【発明の詳細な説明】[Detailed description of the invention]
この発明は、レーザ光の照射によりポリマーシートに5
0μm以下の無数の徹X・田な孔を形成させる方法に関
するものである。
従来ポリマーシー1−に微細な孔を形成させる方法とし
ては、フェルl−剣のような針を突き刺すか。
又は昇華性或は親水性化合物を混合しておいて、これら
の化合物を昇華又は溶出させることにより孔を形成させ
るか、践は又発泡剤を混合しておいて発泡剤を揮散さt
+−て・泡を形成させる等の方法が一般に行われている
。
しかしながら、これらの方法は孔径が大きいとか、孔径
にバラツキや独立気泡が多くなり易いとか、或は又ポリ
マーシー1へ中に残存するP1華(’I: ’bしくは
親水性化合物が表面に移行してくる笠の欠点があって、
透湿性と防水性とい−]だ471反する両特性を兼fl
ttさぜるには充分とは云い得ない難点があった。
一方、レーザビームを用いてゴム、プラスチック類に孔
をあける技術も公知である。しかしながら、従来は一般
に赤外波長領域の炭酸ガス(ノーリ゛(波長10.6μ
m)が用いられており、パルス加工によって得られる孔
の径は数百μ川と大きくそのために孔密度も600個/
cnl以下が限度で、これ以−1−はポリマーシート
自体を切断してしまうだ(づで孔ν)・)度を高めるこ
とは不可能であった。又、ポリマー自体の急熱分解ガス
化による花衣、 LJ加−1,では、ポリマー自体の物
性低下も避けられ1′、ナイLI:ノ布地を貼り合仕た
ゴ15引布のような複合体の場、′711はナイロン布
地さえも孔をあけて17すうので、二1ム引布どしての
性能をも低下さLでじま一゛ノどい一゛)欠点もあった
。加えて、炭酸カスレーザによる孔あけ加工法では、発
振方法がパルス方式となるため1パルスで1つの孔をあ
ける方法となり、広い面積のシー1へに無数の孔あけ加
゛Eを管うような場合、著しく加工速度と加−■−精度
に劣るという欠点もあり、限られた部分に極く少数の孔
をあける加工に適用されてきているのが現状である。
この他、炭酸ガスレーザの1710の波長をもつYAG
1ノーザ(イン1〜リウ1
ネッI〜系レーザ、波長1.06μm)により理論的に
は炭酸ガスレーザ加工孔の1710の微細孔を形成する
ことができると考えられるが,一般にゴl\、プラスチ
ックのようなポリマーは熱不良導体でIろるので、加]
二孔径の拡大は避けられず、炭酸ガスレーザよりも孔径
は小さくできるどしてもせいぜい1、/ 2 Is!度
で、従って100 7z m径以上の孔しか得られない
ことを本願発明者等は確認している。
本願発明者等は、これらの欠点を解消し、微細な孔を効
率的に形成させることを1」的に鋭意研究を重ねた結果
、非赤外部領域の光の吸収率が50%以上の顔料を配合
した樹脂の微粉末を,ゴ11又はプラスチックシー1−
中に分散させて,1−9いて,該ポリマーシー1へにY
AGIノーザを照ル1することによって本願目的を達成
し得ることをす、出すに至ったものである。即ち、非赤
外領域の光に対して吸収性をもつ顔料i!;l子を比較
的低い温度で熱分解する合成樹脂と混合粉砕In this invention, a polymer sheet is irradiated with 50% by laser light irradiation.
The present invention relates to a method for forming countless holes with a diameter of 0 μm or less. Conventionally, the method of forming fine holes in polymer seams is to pierce them with a needle like a sword. Alternatively, sublimable or hydrophilic compounds are mixed and these compounds are sublimated or eluted to form pores, or a blowing agent is mixed and the blowing agent is volatilized.
Generally, methods such as forming bubbles are used. However, these methods tend to have large pore diameters, variations in pore diameter, a large number of closed cells, or the presence of residual P1 ('I:'b) or hydrophilic compounds on the surface of the polymer sheet 1. There are drawbacks to the transitional hat,
A fl that combines both moisture permeability and waterproof properties.
There was a drawback that it could not be said to be sufficient for tt. On the other hand, a technique for making holes in rubber and plastics using a laser beam is also known. However, in the past, carbon dioxide gas (wavelength 10.6 μm) in the infrared wavelength region was generally used.
m) is used, and the diameter of the holes obtained by pulse machining is large, several hundred microns, so the hole density is 600//.
