[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS598066B2 - Manufacturing method of stud base for semiconductor device - Google Patents

Manufacturing method of stud base for semiconductor device

Info

Publication number
JPS598066B2
JPS598066B2 JP11412778A JP11412778A JPS598066B2 JP S598066 B2 JPS598066 B2 JP S598066B2 JP 11412778 A JP11412778 A JP 11412778A JP 11412778 A JP11412778 A JP 11412778A JP S598066 B2 JPS598066 B2 JP S598066B2
Authority
JP
Japan
Prior art keywords
stud
metal layer
bulge
base
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11412778A
Other languages
Japanese (ja)
Other versions
JPS5541720A (en
Inventor
徳男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11412778A priority Critical patent/JPS598066B2/en
Publication of JPS5541720A publication Critical patent/JPS5541720A/en
Publication of JPS598066B2 publication Critical patent/JPS598066B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Forging (AREA)
  • Die Bonding (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置用スタッドベースの製造方法の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method of manufacturing a stud base for a semiconductor device.

一般に半導体装置用ベースは導電性のよい下部金属層と
溶接性のよい上部金属層とから成る複合金属の加工材料
を用意し、この加工材料を押出成型により半導体ペレッ
トをマウントすべき膨出部を上面に形成すると同時にベ
ースを取付板に取付けるため後にねじが形成されるべき
スタッドとを形成することにより製造されていた。
In general, bases for semiconductor devices are made of a composite metal material consisting of a lower metal layer with good conductivity and an upper metal layer with good weldability, and this processed material is extruded to form a bulge on which a semiconductor pellet is to be mounted. It was manufactured by forming a stud on the top surface as well as a stud which would later be threaded to attach the base to the mounting plate.

膨出部は下部金属層が露呈するように上面が切取られた
後モリブデン板がろう付けされ、半導体ペレットはこの
モリブデン板の上にマウントされる。しかし、この従来
技術の欠点は、モリブデン板のろう付けの際に押出成型
により加工硬化されているスタッドがろうの加熱によつ
てなまされるのでスタッドが脆弱化しねじの締付トルク
が小さく、スタッドを無理に締付けると破損する虞れが
あつたことである。本発明の目的は、スタッドの締付ト
ルクを大きくすることができる半導体装置用スタッドベ
ースの製造方法を提供することにある。
After the upper surface of the bulge is cut off to expose the lower metal layer, a molybdenum plate is brazed to the bulge, and a semiconductor pellet is mounted on the molybdenum plate. However, the disadvantage of this conventional technology is that when brazing molybdenum plates, the studs, which have been work-hardened by extrusion molding, are annealed by the heating of the wax, making the studs brittle and the tightening torque of the screws being small. There was a risk of damage if the bolts were forcibly tightened. An object of the present invention is to provide a method of manufacturing a stud base for a semiconductor device that can increase the tightening torque of the stud.

本発明の実施例を図面を参照して詳細に説明すると、第
1図乃至第5図は本発明の製造方法を工程順に示す。
Embodiments of the present invention will be described in detail with reference to the drawings. FIGS. 1 to 5 show the manufacturing method of the present invention in the order of steps.

先ず、第1図に示すように、銅、ジルコニウム銅の如き
導電性のよい厚肉の下部金属層12とニッケル、キユプ
ロニツケルの如き溶接性のよい薄肉の上部金属層14と
から成る複合金属の加工材料10を用意する。この加工
材料は複合金属板を円板状に打抜いて形成される。複合
金属板は下部金属層12に上部金属層14を銀ろう付け
したものが、これらの金属層12、14をクラッド結合
したクラッド板のいずれでもよい。次にこの加工材料は
、第2図に示すように、上面に膨出部16を形成するよ
うに後方押出成型機により押出成型される。尚、この際
材料の外周は多角形に成型され、また膨出部のまわりの
上面にはシェルをプロジェクション溶接するのに用いら
・れる環状突起ITが形成される。その後この加工材料
は第3図に示すように、膨出部16の上面に下部金属層
12が露呈するように、第2図の点線aで示す位置で膨
出部を水平に切取る。次いで、この下部金属層12が露
呈した膨出部16の上面にモリブデン板18を銀ろう付
けし(第4図)、エージング処理する。
First, as shown in FIG. 1, a composite metal consisting of a thick lower metal layer 12 with good conductivity such as copper or zirconium copper and a thin upper metal layer 14 with good weldability such as nickel or Cypronickel is processed. Prepare material 10. This processed material is formed by punching out a composite metal plate into a disk shape. The composite metal plate may be either one in which the upper metal layer 14 is silver-brazed to the lower metal layer 12 or a clad plate in which these metal layers 12 and 14 are clad-bonded. Next, this processed material is extruded by a rear extrusion molding machine so as to form a bulge 16 on the upper surface, as shown in FIG. At this time, the outer periphery of the material is formed into a polygonal shape, and an annular projection IT used for projection welding the shell is formed on the upper surface around the bulge. Thereafter, as shown in FIG. 3, the processed material is cut horizontally at the bulge at the position indicated by dotted line a in FIG. 2 so that the lower metal layer 12 is exposed on the upper surface of the bulge 16. Next, a molybdenum plate 18 is soldered with silver to the upper surface of the bulge 16 where the lower metal layer 12 is exposed (FIG. 4), and subjected to an aging treatment.

