(1発除去することができる。従って
クラッド部をIp、j (付ilFさせても結晶化Ge
O2が残存することはないので1.伝送性スigの録れ
た光ファイバの母材を製造することができる。
Furthermore, C12 is added to the high temperature gas blowing nozzles (4) and (5).
, 5OC12, etc., or a halogen compound gas, the core porous preform (1
Before forming the cladding part, the crystallized Ge02 attached to the
As Ce4, it can be removed once. Therefore, even if the cladding part is Ip,j (attached to IIF), the crystallized Ge
1. O2 will not remain. It is possible to manufacture an optical fiber base material having a transmission signal recorded thereon.

以上、本発明を一実〃11例にシ4いて説明したが、本
発明はこの実施列に限定されるものではなく、各゛i・
1」の変四が可能である。
Although the present invention has been explained above with reference to 11 examples, the present invention is not limited to this embodiment, and each
Variations of ``1'' are possible.

例えば、上述の実施例1こ於いCは2本の高温ガス吹出
し用ノズルf4) +5)を便用し−Cいるが、これは
6本以上でもよく、また場合によっては1本でもかまわ
ない。
For example, in the above-mentioned Example 1, C conveniently uses two high-temperature gas blowing nozzles f4) +5), but the number of nozzles may be six or more, or one may be used in some cases. .

また上述の14 JAIi例に於いては、第1図に示す
光ファイバ1すす材の′41メ造装置Nとは別個にこの
製造装置によつC得られた光ファイバ母料を坊すj化す
る為の加熱手段が必要であるが、第1図に示す製造=1
ム置内に】1玉当な加熱手段を設ければ、この製造装置
cえ友けで透明な光フアイバ母材を・1!することがで
きる。
In addition, in the above-mentioned 14 JAIi example, the optical fiber preform obtained by this manufacturing apparatus is separated from the optical fiber 1 soot material manufacturing apparatus N shown in FIG. Although a heating means is required to convert the
If a heating means with a diameter of 1 ball is provided in the chamber, the transparent optical fiber base material can be produced using this manufacturing equipment. can do.

本発明は、上〕ホの如き構成であるので、比小文的小型
で且つ!rj単な(Ip成であるにも拘らず、コア用ス
ートとクラッド用スートとの混合を防止しでコアとクラ
ッドとの境界付近に於ける屈折率分布を所望の形にでき
るので所望の伝送性能を得ることが可能であり、また製
造時に於ける光フアイバ母材の温度勾配を小さくしてそ
の割れを防止でき、また得られる光フアイバ母材の径を
あまり大きくすることなくクラツド径に対するコア径の
比を小さくできるので単一モードファイバの製造等7に
も適すると共にガラス形成微粒子を付着成長させて光フ
アイバ母材を得る為の反応容器や透明化用ヒータ等も全
体に大きくする必賛がなく、更をこまだ光フアイバ母材
中に異物が混入するおそれが少ないので伝送性能が優れ
た光フアイバ母材を提供することができる。しかも高温
ガス吹出し用ノズルにハロゲンガスまたはハロゲン化合
物ガスを供給すれば、結晶化してコア用多孔質プリフォ
ームに付層したガラス形成微粒子をクラッド部形成前に
揮発除去させることができるので、クラッド部を厚くし
ても伝送性能が優れた光ファイバの母材を製造すること
ができる。
Since the present invention has the configuration as shown in [E] above, it is relatively small and! Although it is a simple (Ip) composition, it prevents the core soot and cladding soot from mixing and allows the refractive index distribution near the boundary between the core and cladding to be shaped into the desired shape, resulting in the desired transmission. In addition, the temperature gradient of the optical fiber base material during manufacturing can be reduced to prevent cracking, and the core diameter can be adjusted to the cladding diameter without increasing the diameter of the resulting optical fiber base material. Since the diameter ratio can be reduced, it is suitable for manufacturing single mode fibers, etc.7, and it is also necessary to increase the overall size of reaction vessels and heaters for transparency, etc., for attaching and growing glass-forming particles to obtain an optical fiber base material. Since there is no risk of foreign matter getting mixed into the optical fiber base material, it is possible to provide an optical fiber base material with excellent transmission performance.Furthermore, the nozzle for blowing out high-temperature gas does not contain halogen gas or halogen compound gas. By supplying this, the glass-forming fine particles that have been crystallized and layered on the porous preform for the core can be volatilized and removed before the cladding part is formed, making it possible to create an optical fiber with excellent transmission performance even with a thick cladding part. A base material can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