The limit is less than cnl, and beyond this point it was impossible to increase the degree of cutting of the polymer sheet itself. In addition, with the rapid thermal decomposition and gasification of the polymer itself, the deterioration of the physical properties of the polymer itself can be avoided, and composites such as G15 fabric made by bonding fabrics In the field, '711 had the disadvantage that even the nylon fabric was perforated (17), which reduced the performance of the 21-meter fabric (by a significant degree). In addition, in the drilling method using a carbon dioxide laser, the oscillation method is a pulse method, so one hole is drilled with one pulse, and it is difficult to drill countless holes in a large area of the sea 1. However, this method has the disadvantage of being significantly inferior in machining speed and acceleration accuracy, and is currently being applied to machining where a very small number of holes are to be drilled in a limited area. In addition, YAG with a wavelength of 1710 for carbon dioxide laser
Although it is theoretically possible to form 1,710 micropores of carbon dioxide laser-processed holes using a 1-noser (in-1~riu-1~ system laser, wavelength 1.06 μm), it is generally Since polymers such as are poor thermal conductors,
Expansion of the pore diameter is unavoidable, and even if the pore diameter can be made smaller than that of a carbon dioxide laser, it is at most 1./2 Is! The inventors have confirmed that only holes with a diameter of 100 7 m or more can be obtained. The inventors of the present application have conducted intensive research to eliminate these drawbacks and efficiently form fine pores, and as a result, they have developed a pigment that has a light absorption rate of 50% or more in the non-infrared region. Fine resin powder mixed with Go 11 or Plastic Sea 1-
1-9, and Y into the polymer sheet 1.
We have now discovered that the object of the present application can be achieved by using the AGI noser. In other words, the pigment i! absorbs light in the non-infrared region. ; Mixing and pulverizing the leek with a synthetic resin that thermally decomposes it at a relatively low temperature.
【7た微粒
子をポリマー中に分散させておいてYΔGレーザを照射
することによって顔料第5’l 7−が急熱さ扛、合成
樹脂をはしめ熱分解可能物質のみが分解ガス化して空洞
をポリマーシート中に形成し、且つそれ以外のポリマー
シー1−自体は何ら損傷を受けないという極めて望lニ
ジい状態を現出するのである。
