JPS5979137A - Detection for disconnection of optical fiber - Google Patents
Detection for disconnection of optical fiberInfo
- Publication number
- JPS5979137A JPS5979137A JP57190091A JP19009182A JPS5979137A JP S5979137 A JPS5979137 A JP S5979137A JP 57190091 A JP57190091 A JP 57190091A JP 19009182 A JP19009182 A JP 19009182A JP S5979137 A JPS5979137 A JP S5979137A
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical fiber
- cladding layer
- refractive index
- clad layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/31—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、光ファイバの破断を光入射側から検出する光
ファイバの断線検出方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber breakage detection method for detecting a breakage of an optical fiber from the light incident side.
一般に、光伝送系に使用される光ファイバは、光入射側
及び受光側間に介装されており、光ファイバの使用中に
破断等の障害が発生した場合には光の伝播が遮断若しく
は大幅に減衰されて受光側の出力に異常を来たすので、
これにより光ファイバの破断を検知することが可能であ
るが、これを光入射側で検知することはできず、したが
って、従来は別途回線を利用して光入射側に断線発生の
信号を伝達する以外に方法がなかった。Generally, optical fibers used in optical transmission systems are interposed between the light input side and the light receiving side, and if a failure such as breakage occurs during use of the optical fiber, the propagation of light may be interrupted or significantly interrupted. The light is attenuated and causes an abnormality in the output on the receiving side.
This makes it possible to detect a break in the optical fiber, but this cannot be detected on the light input side, so conventionally a separate line was used to transmit a signal indicating the occurrence of a break to the light input side. There was no other way.
ところで、光ファイバの断線が検出されてからその破断
点を検出する方法としては、光入射側の光ファイバ端を
レーザパルス発振器等の光パルス発生回路に接続し、光
フアイバ内に光パルス信号を入射し、これが破断点で反
射されて反射パルスが得られる迄の遅延時間を計測する
ことによってその破断位置を検出するパルス反射法、ま
た同様に光フアイバ内に光パルス信号を入射し、光ファ
イバの長手方向の各点より反射される後方散乱光を時間
軸上で観測してその減衰曲線から破断点を検出する後方
散乱損失測定法等が種々提案されている。By the way, as a method to detect the break point after a break in the optical fiber is detected, the end of the optical fiber on the light input side is connected to an optical pulse generation circuit such as a laser pulse oscillator, and an optical pulse signal is transmitted into the optical fiber. The pulse reflection method detects the break position by measuring the delay time until it is reflected at the break point and a reflected pulse is obtained. Various backscatter loss measurement methods have been proposed in which the backscattered light reflected from each point in the longitudinal direction of the beam is observed on the time axis and the breaking point is detected from the attenuation curve.
しかし、これらの検出方法はあくまで光ファイバに破断
が生じたことが判明した後にその破断点の位置を検出す
るものであり、断線の発生自体を検出するものではない
。However, these detection methods only detect the position of the break point after it is determined that a break has occurred in the optical fiber, and do not detect the occurrence of the break itself.
したがって、上述の如き従来技術によっては、例えばレ
ーザメス等に使用される医療用光ファイバのように受光
系を有さざる光伝送系に於ける使用中の断線発生を自動
的に検出することができず、検出するためには光伝送回
路を測定用光パルス発生回路に切換えなければならない
という面倒があり、光ファイバの断線発生を常時監視す
ることは不可能であった。Therefore, with the above-mentioned conventional technology, it is possible to automatically detect the occurrence of a disconnection during use in an optical transmission system that does not have a light receiving system, such as a medical optical fiber used in a laser scalpel. First, in order to detect a break, it is necessary to switch the optical transmission circuit to a measurement optical pulse generation circuit, which is a hassle, and it is impossible to constantly monitor the occurrence of a break in the optical fiber.
そこで本発明は、光フアイバ使用中に於ける断線発生を
常時監視し、例え受光系を有さざる光伝送系にあっても
、断線の発生を光入射側で即座に検知し得る新規な光フ
ァイバの断線検出方法を提供することを目的とする。Therefore, the present invention has developed a new optical fiber that constantly monitors the occurrence of disconnection while using the optical fiber, and can immediately detect the occurrence of disconnection on the light input side, even in an optical transmission system that does not have a light receiving system. The purpose of this invention is to provide a method for detecting fiber breakage.
