JPS5979178A - Reactor - Google Patents
ReactorInfo
- Publication number
- JPS5979178A JPS5979178A JP57187584A JP18758482A JPS5979178A JP S5979178 A JPS5979178 A JP S5979178A JP 57187584 A JP57187584 A JP 57187584A JP 18758482 A JP18758482 A JP 18758482A JP S5979178 A JPS5979178 A JP S5979178A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- reactor
- cycle
- region
- inner region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は原子力発眠所に於ける原子炉に係り、特に、原
子炉の炉心を構成する燃料集合体の装荷に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a nuclear reactor in a nuclear power plant, and more particularly to the loading of fuel assemblies constituting the core of a nuclear reactor.
原子炉は、炉心内に核分裂性物質である核燃料の余剰反
応度を、制御枠のそう人、引抜きによって制御して運転
するようになっており、各サイクル末期では、上記制御
棒は完全に引抜かれ、燃焼度は最大となる。Nuclear reactors are operated by controlling the excess reactivity of nuclear fuel, which is fissile material, in the reactor core by pulling out and pulling out the control frame, and at the end of each cycle, the control rods are completely pulled out. The burnup is maximized.
そして、原子炉の余剰反応度がなくなった時に燃料交換
を行ない、燃焼が進んだ古い燃料を炉心部から取出し、
新燃料を装荷するとともに、炉心内で燃料の位置交換等
を行なってきた。Then, when the reactor's excess reactivity is gone, the fuel is replaced, and the old, burnt-out fuel is removed from the reactor core.
In addition to loading new fuel, efforts have been made to replace the fuel position within the reactor core.
従来の原子炉において燃料交換は、燃焼度が高く、燃焼
が進んだ燃料を炉心から取出した後に、新しい燃料1を
第1図に示す例のように、一様に分散して装荷している
。In conventional nuclear reactors, fuel exchange is carried out by removing fuel that has a high burnup and progressed combustion from the core, and then loading new fuel 1 in a uniformly distributed manner, as shown in the example shown in Figure 1. .
筐た、従来の原子炉では、炉心からの中性子の洩れを少
なくして、燃料の有効利用を図るために出力の低い炉心
周辺部に低反応度燃料を配置することが考えられてきた
。In conventional nuclear reactors, it has been considered to place low-reactivity fuel in the periphery of the reactor core, where output is low, in order to reduce the leakage of neutrons from the reactor core and to utilize the fuel more effectively.
第2図はその一例で、低反応度燃料として燃焼が進み、
無限増倍率が低下した燃料を用いた場合を示す。図中、
2は2ザイクル目燃料、NはN−1サイクル目燃料、P
は周辺領域燃料を示す。この場合、原子炉炉心を内側領
域Aと周辺領域Bとに区分し、前記周辺領域は炉心部全
領域の体積のJO〜・20%を占めるようにし、内側領
域にN−1サイクル滞在しで、すでに燃焼が進み反応度
の低下した燃料集合体を、次のザイクル、′1″なわち
、Nサイクル目では、出力の低い周辺領域に配置するよ
うに燃料交換を行なっている。Figure 2 is an example of this, where combustion progresses as a low-reactivity fuel,
The case is shown in which a fuel with a reduced infinite multiplication factor is used. In the figure,
2 is the 2nd cycle fuel, N is the N-1st cycle fuel, P
indicates peripheral area fuel. In this case, the reactor core is divided into an inner region A and a peripheral region B, and the peripheral region occupies JO ~ 20% of the volume of the entire core region, and the reactor core is kept in the inner region for N-1 cycles. In the next cycle, '1'', that is, the N-th cycle, fuel exchange is performed so that the fuel assembly, in which combustion has already progressed and the reactivity has decreased, is placed in the peripheral area where the output is low.