本願で用いることができる非赤外部の光の吸収率が50
%以」−の着色粉末状合成樹脂用顔イ′;1としでは、
カーボンブラック、黒鉛、チタン白、用i (i’?!
華、硫化亜鉛、鉛白、す1〜ボン、酸化アンチモン、フ
タロシアニンブルー、アニリンブラック、ア12チレン
ブラック等があり、これらは単独又は所望により併用す
ることができる。
これらの顔料はそのまま単にゴム又はプラスチック中に
分散させたのでは期待される効果は得られない。少くど
もこれらの顔料に一般に体質顔料と呼ばれている化合物
を少くとも1種併用することが必要である。体質顔料は
公知のものはすべて使用できるが、特に炭酸力ルシウ1
1、硫酸バリウム、アルミナ、無水珪酸、タルク、炭酸
マグネシウム、石膏のような無機塩又は無機酸化物が好
適である。
これらの顔料及び体質顔料は熱分解により分解ガスを発
生する合成樹脂と公知の方法で混合した後、粉砕して]
007zn1以下の粒子径としてもよく。
予め顔料、体質顔料及び合成樹脂粉末を100μI11
以下の粒子径においてよく混合して用いてもよい。
又ポリマーと混線する前の粒子径が1.007zm以上
であっても、ポリマーと混線加工中に故されて100μ
m以下となるようにしてもよい。勿論ポリマーシー1へ
の)5みが1 +)0 7z m以」二のもので,−・
部孔径が100μm以」二の孔が存在しても差し支えな
い用途の場合は、少くともポリマーシー1−の厚み以下
の粒子径にさえ着色粉末状合成樹脂をしておけはfJi
ITIできる。
熱分M.を起し分解ガスを発生ずる合成樹脂どしては、
ポリエステル樹脂、ポリアクリロニ1ヘリル樹脂、エポ
キシ樹脂、ポリウレタン樹脂等が好適であるが、熱分解
ガスを発生するものであれば1,テに限定はされない。
尚、ポリエステル樹脂、ポリアクリロニ1ーリル、エポ
キシ樹脂の場合には硬化剤を添加しないものであっても
よい。
ポリマーシー1へとしては、ゴム又はプラスチックの単
体又は混合物をシー1〜状にしたものを用いてもよく、
これらのシート状物を布地ど貼合Ikた複合シー1へと
して用いてもよい。要するに、着色粉末状合成樹脂とし
ては非赤外波長1ノーザの吸収率を50%以−に有する
ようにすること,及び熱分解ガスを発生する合成樹脂等
の成分を少くと1)一種含むこと、及び体質顔料を少く
と1.ノ一種含む微粒子状であることが必要である。
本願で用いられるレーザ種は,非赤外部の波長領域を有
するもの、例えばYAG、ルビー、ガラス等であり、加
」二条性、即ち発振方法、出力、集光Iノンスは′[、
νに限定されないが、加工性の点からポリマーシー1−
表面に焦点を合わぜたビームを掃引する方法が現行設備
では最良と考えられる。又発振方法としては、連続発振
法でのスイッチを併用する方法がよいが、その他の方法
であってもよい。
本願ていうポリマーシートとは、ゴム又はプラスチック
の1mm以下の)1さに、カレンダー加工又はインフレ
ヘション加上等の公知の方法でシー1−状としたものを
云い、好ましいシー1−の厚みは一般にはフィルムと称
せられる範囲のl 00 It m前後のものである。
本願ではポリマーシー1−はそのままで加工に供しても
よいが、ナイロン布やその他の布帛類と貼合仕て用いて
もよい。又、ポリマーシー1〜白休は着色しないものを
用いることが望ましいが、着色している場合はその着色
による非赤外波長部の光の吸収率が50%以下でなけれ
ばならない。
本願の方法によって得られるポリマーシー1〜の孔径は
、分散させた着色粉末状合成(i’7J脂の粒子径の1
72以下でネ()られ、その微細孔の数は分11シされ
た着色粉末状合成樹脂の粒子の数、即ちその配合量によ
って決まってくる。従って高度の透湿性を得るためには
、当然着色粉末状合成樹脂のポリマーシー1−への配合
量を多くずればよく、通気性と透湿性を向−1ニさせた
い時は、できるだけ十記着色粉末状合成樹脂の粒子径を
大きめに設定ずれはよい。逆に、耐水圧を高めたい場合
はその粒子−径をできるだけ小さく設定ずれはよいので
極めて広範囲な透湿性と耐水圧性の範囲のものが本願の
方法によって得られるのである。
尚、このようにして得られる焦数の微細孔を1)つポリ
マーシー1〜は、むれが少なく且つ防水性に優れるので
、雨衣やスポーツ用ウィン1〜ブレーカ−等の着衣どし
て好適な材料である。
実施例】
スチレンブタジェン系合成ゴl、 It、 1.502
100.’、1口1】。
部(以下部と省略して示す)に亜鉛華5部、ステアリン
酸1部、炭酸カルシウl\120部、−1シ防M13(
川口化学製)1部、プロセス油P−300(日本鉱業製
)14部、加硫促進剤M(人内新興化学製)1.8部、
加硫促進剤1−)(用L1化学製)0.6部、硫黄2部
及びポーセラックΔ(川」−塗料製粉体系オ′1、カー
ボンブラック10%、チタン白90%の混合物100部
と、がJ酸カルシウA、100部をポリエステル樹脂1
00部に混合し、:)25メツシユのフルイ通過物が6
0%となるよう粉砕したもの)24部をロール混合した
後、カレンダーにて407z+nの厚みに圧延しながら
、ナイロンタフタ布(東し製70デニールナイロン系使
用)と貼り合せ、160″Cで10分間加硫してゴ11
引布を得た。本実施例で使用した粉体塗オ(1ボーセラ
ツクΔば1,06μrnの波長における光の吸収率は6
0%であった。
