JPS5983752A - Preparation of heat resistant aluminum alloy conductor - Google Patents
Preparation of heat resistant aluminum alloy conductorInfo
- Publication number
- JPS5983752A JPS5983752A JP19294582A JP19294582A JPS5983752A JP S5983752 A JPS5983752 A JP S5983752A JP 19294582 A JP19294582 A JP 19294582A JP 19294582 A JP19294582 A JP 19294582A JP S5983752 A JPS5983752 A JP S5983752A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- heat
- heat resistance
- wire
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Metal Rolling (AREA)
- Metal Extraction Processes (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は耐熱アルミニウム合金導体の製造方法に関する
もので、特に耐熱アルミニウム合金導体と同等の強度及
び導電性を有し、かつはるかに優れた耐熱性を示す導体
を得るためのものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a heat-resistant aluminum alloy conductor, and in particular, to obtain a conductor that has strength and conductivity equivalent to that of a heat-resistant aluminum alloy conductor, and exhibits far superior heat resistance. belongs to.
従来架空送電線には、銅芯にA4導体を撚合せた銅芯ア
ルミニウム合金撚線(AC8R)が用いられているが、
特殊な送電条件のもとでは、銅芯に耐熱At合金導体を
撚合せた調芯耐熱アルミニウム合金撚線が用いられてい
る。Traditionally, overhead power transmission lines use copper-core aluminum alloy stranded wire (AC8R), which has A4 conductors twisted around a copper core.
Under special power transmission conditions, a heat-resistant aluminum alloy stranded wire with a heat-resistant At alloy conductor twisted around a copper core is used.
耐熱At合金導体には、Zri有効成分とする)L−7
,r合金が用いられているが、この合金は固溶7.rに
より耐熱性の向上を計ったもので、耐熱性はzr添加量
に応じて増大するも、その反面導電率が低下する。従っ
て実用化されている耐熱At合金導体としては、導電率
の面からZrの添加量が決められ耐熱性には限界があっ
た。The heat-resistant At alloy conductor contains Zri as an active ingredient) L-7
, r alloy is used, but this alloy is a solid solution 7. The heat resistance is improved by r, and although the heat resistance increases according to the amount of zr added, on the other hand, the electrical conductivity decreases. Therefore, in the heat-resistant At alloy conductors that have been put into practical use, the amount of Zr added is determined from the viewpoint of electrical conductivity, and there is a limit to the heat resistance.
最近電力需要の増大にともない、更に導電率、強度及び
耐熱性の優れた導体が要求されるようになplAA−Z
r合金にpe、Si等を添加して耐熱性及び強度全改善
した耐熱AA合金導体が開発された。この導体は連続又
は半連続鋳造圧延法、展延法、押出法等により形成した
荒引線に中間焼鈍と冷間伸線を加えて造られている。1
−かじながら導電率57〜61%lAC3,引張強さ1
7.0〜17.5 K9/mA 、耐熱性240に27
5℃程度のものしか得られず、更に耐熱性の向上が望ま
れていた。With the recent increase in power demand, conductors with even better conductivity, strength, and heat resistance are required.
A heat-resistant AA alloy conductor has been developed that has completely improved heat resistance and strength by adding PE, Si, etc. to the r alloy. This conductor is made by adding intermediate annealing and cold drawing to a rough drawn wire formed by a continuous or semi-continuous casting and rolling method, a rolling method, an extrusion method, etc. 1
-Electrical conductivity 57-61% lAC3, tensile strength 1
7.0~17.5 K9/mA, heat resistance 240 to 27
Only about 5° C. could be obtained, and further improvement in heat resistance was desired.
本発明はこれに鑑み種々研究の結果、従来の製造方法で
は不可避的にZrの析出を生じ、これが耐熱性低下の原
因となっていることを知見し、更に研究を重ねた結果、
従来と同等の強度を有し、かつ導電率を58%IACS
以下に低下させることなく、はるかに優れた耐熱性を示
す耐熱At合金導体の製造方法を開発したもので、Zr
O,1〜Q、5wt%(以下wtチを単に係と略記)、
F e O,05〜0.5 %、S i 0.05〜0
.5φ、、7A部Atと通常の不純物からなるアルミニ
ウム合金を、740℃以上の温度から10ml sec
以上の速度で連続又は半連続鋳造し、得られた鋳塊を再
加熱することなく連続して熱間圧延により70%以上の
減面加工を加えて荒引線とし、これを所定の線径まで伸
線加工するのに、荒引線又は伸線加工の中間で300〜
500℃の温度に5〜10000時間加熱処理し、最終
伸線加工により所定の線とするまでに10〜75%の減
面加工を加えることを特徴とするものである。In view of this, as a result of various studies, the present invention found that conventional manufacturing methods inevitably cause Zr precipitation, which causes a decrease in heat resistance.As a result of further research,
It has the same strength as the conventional one and has a conductivity of 58% IACS.