]−記目的を達成するために本発明は、コアにこれより
も屈折率の低い第1クラッド層を被覆し、該第1クラッ
ド層にこれよりも更に屈折率の低い第2クラッド層を被
覆してなる光ファイバを光伝送路として使用し、該光コ
アイノ(の破断時にその破断点で反射される散乱光を前
記第1クラッド層と第2クラッド層との境界面で反射さ
せながら光入射側に伝播させ、その伝播された光を光入
射側から検知することにより、光ファイバの断線発生を
検出するようにしたものである。] - In order to achieve the above object, the present invention covers the core with a first cladding layer having a lower refractive index than this, and coats the first cladding layer with a second cladding layer having an even lower refractive index than this. An optical fiber made of an optical core is used as an optical transmission line, and when the optical core is broken, the scattered light reflected at the breaking point is reflected at the interface between the first cladding layer and the second cladding layer, and light is incident. The occurrence of a break in the optical fiber is detected by transmitting the light to the side and detecting the propagated light from the light incident side.
以下、本発明を図面に示す実施例に基づいて説明する。Hereinafter, the present invention will be explained based on embodiments shown in the drawings.
第1図Aは本発明方法に適用し得る光ファイバ1の一例
を示す正面図、同図Bはその断面図である。FIG. 1A is a front view showing an example of an optical fiber 1 applicable to the method of the present invention, and FIG. 1B is a sectional view thereof.
図中、2は屈折率ηlの中心コア、6は中心コアの外周
に同心的に被覆された屈折率η2の第1クラッド層、4
は第1クラッド層の外周に同心的に被覆された屈折率η
3の第2クラッド層、5は更にその第2クラッド層の外
周に同心的に被覆された合成樹脂材等からなる保護被覆
層であって、これら中心コア2、第1クラッド層6及び
第2クラッド層4のそれぞれの屈折率η1.η2及びη
3は、η1〉η2〉η3に選定され、第1クラッド層は
光ファイバ1の破断時に発生する後方散乱光に対して第
2のコアとなる。In the figure, 2 is a central core with a refractive index ηl, 6 is a first cladding layer with a refractive index η2 concentrically coated around the outer periphery of the central core, and 4
is the refractive index η coated concentrically around the first cladding layer
3 is a second cladding layer, and 5 is a protective coating layer made of a synthetic resin material etc. that is concentrically coated on the outer periphery of the second cladding layer. The refractive index η1 of each of the cladding layers 4. η2 and η
3 is selected such that η1>η2>η3, and the first cladding layer serves as a second core for backscattered light generated when the optical fiber 1 is broken.
次に、上記光ファイバ1な使用した光伝送系の一例を第
2図により説明する。Next, an example of an optical transmission system using the optical fiber 1 will be explained with reference to FIG.
6はレーザ発振器等の発光源、7は集光レンズであって
、発光源6からの光信号が集光レンズ7によって集光さ
れて光ファイバ1の中心コア2内に入射される。6 is a light emitting source such as a laser oscillator, and 7 is a condensing lens. An optical signal from the light emitting source 6 is condensed by the condensing lens 7 and input into the central core 2 of the optical fiber 1.
8は光ファイバ1の光入射端面近傍に於ける第2クラッ
ド層4及び保護被覆層5を一部険去して形成された切欠
部9に配設されたフォトダイオード等の光検出器であっ
て、この光検出器8からの検出出力が例えば発光源6に
供給されて発光源6からの光信号発生を停止させる。Reference numeral 8 denotes a photodetector such as a photodiode, which is disposed in a notch 9 formed by partially removing the second cladding layer 4 and the protective coating layer 5 near the light incident end face of the optical fiber 1. Then, the detection output from the photodetector 8 is supplied to, for example, the light emitting source 6, and the generation of the optical signal from the light emitting source 6 is stopped.