このような燃料交換を用いた場合には、反応度の低−ト
した燃料集合体を周辺領域に配置しないで取出してし葦
う場合に比較して、燃料の炉内滞在期間が増大するため
に、燃料の取出し燃焼度は増太し、燃料の有効利用がで
きる。しかしながら、低反応度燃料を用いているために
、炉心全体の余剰反応度が低下し、運転サイクル期間は
短かくなっていた。When such a fuel exchange is used, the period of stay of the fuel in the reactor is increased compared to when the fuel assembly with low reactivity is removed without being placed in the surrounding area. In addition, the fuel extraction burnup is increased and fuel can be used more effectively. However, because low-reactivity fuel was used, the excess reactivity of the entire core was reduced, and the operating cycle period was shortened.
本発明は、運転ザイクルの長さを長くシ、燃料取出し燃
焼度を増大させ、燃料の有効利用を図った原子炉を提供
することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a nuclear reactor in which the length of the operation cycle is increased, the fuel extraction burnup is increased, and fuel is effectively utilized.
この目的を達成するために本発明は、燃焼の進んだ燃料
を炉心周辺部へ配置する場舒において、周辺領域の燃料
の無限増倍率を高くすることを利用したものである。In order to achieve this object, the present invention makes use of increasing the infinite multiplication factor of the fuel in the peripheral region when disposing the highly combusted fuel in the peripheral region of the reactor core.
第3図は、核分裂性物質の無限増倍率■ぐ閃と燃焼度の
関係を、館4図は、核分裂性物質の濃縮度との関係をそ
れぞれ示す。第3図及び第4図から、無限増倍率Kcy
3は燃焼が進むにつれて減少し、濃縮度が大きくなるに
伴って増大することが理解される。Figure 3 shows the relationship between the infinite multiplication factor of fissile material and the burnup, and Figure 4 shows the relationship between the degree of enrichment of the fissile material. From Figures 3 and 4, infinite multiplication factor Kcy
It is understood that 3 decreases as combustion progresses and increases as enrichment increases.
このため、炉心の周辺領域に配置される燃料としては、
炉心の内側領域から取出された燃料のうち、燃焼の比較
的若いもの、又は濃縮度の高いものを用いるほうが、無
限増倍率が高いので、運転リイクルを長くすることがで
きる。For this reason, the fuel placed in the peripheral area of the reactor core is
Of the fuel taken out from the inner region of the core, the use of fuel that is relatively young in combustion or fuel with a high degree of enrichment has a higher infinite multiplication factor, making it possible to lengthen the operating cycle.
以下、本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.
従来、平衡炉心の燃料集合体平均濃縮度は1種類であっ
たが、本発明ではこれを2種類以上としていることが重
機である。第5図に、実施例としで、取替燃料が2梅類
の場合の燃料装荷バクーンを示す。図中、1,2.3は
低a鰯度の新燃料、2ザイクル目燃料、3サイクル目燃
料を示し、11゜12.13は高濃縮度の新燃料、2ザ
イクル目燃相、3ザイクル目燃料を示せ。本例は m−
14y内側頭城の燃料面任期間を3サイクルとした例で
ある。Conventionally, the average enrichment of fuel assemblies in an equilibrium core has been one type, but in the present invention, this is set to two or more types for heavy equipment. FIG. 5 shows a fuel-loaded bagun as an example in which the replacement fuel is two types of fuel. In the figure, 1 and 2.3 indicate new fuel with low a sardine content, 2nd cycle fuel, and 3rd cycle fuel, and 11°12.13 indicates new fuel with high enrichment, 2nd cycle fuel phase, 3rd cycle fuel. Show me the fuel. In this example, m-
This is an example in which the fuel duty period for the 14-year Inner Head Castle is set to 3 cycles.
取替燃料痕絹度ケ、1、燃料集合体平均濃縮度がel。Replacement fuel trace density is 1, fuel assembly average enrichment is el.