このエージング処理は下部金属層がジルコニウム銅で上
部金属層がキユプロニツケルである場合400℃〜50
0℃で1時間以上行われる。最後に、この加工材料は第
5図に示すように、その下面にスタツド20を形成する
ために後方押出により成型される。
This aging treatment is carried out at 400°C to 50°C when the lower metal layer is zirconium copper and the upper metal layer is Cypronickel.
This is carried out at 0°C for over 1 hour. Finally, the material is back-extruded to form studs 20 on its underside, as shown in FIG.

後方押出成型機22の一例が第6図に示してある。この
成型機は、膨出部16が挿入される孔24aを有する下
型24とスタツド20を押出すべき型孔26aを有する
上型126とから成つており、下型24は図示しない基
台上に設けられたホルダー28に保持され、上型26は
図示しないプレスラムに取付けられている。尚、上型2
6の上方にはホルダー28に囲まれて加工材料10が入
る角形孔28aを有する。この成型機22内に材料を図
示のように挿入し、ラムを衝撃的に下降すると、スタツ
ド20は上型26の型孔26a内に材料の一部が流入し
て形成される(第6図点線参照)。モリブデン板18は
下型の孔24a内に下向きに挿入されているのでこの乏
スタツド押出時の衝撃で破壊を受けることがない。この
スタツド20は後にねじ転造によりねじが刻設される。
このスタツド20はその成型時に加工硬化されるのでモ
リブデン板18のろう付け時になまされても再び硬化状
態となる。従つて、このスタツド20のねじ締付トルク
は著しく大きくなる。実験によると、従来技術のスタツ
ドベースではスタツドの許容締付トルクは40k9と小
さかつたが、本発明によるスタツドベースでは80kg
と大きくすることができた。
An example of a rear extruder 22 is shown in FIG. This molding machine consists of a lower mold 24 having a hole 24a into which the bulging portion 16 is inserted and an upper mold 126 having a mold hole 26a into which the stud 20 is to be extruded.The lower mold 24 is placed on a base (not shown). The upper die 26 is attached to a press ram (not shown). In addition, upper mold 2
Above 6, there is a square hole 28a surrounded by a holder 28 into which the workpiece 10 is inserted. When the material is inserted into the molding machine 22 as shown and the ram is lowered with an impact, a part of the material flows into the mold hole 26a of the upper mold 26 and the stud 20 is formed (Fig. 6). (see dotted line). Since the molybdenum plate 18 is inserted downward into the hole 24a of the lower die, it will not be damaged by the impact during this poor stud extrusion. This stud 20 will later be threaded by thread rolling.
Since this stud 20 is work-hardened during molding, it will become hardened again even if it is annealed when the molybdenum plate 18 is brazed. Therefore, the screw tightening torque for this stud 20 becomes significantly large. According to experiments, the permissible tightening torque for studs with the stud base of the prior art was as small as 40k9, but with the stud base of the present invention, it was 80kg.
I was able to make it bigger.

これは、従来技術ではスタツド形成後にモリブデン板の
ろう付けをしているため加工硬化されたスタツド材料が
モリブデン板のろう付け時の熱でなまされるが、本発明
ではモリブデン板のろう付け後にスタツドを成型してい
るのでスタツド材料はその成型時に加工硬化されたまま
であるためである。本発明によれば、上記のように、ス
タツドの許容締付トルクが著しく大きくなるので特に大
容量半導体装置用ベースとして好適であり、またこのス
タツドは後方押出により形成するのでモリブデン板には
成型時の衝撃が加わることがなく、破損を生ずることが
ない。
This is because in the conventional technology, the molybdenum plates are brazed after the studs are formed, so the work-hardened stud material is annealed by the heat during brazing the molybdenum plates, but in the present invention, the studs are brazed after the molybdenum plates are brazed. This is because the stud material remains work-hardened during molding. According to the present invention, as described above, the permissible tightening torque of the stud is significantly increased, so it is particularly suitable as a base for a large-capacity semiconductor device.Also, since the stud is formed by backward extrusion, the molybdenum plate is not used during molding. No impact is applied and no damage occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は本発明のスタツドベースの製造方法
を工程順に示す材料の垂直断面図、第6図はスタツドを
後方押出するための後方押出成型機の一部の垂直断面図
である。 10・・・・・・加工材料、12・・・・・・下部金属
層、14・・・・・・上部金属層、16・・・・・・膨
出部、18・・・・・・モリブデン板、20・・・・・
・スタツド、22・・・・・・後方押出成型機。
Figures 1 to 5 are vertical cross-sectional views of materials showing the method for producing stud bases of the present invention in the order of steps, and Figure 6 is a vertical cross-sectional view of a part of a backward extrusion molding machine for backward extrusion of studs. . DESCRIPTION OF SYMBOLS 10...Processing material, 12...Lower metal layer, 14...Upper metal layer, 16...Bulging portion, 18... Molybdenum plate, 20...
・Stud, 22... Rear extrusion molding machine.