以上のように構成された光伝送系に於いて、常時は発光
源6からの光信号が光ファイバ1の中心コア2内に入射
され、該コア内を破線図示のようにコアと第1クラッド
層6との境界面で全反射されながら光出射側に伝播され
、したがって光検出器8には光が照射されず、検出出力
は得られない。In the optical transmission system configured as described above, an optical signal from the light emitting source 6 is normally input into the central core 2 of the optical fiber 1, and the core and first cladding are connected within the core as shown by the broken line. The light is propagated to the light output side while being totally reflected at the interface with the layer 6, so that the light is not irradiated onto the photodetector 8 and no detection output is obtained.
ところが、送信中に第2図に示すように光ファイバ1が
途中で破断すると、中心コア2内を光出射側に伝播して
いた光がその破断点10でフレネル反射され、散乱光と
なって通常の光信号より高次のモードの光となる。However, if the optical fiber 1 breaks midway during transmission as shown in FIG. 2, the light that was propagating within the central core 2 toward the light output side is Fresnel-reflected at the break point 10 and becomes scattered light. The light is in a higher order mode than a normal optical signal.
これにより、屈折率η2の第1クラッド層6が前記散乱
光に対して第2のコアとなり、散乱光は第2図及び第3
図に示すように第1クラッド層6内を該クラッド層と第
2クラッド層4との境界面で反射されながら光入射側に
伝播される。As a result, the first cladding layer 6 with a refractive index η2 becomes a second core for the scattered light, and the scattered light is transmitted as shown in FIGS.
As shown in the figure, the light is propagated within the first cladding layer 6 toward the light incident side while being reflected at the interface between the cladding layer and the second cladding layer 4.
そして、その伝播された光が光入射端面近傍に達すると
、切欠部9位置に於いて第2クラッド層4が除去されて
いるから、その切欠部9から外部に放射され、これが光
検出器8によ゛つて検知されて光ファイバ1の断線発生
が検出されることとなり、更に光検出器8の検出出力に
よって発光源乙の光信号発生が停止される。When the propagated light reaches the vicinity of the light incident end face, since the second cladding layer 4 has been removed at the position of the notch 9, it is radiated to the outside from the notch 9, and is emitted to the photodetector 8. Accordingly, the occurrence of a break in the optical fiber 1 is detected, and furthermore, the generation of an optical signal from the light emitting source B is stopped based on the detection output of the photodetector 8.
なお、本例では光検出器8の出力によって発光源6の発
光を停止させる場合について説明したが、これに代えて
警報を発生させるようにしても良い。In this example, a case has been described in which the light emission of the light source 6 is stopped by the output of the photodetector 8, but instead of this, an alarm may be generated.
以上のように本発明によれば、光ファイバの破断点で生
じる後方散乱光をクラッド層を通じて光入射側に伝播さ
せ、これを光検出器で検知することにより光ファイバの
断線発生を検出することができるから、光フアイバ内に
信号光を伝播させながらしかもその信号光に何ら障害を
与えることなく、使用中の光ファイバの断線発生を光入
射側から常時監視することができるという優れた効果を
有する。As described above, according to the present invention, the backscattered light generated at the break point of the optical fiber is propagated through the cladding layer to the light incident side, and the occurrence of a break in the optical fiber is detected by detecting this with a photodetector. Because of this, it has the excellent effect of allowing signal light to propagate within the optical fiber without causing any damage to the signal light, and constantly monitoring the occurrence of breakage in the optical fiber in use from the light input side. have
また、光検出器の検出出力によって発光源の発光を即座
に停止させることが可能となり、したがって殊に医療用
器具として使用されるレーザメスの如く手術中に光ファ
イバが破断してその破断点から散乱するレーザ光によっ
て健康な生体に損傷を与えるという危惧も解消源れ、手
術を安全に行なうことができる。In addition, the detection output of the photodetector makes it possible to immediately stop the emission of light from the light source, and therefore, it is possible to immediately stop the light emission from the light source, and therefore, it is possible to use a laser scalpel used as a medical instrument, in particular, when an optical fiber is broken during surgery and the light is scattered from the broken point. The fear that the laser beam may damage healthy living organisms is also eliminated, and surgery can be performed safely.