C2(C7〉C2)と異っている。炉心内側領域に3ザ
イクルr()i任しで、取出された燃料のうち、約半数
は炉外に取出され、残りの約半数は110周辺領域に装
荷されるが、この周辺領域に装荷される燃料は、濃縮度
の高い燃料から構成されており、単一濃縮度の場合に比
べて炉心の反応度が上昇し、運転ブイクル期間を長くす
ることができる。It is different from C2 (C7>C2). Approximately half of the removed fuel is taken out of the reactor by leaving 3 cycles r()i in the core inner region, and the remaining half is loaded into the 110 peripheral region; The fuel is composed of highly enriched fuel, which increases the reactivity of the reactor core compared to the case of a single enrichment, making it possible to extend the operating cycle period.
前記の例では、取替燃料2種類の場合について説明した
が、濃縮度の種類υ」、2釉類以上あってもよい。In the above example, a case was explained in which there are two types of replacement fuel, but there may be two or more enrichment types υ and two or more glaze types.
また、濃縮度が複数の場合には、炉心周辺部に装荷する
燃料を、核分裂性物質含有量の多いもの又は、無限増倍
率の市いものから選び出してもよい。In addition, when there are multiple enrichments, the fuel to be loaded around the core may be selected from those with a high content of fissile material or commercial fuels with an infinite multiplication factor.
〔発明の効果〕
以上述ベア′しように、本発明に係る原子炉においては
、内側領域に装荷される取替燃料の濃縮度を複数とし、
この内側領域から取出された燃料のうち、ウラン痕縮度
の高い燃NS+、又は核分裂性物質含有量の高い燃料を
炉心周辺領域に装荷させることにより、同一量の核分裂
曲物f1量で、従来よりも運転ザーfクル期間ケ増大さ
せ、取出燃焼層を増大することができるので、ウラン等
の核分裂性物質を有効に利用できる効果がある。[Effects of the Invention] As described above, in the nuclear reactor according to the present invention, the replacement fuel loaded in the inner region has a plurality of enrichments,
Among the fuel taken out from this inner region, by loading fuel NS+ with a high degree of uranium scar reduction or fuel with a high content of fissile material into the region around the core, the same amount of fission bending material f1 can be used as compared to the conventional method. Since it is possible to increase the operating period and the extraction combustion layer, it is possible to effectively utilize fissile materials such as uranium.
りλ1図は原子炉1/4横断面図、第2図は原子炉1/
4横断面図、第3図は燃焼度と無限増倍率の相関図、第
4図は濃縮度と無限増倍率の相関図、’A”y 5図は
原子炉1/4横断面図を示す。
1(11)・・・低濃縮度(高濃縮度)新燃料、2(1
2)・・・低濃縮度(高濃縮度)2サイクル目燃料、3
(13)・・・低濃縮度(高濃縮度)3サイクル目燃料
、P・・・周辺領域燃料。
$1 目
茅20
〒1U′
茅3 図
撚’i浸
茅4z
濃陥度Figure 1 is a 1/4 cross-sectional view of the reactor, and Figure 2 is a 1/4 cross-sectional view of the reactor.