Claims (1)

【特許請求の範囲】[Claims] 1 銅、ジルコニウム銅の如き導電性のよい下部金属層
とニッケル、キユプロニツケルの如き溶接性のよい上部
金属層とから成る複合金属の加工材料を用意し、前記加
工材料を押出成型してベース本体を形成し、前記ベース
本体は上面に半導体ペレットをマウントすべきモリブデ
ン板がろう付けされた膨出部を有し、下面にベースを取
付板に取付けるべきねじスタッドを有する半導体装置用
スタッドベースの製造方法において、前記加工材料の上
面に前記膨出部を後方押出成型により形成する工程と、
前記膨出部の上面に前記下部金属層が露呈するように前
記膨出部の上面を切取る工程と、前記膨出部の下部金属
層の露呈面に前記モリブデン板をろう付けしエージング
する工程と、次いで前記加工材料の下面に前記ねじスタ
ッドを後方押出成型により形成する工程とを備えたこと
を特徴とする半導体装置用スタッドベースの製造方法。
1. A composite metal processing material consisting of a lower metal layer with good conductivity such as copper or zirconium copper and an upper metal layer with good weldability such as nickel or cypronic is prepared, and the processing material is extruded to form a base body. A method for manufacturing a stud base for a semiconductor device, wherein the base body has a bulge portion on the upper surface to which a molybdenum plate to which a semiconductor pellet is to be mounted is brazed, and a screw stud on the lower surface to which the base is to be attached to a mounting plate. forming the bulge on the upper surface of the processed material by backward extrusion molding;
a step of cutting off the upper surface of the bulge so that the lower metal layer is exposed on the upper surface of the bulge; and a step of brazing and aging the molybdenum plate on the exposed surface of the lower metal layer of the bulge. A method for manufacturing a stud base for a semiconductor device, comprising the steps of: and then forming the threaded stud on the lower surface of the processed material by backward extrusion molding.
JP11412778A 1978-09-19 1978-09-19 Manufacturing method of stud base for semiconductor device Expired JPS598066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11412778A JPS598066B2 (en) 1978-09-19 1978-09-19 Manufacturing method of stud base for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11412778A JPS598066B2 (en) 1978-09-19 1978-09-19 Manufacturing method of stud base for semiconductor device

Publications (2)

Publication Number Publication Date
JPS5541720A JPS5541720A (en) 1980-03-24
JPS598066B2 true JPS598066B2 (en) 1984-02-22

Family

ID=14629805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11412778A Expired JPS598066B2 (en) 1978-09-19 1978-09-19 Manufacturing method of stud base for semiconductor device

Country Status (1)

Country Link
JP (1) JPS598066B2 (en)

Also Published As

Publication number Publication date
JPS5541720A (en) 1980-03-24

Similar Documents

Publication Publication Date Title
GB1571173A (en) Stamped lead frame for semiconductor packages
US3197843A (en) Method of forming a mount for semiconductors
US3175893A (en) Laminate composite material and method of fabrication
JPS598066B2 (en) Manufacturing method of stud base for semiconductor device
US3893325A (en) Process for manufacturing a base for a semiconductor device
US4192063A (en) Method for manufacturing a base of a semi-conductor device
US3722080A (en) Method for producing the base of a semiconductor device
JPH0145228B2 (en)
JP2798478B2 (en) Connection conductor and method of manufacturing the same
US4124935A (en) Method for manufacturing a base of a pressure mount type semiconductor device
JP3317029B2 (en) Case processing method
JPS5812735B2 (en) Method of forming mounts for solid state rectifiers, etc.
JPH07142667A (en) Method of making dimple in semiconductor chip mount portion of lead frame
JPH0311719A (en) Manufacture of solid electrolytic capacitor
JPS609661B2 (en) Manufacturing method of semiconductor device
JPS604378Y2 (en) terminal
JPS597551B2 (en) Nut welding method
JPH0595077A (en) Semiconductor device
JPS62119946A (en) Manufacture of heat sink
JPS60189956A (en) Manufacture of lead frame for semiconductor device
JPS63120454A (en) Semiconductor device
JPH07297336A (en) Manufacture of lead frame
JPH04333267A (en) Manufacture of surface-mounting semiconductor device
JPH0323028A (en) Manufacture of aluminum part
DE2156412C3 (en) Method for producing a carrier for a semiconductor component