更に、本発明の場合には光フアイバ内又はそのコネクタ
等に光漏洩検知用の特殊な部材を配設する必要もないの
で光フアイバ径を極めて細くすることができ、しかも受
光系を有さざる光伝送系にあっても断線検出ができるか
ら、特に手術に使用する医療用レーザメスを始めとする
各種の医療用光フアイバ製品に適用して大変有用性の高
いものである。Furthermore, in the case of the present invention, there is no need to provide a special member for detecting light leakage within the optical fiber or its connector, so the diameter of the optical fiber can be made extremely thin, and there is no need for a light receiving system. Since disconnection can be detected even in optical transmission systems, it is extremely useful for application to various medical optical fiber products, including medical laser scalpels used in surgeries.
勿論、本発明方法は上記に限らず、他の任意の光伝送系
に適用し得ることは云うまでもない。It goes without saying that the method of the present invention is not limited to the above, but can be applied to any other optical transmission system.
第1図A及びBは本発明方法に適用し得る光ファイバの
一例を示す正面図及び断面図、第2図は本発明方法の説
明図、第3図は光フアイバ破断時にその破断点で反射ど
れる散乱光の伝播状態を示す光ファイバの縦断面図であ
る。
符号の説明
1・・・光ファイバ、2・・・中心コア、6・・・第1
クラッド層、4・・・第2クラッド層、6・・・発光源
、7・・・集光レンズ、8・・・光検出器、9・・切欠
部、10・・・破断点。
特許出願人 工業技術院長
同 上 第一電工株式会社Figures 1A and B are a front view and a cross-sectional view showing an example of an optical fiber that can be applied to the method of the present invention, Figure 2 is an explanatory diagram of the method of the present invention, and Figure 3 is a reflection at the breaking point when the optical fiber is broken. FIG. 2 is a longitudinal cross-sectional view of an optical fiber showing the propagation state of scattered light. Explanation of symbols 1... Optical fiber, 2... Central core, 6... First
Cladding layer, 4... Second cladding layer, 6... Light emitting source, 7... Condensing lens, 8... Photodetector, 9... Notch, 10... Breaking point. Patent applicant: Director of the Agency of Industrial Science and Technology (1) Daiichi Denko Co., Ltd.
Claims (1)
、該第1クラッド層にこれよりも更に屈折率の低い第2
クラッド層?被覆してなる光ファイバを光伝送路として
使用し、該光ファイバの破断時にその破断点で反射され
る散乱光を前記第1クラッド層と第2クラッド層との境
界面で反射させながら光入射側に伝播させ、その伝播さ
れた光を光入射側から検知することにより、光ファイバ
の断線発生を検出するようにしたことを特徴とする光フ
ァイバの断線検出方法。A first cladding layer having a lower refractive index than this is coated on the fiber, and a second cladding layer having a lower refractive index than this is coated on the first cladding layer.
Clad layer? A coated optical fiber is used as an optical transmission line, and when the optical fiber is broken, light is incident while the scattered light reflected at the break point is reflected at the interface between the first cladding layer and the second cladding layer. 1. A method for detecting a break in an optical fiber, characterized in that the occurrence of a break in an optical fiber is detected by propagating the light to the side and detecting the propagated light from the light incident side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57190091A JPS5979137A (en) | 1982-10-28 | 1982-10-28 | Detection for disconnection of optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57190091A JPS5979137A (en) | 1982-10-28 | 1982-10-28 | Detection for disconnection of optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5979137A true JPS5979137A (en) | 1984-05-08 |
JPH0151136B2 JPH0151136B2 (en) | 1989-11-01 |
Family
ID=16252212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57190091A Granted JPS5979137A (en) | 1982-10-28 | 1982-10-28 | Detection for disconnection of optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5979137A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0320108A2 (en) * | 1987-12-09 | 1989-06-14 | Fuller Research Corporation | Optical fiber break detector |
KR20050071967A (en) * | 2004-01-05 | 2005-07-08 | 삼성전자주식회사 | Optical transmitter of bidirectional optical module and method for fabricating the same |
KR100576152B1 (en) | 2004-01-16 | 2006-05-03 | 주식회사 골드텔 | Optical signal detector |
KR100616549B1 (en) | 2004-01-16 | 2006-08-28 | 주식회사 골드텔 | Optical cable for Optical signal detection and method manufacturing it |