上記ゴム引布を金属顕微鏡により 100倍の倍率でN
u察した所、粉体塗料は5〜407zmの範囲の粒子径
でゴ11引布巾に分散していることが認められた。
このゴム引布にネオジウムガラスレーザ(東芝uQ L
A Y−201、パルス発振、波長]、OGμ+71
、ビーム径10mm)を用い、10倍の対物レンズ(f
=5mm>。
1パルス/sec+6f) It Secて1パルスエ
ネルギー14ミリジユール(1、0OOV、 A(二、
)の1ノーザビームを11((現した所、ビーフ1焦点
を中心に半径0.]−0,211+mニわたって粉体塗
料が急激な体積膨張を起して気11りし、平均孔径20
〜30μI11の多数の孔がゴト引布に形成された。尚
、粉末塗料が気1校した後のゴムク1布に何回レーザ照
射を繰返しても何ら変化は生Ld1ごかった・
実施例2
実施例jのゴ11配合において粉体J< 1:’lを7
JC−ヒラツクΔの代りにポーセラック13(用1−塗
石U・2、弯1料カーボンブランク、体質lA1料、炭
酸カルシウム、含有ポリアクリル樹脂系黒色’Bj体塗
イ゛[,106μmにおける光の吸収率98%)を用い
た以外1′:〈同様にしてゴ11引布を得た。このゴ1
1引布を金属顕微鏡でi奈した所、粉体塗料は5へ−4
01,t inの範囲の粒子径でゴl\シー1−中に分
散していることが認められた。このゴl\引布に実施(
9IIIど1.’71−条1′1てネオジウムガラスレ
ーザをJl((射した。j、fi N!、焦、・5′、
・、を中心に半径0.1.−0.2mmにわた−2て、
孔径20〜30μn1の多数の孔が形成されていること
が認められた。尚、(ノーザ出力は10ミリジユール/
パルスを用いた。
実施例3
実施例1のゴム引布製造においてゴノ、配合物中にフタ
ロシアニンブルーを0.05部添加し、且つ波長1.0
6μ汀1における光の吸収率が70%で、粒度分布とし
て325メツシュ通過物を43%含む粉体塗料(アクリ
ル樹脂系、K1料はカーボンブラックとチタン白、体質
顔a”tは硫酸バリウム)をボーセラックAの代りに用
いた以外は実施例】と全く同様にしてネオジウムガラス
レーザを照射して得られたゴl\引布の通気度を、IJ
S I、暑096 (’ 79)のEi、27.2B法
に準じてd(り定した結果はガーレ数30秒7100c
cであった。又、透湿度を、JTS Z−0208(’
79)規定の方法で、耐水圧をJIS T、−1092
(’ 79)の5.1.1 Δ法でHIIJ定した結果
はそれぞれ、4.00旺/+K・回、 1,500m/
mH2Oであり、透湿性雨衣トL”li!iれだ性質を
有することが認められた。尚、本実施長における光の吸
収率は40%てあ−〕だ。
実施例4
波長1..0671mでの光の吸収率が40%の粉体塗
f’)(チタン自98部、フタロシアニンブルー2部、
炭酸・カルシラ/5100部、ポリエステル樹脂100
部を混合粉砕、325メツシュ通過物40%)を用いた
以外は全〈実施例1と同様にしてゴ11引布を得、ネオ
ジウムガラスレーザを実施例Iと同一条件で照射した。
得られたゴ11引布には貫通孔が認めl))わ5ず、通
気度はガーレ数1 、000秒以上/ l OOc、(
:で殆ど通気性のないものであった。
実施例5
実施例4で得られたゴ11引布に波長1..064μI
llのY A Gレーザ(東芝製■、ΔY 621 )
にてパルス加工を行った所、!メーザ出力550ミリジ
ユール/パルス(1,0OOV、モードセL/ ’)
ター3nun、コンテンサーレンジ0.2)の条件では
:3〜5回の照!ljてじj1η孔が得られたが、実施
例1のレーザ出力14ミリジユール/パルスに比し30
倍以」−のエネルギーを必要とし、著しく生産性に劣る
ものであった。
実施例6
粉体塗料どして、ボーセラックA中の体質顔料の炭酸カ
ルシラ11の、77を含有しない粉体塗料を使用した以
外全〈実施例1と同様1;シてネオジウムガラスレーザ
を照ル1した所、得られたゴム引布の孔径は500μn
+前後の大きい孔のものであった。[7] By dispersing the fine particles in a polymer and irradiating it with a YΔG laser, the pigment No. 5'l 7- is rapidly heated, a synthetic resin is placed in it, and only the thermally decomposable substances are decomposed and gasified, and the cavity is covered with a polymer sheet. This creates an extremely desirable situation in which the polymer seam 1- itself formed inside is not damaged in any way. The absorption rate of non-infrared light that can be used in this application is 50
% or more for colored powdery synthetic resin A'; 1,
Carbon black, graphite, titanium white, i (i'?!