We have developed a method for manufacturing a heat-resistant At alloy conductor that exhibits far superior heat resistance without lowering the heat resistance.
O, 1 to Q, 5 wt% (hereinafter wt is simply abbreviated as ke),
F e O, 05-0.5%, Si 0.05-0
.. 5φ, 7A part An aluminum alloy consisting of At and normal impurities was heated for 10ml sec at a temperature of 740°C or higher.
Continuous or semi-continuous casting is performed at the above speed, and the resulting ingot is continuously hot-rolled without reheating to reduce the area by 70% or more to make a rough drawn wire, which is then rolled to a predetermined wire diameter. For wire drawing processing, 300~
It is characterized in that it is heat treated at a temperature of 500°C for 5 to 10,000 hours, and then subjected to an area reduction process of 10 to 75% before final wire drawing to form a predetermined wire.
即ち本発明は耐熱At合金の組成を限定して、連続又は
半連続鋳造条件(鋳造温度、鋳造速度)を限定するとと
により、固溶Zr量を増大させ、その後の熱間圧延と加
熱処理によりA t s’7. rの微細な析出物全形
成させて導電率全低下させずに耐熱性を向上させ、最終
伸線加工により耐熱性を低下させることなく、加工硬化
により所定の強度を付与したものである。That is, the present invention limits the composition of the heat-resistant At alloy, limits the continuous or semi-continuous casting conditions (casting temperature, casting speed), increases the amount of solid solution Zr, and then increases the amount of Zr in solid solution by subsequent hot rolling and heat treatment. Ats'7. The heat resistance is improved by forming all the fine precipitates of r, without reducing the conductivity at all, and the predetermined strength is imparted by work hardening without reducing the heat resistance by the final wire drawing process.
しかして本発明において耐熱At合金の組成を上記の如
く限定したのは、Zrは耐熱性を向上するも0.1%未
満ではその効果が望めず、0,5%を越えると導電率の
低下が著しく、またFeと5ili更に耐熱性を向上す
ると共に強度を高めるも、Feo、05%未満で11そ
の効果が望めず、Feが0.5%’i越えると導電率の
低下が著しく、Siが0.5%を越えると、A t s
zrを析出させる加熱処理により強度の低下が著しくな
るためである。However, in the present invention, the composition of the heat-resistant At alloy is limited as described above because Zr improves heat resistance, but if it is less than 0.1%, the effect cannot be expected, and if it exceeds 0.5%, the electrical conductivity decreases. In addition, although Fe and 5ili further improve heat resistance and strength, the effect cannot be expected when Fe is less than 0.5%, and when Fe exceeds 0.5%, the conductivity decreases significantly, and Si exceeds 0.5%, A t s
This is because the heat treatment to precipitate Zr significantly reduces the strength.
上記組成の耐熱AA金合金連続又は半連続鋳造において
、 −゛ 鋳造温度を740℃以上、鋳造速
度を10mm/see以上と限定したのはZrを充分固
溶させるためで、鋳造温度が740℃未満でも、鋳造速
度が10 mm/ see未満でもZrが析出し、その
後の加工条件をどのように調整しても耐熱性が低下する
ためである。また得られた鋳塊を再加熱することなく連
続して熱間圧延により70%以上の減面加工を加えたの
は、再加熱によるZrの析出e防止し、かつ加工硬化に
より強度を向上させるためで、70%未満の減面加工で
はその後の加工条件をどのように調整し、ても充分な耐
熱性と強度を得ることができないためである。In continuous or semi-continuous casting of the heat-resistant AA gold alloy with the above composition, -゛ The casting temperature is limited to 740°C or higher and the casting speed is 10 mm/see or higher in order to sufficiently dissolve Zr as a solid solution, and the casting temperature is lower than 740°C. However, this is because Zr precipitates even when the casting speed is less than 10 mm/see, and the heat resistance deteriorates no matter how the subsequent processing conditions are adjusted. In addition, the obtained ingot was subjected to continuous hot rolling to reduce the area by 70% or more without reheating, which prevents Zr precipitation due to reheating and improves strength through work hardening. This is because if the area is reduced by less than 70%, sufficient heat resistance and strength cannot be obtained no matter how the subsequent processing conditions are adjusted.