KR100651238B1 (en) | 2005-04-27 | 2006-11-30 | 주식회사 골드텔 | Optical signal detector |
WO2011122566A1 (en) * | 2010-03-30 | 2011-10-06 | 株式会社フジクラ | Light intensity monitoring circuit and fiber laser system |
DE102011009996A1 (en) * | 2011-02-01 | 2012-08-02 | Roland Berger | Method for break monitoring of optical waveguide between locations for transferring laser light, involves coupling test light into cladding of waveguide at location, and decoupling test light from cladding at another location |
JP2019174256A (en) * | 2018-03-28 | 2019-10-10 | 古河電気工業株式会社 | Optical fiber break detection system and optical fiber break detection method |
-
1982
- 1982-10-28 JP JP57190091A patent/JPS5979137A/en active Granted
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0320108A2 (en) * | 1987-12-09 | 1989-06-14 | Fuller Research Corporation | Optical fiber break detector |
KR20050071967A (en) * | 2004-01-05 | 2005-07-08 | 삼성전자주식회사 | Optical transmitter of bidirectional optical module and method for fabricating the same |
KR100576152B1 (en) | 2004-01-16 | 2006-05-03 | 주식회사 골드텔 | Optical signal detector |
KR100616549B1 (en) | 2004-01-16 | 2006-08-28 | 주식회사 골드텔 | Optical cable for Optical signal detection and method manufacturing it |
KR100651238B1 (en) | 2005-04-27 | 2006-11-30 | 주식회사 골드텔 | Optical signal detector |
WO2011122566A1 (en) * | 2010-03-30 | 2011-10-06 | 株式会社フジクラ | Light intensity monitoring circuit and fiber laser system |
JP5276749B2 (en) * | 2010-03-30 | 2013-08-28 | 株式会社フジクラ | Light intensity monitor circuit and fiber laser system |
US9234792B2 (en) | 2010-03-30 | 2016-01-12 | Fujikura Ltd. | Light intensity monitor capable of detecting light intensity and fiber breaking |
DE102011009996A1 (en) * | 2011-02-01 | 2012-08-02 | Roland Berger | Method for break monitoring of optical waveguide between locations for transferring laser light, involves coupling test light into cladding of waveguide at location, and decoupling test light from cladding at another location |
DE102011009996B4 (en) * | 2011-02-01 | 2016-11-03 | Roland Berger | Fiber breakage monitoring for an optical fiber |
JP2019174256A (en) * | 2018-03-28 | 2019-10-10 | 古河電気工業株式会社 | Optical fiber break detection system and optical fiber break detection method |
Also Published As
Publication number | Publication date |
---|---|
JPH0151136B2 (en) | 1989-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6580995B2 (en) | Low mode high power fiber coupler | |
JP5276749B2 (en) | Light intensity monitor circuit and fiber laser system | |
US7146073B2 (en) | Fiber delivery system with enhanced passive fiber protection and active monitoring | |
JP4347688B2 (en) | Fiber optic equipment | |
US4623788A (en) | Fiber optic system with self test used in fire detection | |
JP2018180449A (en) | Optical power monitor device and laser device | |
US20210177516A1 (en) | Optical probe, medical laser probe, and cauterization device | |
JPH0551298B2 (en) | ||
JPS5979137A (en) | Detection for disconnection of optical fiber | |
EP3934031B1 (en) | Laser device | |
EP3812719B1 (en) | Photodetection device and laser device | |
EP0766082B1 (en) | A method and system for detecting dirt on optical fibres | |
JPS6259918B2 (en) | ||
JPS62184332A (en) | Tapered waveguide type liquid detector | |
JPH02181708A (en) | Two core type temperature detecting optical fiber | |
KR100232635B1 (en) | Optical fiber failure detection device for laser transmission | |
JPS5968641A (en) | Detection for damage of fiber for energy transmission | |
JP2511999B2 (en) | Liquid detection optical fiber and liquid detection system using the same | |
JPWO2020175609A1 (en) | Laser device | |
CN116097068A (en) | Object detection device | |
JPS61208013A (en) | Optical fiber | |
JPH1183671A (en) | Otdr device | |
JPS6060531A (en) | Detection system for breaking of fiber for power transmission |