Examples include white sulfur, zinc sulfide, white lead, tin, antimony oxide, phthalocyanine blue, aniline black, al-12-thylene black, etc., and these can be used alone or in combination as desired. If these pigments are simply dispersed as they are in rubber or plastic, the expected effects cannot be obtained. It is necessary to use at least one compound generally called an extender pigment in combination with these pigments. All known extender pigments can be used, but especially carbonic acid 1
1. Inorganic salts or inorganic oxides such as barium sulfate, alumina, silicic anhydride, talc, magnesium carbonate, and gypsum are suitable. These pigments and extender pigments are mixed with a synthetic resin that generates decomposed gas through thermal decomposition by a known method, and then pulverized]
The particle size may be 007zn1 or less. Pigment, extender pigment, and synthetic resin powder were added in advance to 100μI11.
The following particle sizes may be well mixed and used. Also, even if the particle size before being mixed with the polymer is 1.007 zm or more, it may be 100 μm or more because it is lost during the process of crossing with the polymer.
It may be set to be less than m. Of course, 5 to polymer sea 1 is 1 +) 0 7z m or more, and -.
In applications where the presence of pores with a pore size of 100 μm or more is acceptable, it is recommended to use a colored powdery synthetic resin with a particle size that is at least less than the thickness of the polymer sheet.
ITI can do it. Heat M. Synthetic resins that cause decomposition gas and
Polyester resins, polyacryloni 1-helyl resins, epoxy resins, polyurethane resins, etc. are suitable, but the resin is not limited to 1, te as long as it generates thermal decomposition gas. In addition, in the case of polyester resin, polyacrylonyl-1-lyl, and epoxy resin, a curing agent may not be added. As the polymer seam 1, rubber or plastic alone or a mixture formed into seams 1 to 1 may be used,
These sheet-like materials may be used as a composite sheet 1 for laminating fabrics. In short, the colored powdery synthetic resin must have an absorption rate of 50% or more at non-infrared wavelengths 1, and must contain at least 1) one component such as a synthetic resin that generates pyrolysis gas. , and a small amount of extender pigment. It is necessary that the material be in the form of fine particles containing one or more of the following. The laser type used in this application has a non-infrared wavelength region, such as YAG, ruby, glass, etc., and the laser characteristics, that is, the oscillation method, output, and focusing I nonce, are
Although not limited to ν, polymer seams 1-
A swept beam focused on the surface is considered the best method with current equipment. As for the oscillation method, it is preferable to use a continuous oscillation method in conjunction with a switch, but other methods may also be used. The polymer sheet referred to in the present application refers to a rubber or plastic sheet (1 mm or less) that is made into a sheet shape by a known method such as calendering or inflation heating, and the preferred thickness of the sheet is Generally, it has a range of about 1 00 It m, which is called a film. In the present application, the polymer sheet 1- may be processed as it is, but it may also be used by laminating it with nylon cloth or other fabrics. Furthermore, it is desirable to use Polymer Sea 1 to Hakushu without coloring, but if they are colored, the absorption rate of light in the non-infrared wavelength region due to the coloring must be 50% or less. The pore size of the polymer sheets 1 to 1 obtained by the method of the present application is 1 of the particle size of the dispersed colored powder composite (i'7J resin).
The number of fine pores is determined by the number of colored powdery synthetic resin particles, that is, the blending amount. Therefore, in order to obtain a high degree of moisture permeability, it is natural to increase the amount of colored powdery synthetic resin added to the polymer sheet 1-. It is better to set the particle size of the colored powdery synthetic resin to a larger size. On the other hand, when it is desired to increase the water pressure resistance, the particle diameter can be set as small as possible, so that an extremely wide range of moisture permeability and water pressure resistance can be obtained by the method of the present invention. In addition, the polymer sheet 1~ with the microscopic pores of the focal number 1) obtained in this way has less stuffiness and is excellent in waterproofness, so it is suitable for clothing such as raincoats and sports win 1~breakers. It is the material. Examples] Styrene-butadiene-based synthetic Gol, It, 1.502
100. ', 1 mouthful]. Part (hereinafter abbreviated as part) contains 5 parts of zinc white, 1 part of stearic acid, 120 parts of calcium carbonate, and -1 part of anti-M13 (
Kawaguchi Chemical Co., Ltd.) 1 part, Process Oil P-300 (Nippon Mining Co., Ltd.) 14 parts, Vulcanization Accelerator M (Jinnai Shinko Chemical Co., Ltd.) 1.8 parts,
0.6 parts of vulcanization accelerator 1-) (manufactured by L1 Chemical), 2 parts of sulfur, and 100 parts of a mixture of Porcelac Δ (river) paint powder system O'1, 10% carbon black, and 90% titanium white; is J acid calcium A, 100 parts polyester resin 1
00 parts :) 25 mesh of sieve passed through 6
After mixing with a roll 24 parts (pulverized to 0%), rolling it with a calender to a thickness of 407z+n, laminating it with nylon taffeta cloth (70 denier nylon made by Toshi), and rolling it at 160"C for 10 minutes. Vulcanize for 11 minutes
I got a cloth. The light absorption rate at a wavelength of 1,06 μrn is 6 for the powder coating used in this example (1 Boserak Δ).