このようにして得た荒引線又は伸線加工の中間で、30
0〜500℃の温度に5〜1000時間加熱処理するの
は前記の如くAムZrの微細な析出物全形成させて、電
導率を低下させることなく耐熱性を向上させるためであ
るが、加熱温度が3oo℃未満では導電率の向上が小さ
く、5001:’e越えると適時〃1となり強度、耐熱
性が低下し、加熱時間が5時間未満では導電率の向上が
小さく、1ooo時間を越えると過時効となり耐熱性が
低下する。またこれを最終伸線加工によシ所定の線径と
す名までに10〜75チの減面加工を加えるのは加工硬
化により強度を高めるためで、10%未満の減面加工で
は充分な強度が得られず、70チを越える減面加工では
強度は向上す%も耐熱性が低下するためである。In the middle of the rough wire or wire drawing process obtained in this way, 30
The reason why the heat treatment is carried out at a temperature of 0 to 500°C for 5 to 1000 hours is to completely form the fine precipitates of A and Zr as described above and improve the heat resistance without reducing the electrical conductivity. If the temperature is less than 3oooC, the improvement in conductivity will be small; if it exceeds 5001:'e, it will reach 1 in time, and the strength and heat resistance will decrease; if the heating time is less than 5 hours, the improvement in conductivity will be small; if the heating time is less than 5 hours, the improvement in conductivity will be small; if the heating time is less than 5 hours, the improvement in conductivity will be small; It becomes over-aged and heat resistance decreases. In addition, the reason why this is subjected to the final wire drawing process is to reduce the area by 10 to 75 inches to reach the predetermined wire diameter in order to increase the strength through work hardening. This is because strength cannot be obtained, and when the area is reduced beyond 70 inches, the heat resistance decreases even though the strength improves.
次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.
純度99.6%の導電用At地金とAt−5%Zr、A
L−6%Fe、AA−20%Siの各母合金を用い、第
1表に示す組成の合金を溶製した。この溶湯をベルトア
ンドホイール型連続鋳造機により断面積2000++c
jの鋳塊に連続的に鋳造し、との鋳塊を再加熱すること
なく、引r続き連続圧延機によp熱間圧延して荒引線と
し、該荒引線又は荒引線の冷間伸線加工の中間で加熱処
理した後伸線加工を行なって耐熱AL導体を製造した。Conductive At base metal with a purity of 99.6% and At-5% Zr, A
Using each master alloy of L-6%Fe and AA-20%Si, alloys having the compositions shown in Table 1 were melted. This molten metal is cast into a belt-and-wheel type continuous casting machine with a cross-sectional area of 200++cm.
Continuously cast into an ingot of j, without reheating the ingot, and then hot-roll it into a rough drawing wire in a continuous rolling mill, and then cold-stretch the rough drawing wire or the rough drawing wire. A heat-resistant AL conductor was manufactured by performing heat treatment during wire processing and then wire drawing.
その製造条件を第2表に示す。The manufacturing conditions are shown in Table 2.
このようにして製造した耐熱At導体について、引張強
さ、導電率及び耐熱性を測定した。その結果を第3表に
示す、。The tensile strength, electrical conductivity, and heat resistance of the heat-resistant At conductor thus produced were measured. The results are shown in Table 3.
尚引張強さはアムスラー型引張試験機により測定し、導
電率はケルビンダブルブリッジにより電気抵抗を測定し
て算出した。寸だ耐熱性は各温度で1時間加熱した後の
引張強さを測定し、加熱処理前の引張強さよt)10%
低下する温度により表わした。The tensile strength was measured using an Amsler type tensile tester, and the electrical conductivity was calculated by measuring electrical resistance using a Kelvin double bridge. Heat resistance is measured by measuring the tensile strength after heating at each temperature for 1 hour, and is 10% higher than the tensile strength before heat treatment.
Expressed by decreasing temperature.
第3表
第1表〜第3表から明らかなように本発明方法により製
造した耐熱At合金導体は、何れも導電率58.4チl
AC3以上、引張強さ17.4Kg/−以上、耐熱性3
72℃以上の特性全示し、従来方法により製造した耐熱
At導体(随23〜N124)と比較し、はぼ同等の導
電率と引張強さを有し、かつはるかに優れた耐熱性を示
すことが判る。Table 3 As is clear from Tables 1 to 3, the heat-resistant At alloy conductors manufactured by the method of the present invention all have a conductivity of 58.4 tile.