の製造装置の一例を示す概略縦断面図、第2図は本発明
を説明するための比較例及び実施例で得られた光ファイ
バ母料のhl(折率分布を示し、Aは比較例2、Bは実
施例1、cは実施例2に対応している。 なお図面に用いられている符号に於いで、(3)  ・
・  コア用バーナ (4Xり1     高温ガス吹出し用ノズル((3)
      り2ツド用バーナ(1’lr・、14) 
    コア用多孔質プリフォーム(16)ノ1↓終的
に得られた多孔質プリフォームである。 代理人 上屋 勝 常  包  芳  男 杉浦俊青
FIG. 2 is a schematic vertical cross-sectional view showing an example of a manufacturing apparatus for explaining the present invention. FIG. , B corresponds to Example 1, and c corresponds to Example 2. In addition, in the symbols used in the drawings, (3)
・ Burner for core (4X Ri 1) Nozzle for blowing out high temperature gas ((3)
Burner (1'lr, 14)
Porous preform for core (16) No. 1↓This is the finally obtained porous preform. Agent: Katsutsune Ueya, Yoshi Kamo, Shunsei Sugiura

Claims (1)

【特許請求の範囲】 1、 光フアイバ母材のコア部を構成するガラス形成微
粒子を合成するためのコア用バーナと、前記光ファイバ
母料のクラッド部を構成するガラス形成微粒子を合成す
るためのクラッド用バーナとにガラス形成原料ガス及び
可燃性ガスを夫々供給し、これらの可燃性ガスを燃焼さ
せた火炎中で前記ガラス形成原料ガスを反応させること
によって、前記ガラス形成微粒子を付着成長させて前記
コア部とこのコア部の周囲に一体的に形成された前記ク
ラッド部とからなる光フアイバ母材を得るようにした光
フアイバ母材の製造方法に於いて、前記コア用バーナと
前記クラッド用バーナとの間に高温ガス吹出し用ノズル
を配置し、この高温ガス吹出し用ノズルによって前記コ
ア部に高温ガスを吹付けるようにしたことを特徴とする
光フアイバ母材の、!Iq造方法。 2、前記高温ガス吹出し用ノズルにハロゲンガスまたは
ハロゲン化合物ガスを供給することを特徴とするl侍π
「請求の範囲第1項記載の光フアイバ母材の1.!!造
方法。
[Scope of Claims] 1. A core burner for synthesizing glass-forming fine particles constituting the core portion of an optical fiber preform, and a core burner for synthesizing glass-forming fine particles constituting the cladding portion of the optical fiber preform. A glass-forming raw material gas and a flammable gas are respectively supplied to a cladding burner, and the glass-forming raw material gas is reacted in a flame in which these combustible gases are burned, thereby causing the glass-forming fine particles to adhere and grow. In a method for producing an optical fiber preform, the method comprises obtaining an optical fiber preform comprising the core portion and the cladding portion integrally formed around the core portion, the burner for the core and the cladding portion being integrally formed around the core portion. An optical fiber base material characterized in that a high-temperature gas blowing nozzle is arranged between the burner and the high-temperature gas blowing nozzle blows the high-temperature gas to the core portion! Iq making method. 2. A samurai π characterized in that a halogen gas or a halogen compound gas is supplied to the high temperature gas blowing nozzle.
“1.!! Manufacturing method of the optical fiber base material according to claim 1.
JP19405982A 1982-11-05 1982-11-05 Preparation of parent material of optical fiber Granted JPS5983953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19405982A JPS5983953A (en) 1982-11-05 1982-11-05 Preparation of parent material of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19405982A JPS5983953A (en) 1982-11-05 1982-11-05 Preparation of parent material of optical fiber