Figure 4 is a cross-sectional view, Figure 3 is a correlation diagram between burnup and infinite multiplication factor, Figure 4 is a correlation diagram between enrichment level and infinite multiplication factor, 'A''y Figure 5 is a quarter cross-sectional view of the reactor. 1 (11)...Low enrichment (high enrichment) new fuel, 2 (1
2)...Low enrichment (high enrichment) 2nd cycle fuel, 3
(13)...Low enrichment (high enrichment) third cycle fuel, P...peripheral area fuel. $1 Eyebrush 20 〒1U' Bamboo 3 Figure twist'i Immersed Bamboo 4z Concentration degree
Claims (1)
域にはNす・rクル目の燃料を配置h″し、前記内側領
域には、rq−iナイクル以下の燃料を配置したlい子
炉におい−C1谷−リイクルそれぞれにおいてNiJ記
内側内側領域料集合体平均ウラン濃縮度の異なる2種類
以上の燃料集合体から構成され、前記周辺′011域は
、前サイクルにおいてmJ ff己円内側領域あったも
ののうり、ウラン濃縮度の高い燃料集合体から構成され
ることを特徴とする原子炉。 2、炉心を内側領域と周辺領域に区分し、前記周辺領域
にはへサイクル目の燃料を配fRL、前記内側領域にV
よ、〜−■サイクル以下の燃料を配置した原子炉におい
て、各す・fクルそれぞれにおいて前8C内側領域は燃
料集合体平均の核分裂性物質の含有量の異なる2 BL
類以上の燃料集合体から構成され、前記周辺領域は、前
サイクルにおいて前記内側領域にあったもののうち核分
裂性物質含有量の高い燃料集合体から構成されることを
特徴とする原子炉。[Scope of Claims] (1) The furnace nozzle is divided into an inner region and a peripheral region, Nth and rth fuels are arranged in the peripheral region, and rq-i fuels are arranged in the inner region. In the small sub-reactor in which the following fuels are arranged: A nuclear reactor characterized in that it is composed of fuel assemblies with a high uranium enrichment, although there was an inner region in the mJ ff self-circle in the previous cycle. 2. The reactor core is divided into an inner region and a peripheral region, and the peripheral region Distribute the fuel of the cycle to fRL, and V to the inner area.
In a nuclear reactor in which fuel is arranged for ~-■ cycles or less, the inner region of the front 8C in each S and F cycle has a different content of fissile material on average for the fuel assembly.2 BL
A nuclear reactor comprising fuel assemblies of the same type or higher, and wherein the peripheral region is comprised of fuel assemblies with a high content of fissile material among those in the inner region in a previous cycle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57187584A JPS5979178A (en) | 1982-10-27 | 1982-10-27 | Reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57187584A JPS5979178A (en) | 1982-10-27 | 1982-10-27 | Reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5979178A true JPS5979178A (en) | 1984-05-08 |
Family
ID=16208659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57187584A Pending JPS5979178A (en) | 1982-10-27 | 1982-10-27 | Reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5979178A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8613728B2 (en) | 2005-11-07 | 2013-12-24 | Flexicath Ltd. | Removable adapter for a splittable introducer and method of use thereof |
-
1982
- 1982-10-27 JP JP57187584A patent/JPS5979178A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8613728B2 (en) | 2005-11-07 | 2013-12-24 | Flexicath Ltd. | Removable adapter for a splittable introducer and method of use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5979178A (en) | Reactor | |
JP2742441B2 (en) | Fast breeder reactor core | |
JP3079609B2 (en) | Fuel assembly | |
JPS5928691A (en) | Fuel assembly | |
JPS6013283A (en) | Boiling water reactor | |
JPS60205283A (en) | Fast breeder reactor | |
JPS6361990A (en) | Fuel aggregate | |
JPS6263887A (en) | Fast breeder reactor | |
JP2625404B2 (en) | Fuel assembly | |
JPS61262685A (en) | Fuel aggregate | |
JPS63153494A (en) | Output sharing control core | |
Tillett Jr et al. | Clinch River breeder reactor breeding characteristics | |
JPS5821191A (en) | Fast breeder | |
JPS58131588A (en) | Boiling-water reactor | |
Anderson | Extended cycle length economics | |
JPH0990074A (en) | Reactor core and fuel assembly | |
JPS6232386A (en) | Fuel aggregate for light water reactor | |
JPS6264985A (en) | Control rod aggregate | |
JPH01193693A (en) | Controlling of nuclear reactor | |
JPS5913982A (en) | Reactor core structure | |
JPS60222791A (en) | Nuclear reactor | |
JPS6230993A (en) | Method of operating boiling water type reactor | |
JPS61264291A (en) | Fuel aggregate | |
JPS5895286A (en) | Fuel assembly | |
Oullion et al. | ECCS criteria consequences for the Framatome nuclear power plants |