AC3 or higher, tensile strength 17.4Kg/- or higher, heat resistance 3
It exhibits all the characteristics above 72℃, and has almost the same conductivity and tensile strength as heat-resistant At conductors (Ii 23 to N124) manufactured by conventional methods, and exhibits far superior heat resistance. I understand.
これに対し本発明方決テ規定した組成より外れる合金を
用いた比較方法では、本発明方法で規定する条件で鋳造
、熱間圧延、加熱処理及び伸線加工を行なっても、導電
率、引張強さ及び耐熱性の何れかが劣ることが判る。即
ちZr含有量の少ない比較方法:框8では耐熱性が、7
.r含有量の多い比較方法Nα9及び方法N(L 12
では引張強さ及び耐熱性が、またSi含有量の多い比較
方法随13では引張強さがそれぞれ低下している。On the other hand, in the comparative method using an alloy that deviates from the composition specified by the method of the present invention, even if casting, hot rolling, heat treatment, and wire drawing are performed under the conditions specified by the method of the present invention, the conductivity and tensile strength It can be seen that either strength or heat resistance is inferior. In other words, the comparative method with a low Zr content: for frame 8, the heat resistance was 7.
.. Comparative method Nα9 and method N (L 12
The tensile strength and heat resistance of Comparative Method No. 13, which had a high Si content, decreased.
また本発明方法で規定した合金組成のものでも、鋳造条
件、熱間圧延条件、加熱条件及び伸線加工条件の何れか
が異なる比較方法では、導電率、引張強さ及び耐熱性の
何れかが改善され力いことが判る。即ち鋳造温度が低い
方法は14、鋳造速度が遅い方法Nα15、加熱処理時
間が長い方法は20、伸線加工率が高い方法N022で
は何れも耐熱性が改善されず、熱間圧延における加工率
が小さい方法随16、加熱処理温度が高い方法N118
では引張強さ及び耐熱性が改善されず、加熱処理温度が
低い方法1@17、加熱処理時間が短かい方法t(α1
9では導電率が改善されず、伸線加工率の小さい方法N
α21では引張強さが改善されず、ま之伸線加工率の高
い方法Nα22では耐熱性が改善されない。In addition, even with the alloy composition specified by the method of the present invention, in a comparative method in which any of the casting conditions, hot rolling conditions, heating conditions, and wire drawing conditions are different, any of the electrical conductivity, tensile strength, and heat resistance will be affected. I can see that it has improved and is strong. That is, method 14 with a low casting temperature, method Nα15 with a slow casting speed, method 20 with a long heat treatment time, and method N022 with a high wire drawing processing rate did not improve heat resistance, and the processing rate in hot rolling increased. Small method number 16, method with high heat treatment temperature N118
However, the tensile strength and heat resistance were not improved in Method 1 @ 17, which had a low heat treatment temperature, and Method t (α1), which had a short heat treatment time.
9, the conductivity is not improved and method N has a small wire drawing rate.
Tensile strength is not improved with α21, and heat resistance is not improved with method Nα22, which has a high wire drawing rate.
このように本発明によれば、合金組成と、鋳造条件その
他の製造条件とを規定することにより、従来の耐熱At
合金導体と同等の導電性及び引張強さを有し、かつはる
かに優れた耐熱性を示す耐熱At合金導体を製造するこ
とができる顕著な効果を奏するものである。As described above, according to the present invention, by specifying the alloy composition, casting conditions and other manufacturing conditions, the conventional heat-resistant At
This has the remarkable effect of producing a heat-resistant At alloy conductor that has conductivity and tensile strength equivalent to those of the alloy conductor and exhibits far superior heat resistance.