Publications (2)

Publication Number Publication Date
JPS5983953A true JPS5983953A (en) 1984-05-15
JPH0327493B2 JPH0327493B2 (en) 1991-04-16

Family

ID=16318260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19405982A Granted JPS5983953A (en) 1982-11-05 1982-11-05 Preparation of parent material of optical fiber

Country Status (1)

Country Link
JP (1) JPS5983953A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311080A2 (en) * 1987-10-07 1989-04-12 Sumitomo Electric Industries Limited Method for producing glass preform for optical fiber
JPH01153548A (en) * 1987-12-11 1989-06-15 Sumitomo Electric Ind Ltd Production of preform for single mode optical fiber
JPH038737A (en) * 1989-06-06 1991-01-16 Shin Etsu Chem Co Ltd Production of preform for optical fiber
EP0634372A1 (en) * 1993-06-18 1995-01-18 Sumitomo Electric Industries, Ltd. Method of manufacturing single-mode optical fiber preform

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727934A (en) * 1980-07-25 1982-02-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS5792532A (en) * 1980-11-28 1982-06-09 Nippon Telegr & Teleph Corp <Ntt> Preparation of oxide powder rod for optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727934A (en) * 1980-07-25 1982-02-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS5792532A (en) * 1980-11-28 1982-06-09 Nippon Telegr & Teleph Corp <Ntt> Preparation of oxide powder rod for optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311080A2 (en) * 1987-10-07 1989-04-12 Sumitomo Electric Industries Limited Method for producing glass preform for optical fiber
US5055121A (en) * 1987-10-07 1991-10-08 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
JPH01153548A (en) * 1987-12-11 1989-06-15 Sumitomo Electric Ind Ltd Production of preform for single mode optical fiber
JPH038737A (en) * 1989-06-06 1991-01-16 Shin Etsu Chem Co Ltd Production of preform for optical fiber
EP0634372A1 (en) * 1993-06-18 1995-01-18 Sumitomo Electric Industries, Ltd. Method of manufacturing single-mode optical fiber preform
US5676725A (en) * 1993-06-18 1997-10-14 Sumitomo Electric Industries Ltd Method of manufacturing single-mode optical fiber

Also Published As

Publication number Publication date
JPH0327493B2 (en) 1991-04-16

Similar Documents

Publication Publication Date Title
JPH039047B2 (en)
GB2128982A (en) Fabrication method of optical fiber preforms
US20030101772A1 (en) Manufacturing method for optical fiber preform
US7437893B2 (en) Method for producing optical glass
JPS5983953A (en) Preparation of parent material of optical fiber
EP0612701B1 (en) Vapour axial deposition process for making optical fibre preforms
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JPS60264338A (en) Manufacture of optical fiber preform
JPS62162637A (en) Production of optical fiber preform
JP7571607B2 (en) Optical fiber manufacturing method
JPS5924097B2 (en) Glass body manufacturing method
JP3992970B2 (en) Manufacturing method and apparatus for manufacturing glass preform for optical fiber
JPS6065742A (en) Production of porous glass base material for optical fiber by vad method
JPS6259063B2 (en)
JP4185304B2 (en) Method for producing porous preform for optical fiber
JPH01203238A (en) Production of optical fiber preform
JP3998228B2 (en) Optical fiber porous base material, optical fiber glass base material, and manufacturing methods thereof
KR100762611B1 (en) Method for fabricating optical fiber preform and method for fabricating optical fiber using the same
JPH0535692B2 (en)
JPH0784331B2 (en) Method for manufacturing glass base material for optical fiber
KR830002374B1 (en) Manufacturing Method of Glass Products
JPS6291440A (en) Production of optical fiber
JPS641414B2 (en)
JPS63285128A (en) Production of optical fiber preform
JPS61281039A (en) Production of optical fiber