It was 0%. N
Upon inspection, it was found that the powder coating had a particle size in the range of 5 to 407 zm and was dispersed in the cloth. Neodymium glass laser (Toshiba uQ L) is applied to this rubberized cloth.
AY-201, pulse oscillation, wavelength], OGμ+71
, beam diameter 10 mm) and a 10x objective lens (f
=5mm>. 1 pulse/sec+6f) It Sec is 1 pulse energy 14 millijoules (1.0OOV, A(2,
), the powder coating undergoes rapid volume expansion over a radius of 0.]-0,211+m centering on the Beef 1 focal point, and the average pore diameter is 20.
A large number of holes of ˜30 μI11 were formed in the goto cloth. It should be noted that no matter how many times the laser irradiation was repeated on the rubber cloth after the powder coating was applied, there was no change at all. l to 7
Porcellac 13 (for use in place of JC-Hiratsuk Δ) 1': A fabric coated with Go 11 was obtained in the same manner, except that a fabric with an absorption rate of 98% was used. this go 1
When the cloth was inspected under a metallurgical microscope, the powder coating was shown at 5-4.
It was observed that the particles were dispersed in Gol\C1- with a particle size in the range of 0.01, tin. Implemented on this gol\Hikifu (
9III 1. '71-Article 1'1 and fired a neodymium glass laser
・, radius 0.1. -2 across -0.2mm,
It was observed that a large number of pores with a pore diameter of 20 to 30 μn1 were formed. In addition, (norther output is 10 millijoules/
A pulse was used. Example 3 In manufacturing the rubberized fabric of Example 1, 0.05 part of phthalocyanine blue was added to the blend, and the wavelength was 1.0.
Powder paint with a light absorption rate of 70% on 6 μm surface 1 and a particle size distribution containing 43% of particles passing through 325 mesh (acrylic resin type, K1 material is carbon black and titanium white, body composition a”t is barium sulfate) IJ
S I, Ei of heat 096 ('79), d according to the 27.2B method (the determined result is Gurley number 30 seconds 7100c
It was c. In addition, moisture permeability was determined using JTS Z-0208 ('
79) Water pressure resistance according to the specified method JIS T, -1092
The results of HIIJ determination using the 5.1.1 Δ method of ('79) are 4.00 m/+K·times and 1,500 m/m, respectively.
mH2O, and was found to have the property of dripping from a moisture-permeable raincoat.The light absorption rate at this practical length was 40%.Example 4 Wavelength 1... Powder coating f' with a light absorption rate of 40% at 0671 m (98 parts titanium, 2 parts phthalocyanine blue,
Carbonic acid/Calcilla/5100 parts, polyester resin 100
A 11-glue fabric was obtained in the same manner as in Example 1, except that 40% of the material passing through the 325 mesh was used, and the material was irradiated with a neodymium glass laser under the same conditions as in Example I. Through-holes were observed in the obtained fabric, and the air permeability was Gurley number 1, 000 seconds or more/l OOc, (
: It had almost no air permeability. Example 5 The Go-11 fabric obtained in Example 4 was coated with wavelength 1. .. 064μI
YAG laser (manufactured by Toshiba ■, ΔY 621)
Where pulse processing was performed at! Maser output 550 millijoules/pulse (1,000V, mode set L/')
Under the conditions of ter 3nun and condenser range 0.2): 3 to 5 flashes! ljtejij1η holes were obtained, but compared to the laser output of 14 mJ/pulse in Example 1, the laser output was 30 mJ/pulse.
It required more than twice as much energy and was significantly less productive. Example 6 All powder coatings were the same as in Example 1 except that a powder coating containing no 77 of Calcilla carbonate 11, an extender pigment in Beaucellac A, was used. 1, the pore diameter of the rubber-coated cloth obtained was 500 μn.
+ It had large holes in the front and back.