Claims (1)
t%、s io、05〜0.5wt%、残部Atと通常
の不純物からなるアルミニウム合金を、740℃以上の
温度から10 wn/ 8ec以上の速度で連続又は半
連続鋳造し、得られた鋳塊を再加熱することなく連続し
て熱間圧延により70チ以上の減面加工を加えて荒引線
とし、これを所定の線径まで伸線加工するのに、荒引線
又は伸線加工の中間で300〜500℃の温度に5〜1
000時間加熱処理し、最終伸線加工により所定の線径
とするまでに10〜75%の減面加工を加えることを特
徴とする耐熱アルミニウム合金導体の製造方法。ZrO, 1~0.5wt%, FeO, 05~0.5w
An aluminum alloy consisting of t%, sio, 05 to 0.5 wt%, the balance At and normal impurities is continuously or semi-continuously cast at a temperature of 740°C or higher at a rate of 10 wn/8ec or higher, and the resulting cast In order to reduce the area of 70 inches or more by continuously hot rolling the lump without reheating it to make a rough wire, and then draw it to a predetermined wire diameter, it is necessary to use a rough wire or an intermediate wire drawing process. 5-1 at a temperature of 300-500℃
1. A method for producing a heat-resistant aluminum alloy conductor, which comprises heat-treating the conductor for 1,000 hours and reducing the area by 10 to 75% before final wire drawing to obtain a predetermined wire diameter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19294582A JPS5983752A (en) | 1982-11-02 | 1982-11-02 | Preparation of heat resistant aluminum alloy conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19294582A JPS5983752A (en) | 1982-11-02 | 1982-11-02 | Preparation of heat resistant aluminum alloy conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5983752A true JPS5983752A (en) | 1984-05-15 |
JPH0432146B2 JPH0432146B2 (en) | 1992-05-28 |
Family
ID=16299619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19294582A Granted JPS5983752A (en) | 1982-11-02 | 1982-11-02 | Preparation of heat resistant aluminum alloy conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5983752A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01189810A (en) * | 1988-01-25 | 1989-07-31 | Sumitomo Electric Ind Ltd | Snow accretion retardant cable |
CN114086033A (en) * | 2021-11-25 | 2022-02-25 | 江苏亨通电力特种导线有限公司 | Super heat-resistant aluminum alloy wire and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022112427A (en) | 2021-01-21 | 2022-08-02 | オムロン株式会社 | Device and method for proposing system configuration |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55125252A (en) * | 1979-03-19 | 1980-09-26 | Furukawa Electric Co Ltd:The | Heat resistant aluminum alloy conductor and manufacture thereof |
JPS5739164A (en) * | 1980-08-12 | 1982-03-04 | Furukawa Electric Co Ltd:The | Preparation of heat resistant aluminum alloy conductor |
-
1982
- 1982-11-02 JP JP19294582A patent/JPS5983752A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55125252A (en) * | 1979-03-19 | 1980-09-26 | Furukawa Electric Co Ltd:The | Heat resistant aluminum alloy conductor and manufacture thereof |
JPS5739164A (en) * | 1980-08-12 | 1982-03-04 | Furukawa Electric Co Ltd:The | Preparation of heat resistant aluminum alloy conductor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01189810A (en) * | 1988-01-25 | 1989-07-31 | Sumitomo Electric Ind Ltd | Snow accretion retardant cable |
CN114086033A (en) * | 2021-11-25 | 2022-02-25 | 江苏亨通电力特种导线有限公司 | Super heat-resistant aluminum alloy wire and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0432146B2 (en) | 1992-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS607701B2 (en) | Manufacturing method of highly conductive heat-resistant aluminum alloy | |
JPS6216269B2 (en) | ||
JPS5919183B2 (en) | Manufacturing method of high-strength heat-resistant aluminum alloy conductor | |
JPS5983752A (en) | Preparation of heat resistant aluminum alloy conductor | |
JP2582073B2 (en) | Method for producing high-strength heat-resistant aluminum alloy for electric conduction | |
JPH0125822B2 (en) | ||
JPS63243247A (en) | High-strength aluminum-based composite conductive wire and its production | |
JPH0152468B2 (en) | ||
JPH036983B2 (en) | ||
JP2628235B2 (en) | Method for producing high heat-resistant aluminum alloy wire for conductive use | |
JPH0335373B2 (en) | ||
JPS6116421B2 (en) | ||
JPS6361380B2 (en) | ||
JPH042664B2 (en) | ||
JPS6054387B2 (en) | Manufacturing method of high strength heat resistant aluminum alloy conductor | |
JPS5827949A (en) | Electrically conductive heat-resistant aluminum alloy wire | |
JPS6149385B2 (en) | ||
JPH036984B2 (en) | ||
JPH0313302B2 (en) | ||
JPS61238944A (en) | Manufacture of heat resistant aluminum alloy conductor having high electric conductivity | |
JPS61243159A (en) | Production of heat resistant aluminum alloy conductor having high electric conductivity | |
JPH06158246A (en) | Manufacture of high heat resistant aluminum alloy wire for electric conduction | |
JPS6128745B2 (en) | ||
JPS5825462A (en) | Manufacture of heat resistant aluminum alloy conductor | |
JPS5918471B2 (en) | Manufacturing method of heat-resistant aluminum alloy conductor |