JPS5978578A - Manufacture of diaphragm - Google Patents
Manufacture of diaphragmInfo
- Publication number
- JPS5978578A JPS5978578A JP18747182A JP18747182A JPS5978578A JP S5978578 A JPS5978578 A JP S5978578A JP 18747182 A JP18747182 A JP 18747182A JP 18747182 A JP18747182 A JP 18747182A JP S5978578 A JPS5978578 A JP S5978578A
- Authority
- JP
- Japan
- Prior art keywords
- diaphragm
- grinding
- round hole
- single crystal
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000013078 crystal Substances 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 18
- 238000005530 etching Methods 0.000 claims description 16
- 230000002093 peripheral effect Effects 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 2
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 abstract 1
- 239000004575 stone Substances 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 6
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical group C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000009530 blood pressure measurement Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007730 finishing process Methods 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 241000257465 Echinoidea Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/84—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0042—Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Pressure Sensors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、半導体圧力センサのダイヤフラム製造方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a diaphragm for a semiconductor pressure sensor.
し発明の技術的背景とその問題点コ
従来よシ圧力変換器に用いられる半導体圧力センサば、
第1図に示すように、円板状の7リコン単結晶基板(1
)の一方の主面にS i 3N4層(2)を円環状に被
着させる吉吉もに、他方の主面に拡散抵抗層(4)を拡
散形成したのち、円環状の円周部分のみを残し、8i3
N4層(2)が欠除している中央部のみをフッ硝酸から
なるエツチング液でエツチング加工して凹部(5)を形
成することにより得られたダイヤプラム(6)を用いて
いる。Technical background of the invention and its problems Conventionally, semiconductor pressure sensors used in pressure transducers include:
As shown in Figure 1, a disk-shaped 7 Licon single crystal substrate (1
), the Si 3N4 layer (2) is deposited in an annular shape on one main surface, and after the diffusion resistance layer (4) is formed on the other main surface, only the circumferential part of the annular shape is deposited. leaving 8i3
A diaphragm (6) obtained by etching only the central portion where the N4 layer (2) is missing with an etching solution made of hydrofluoric nitric acid to form a recess (5) is used.
しかるに、上記エツチング液による凹部(5)のエツチ
ング加工には、以下の問題点があった。However, the etching of the recesses (5) using the etching solution described above has the following problems.
(イ) エツチング加工による場合、513N4層とソ
リコン単結晶基板とのエツチング速度との差を用いて凹
部を形成するので、凹部(5)の除去深さは300μm
程度が限度である。(b) In the case of etching, the recess is formed using the difference in etching speed between the 513N4 layer and the solicon single crystal substrate, so the removal depth of the recess (5) is 300 μm.
The extent is the limit.
(ロ) エツチング加工による場合、深さのばらつきが
太きいのみならず、四部(5)の内壁部と底面との交差
部分が丸みを帯びてしまい、圧力センサの特性が低下す
る。(b) When etching is used, not only is there a large variation in depth, but the intersection between the inner wall of the fourth part (5) and the bottom surface becomes rounded, which deteriorates the characteristics of the pressure sensor.
C→ 上記(イ)の理由により、凹部(5)を深く加工
できないので、ダイヤフラム(6)に台座をガラスなど
で接着したときに発生する熱歪によυ拡散抵抗層が影響
を受け、圧力センサの特性低下や歩留低下を惹起する。C→ Due to the reason (a) above, it is not possible to machine the recess (5) deeply, so the υ diffusion resistance layer is affected by the thermal strain that occurs when the pedestal is bonded to the diaphragm (6) with glass, etc., and the pressure increases. This causes deterioration of sensor characteristics and yield.
に)圧力測定は、ダイヤプラム(6ンの両面にかかる圧
力p、 、P2の差圧を拡散抵抗層(4)の歪変化によ
り電気量に変換することにより行っている。2) Pressure measurement is performed by converting the differential pressure between the pressures p, , and P2 applied to both sides of the diaphragm (6) into an electrical quantity by changing the strain of the diffusion resistance layer (4).
ところで本来、半導体圧ノコセンサからは、差圧(Pl
−、P2)に直線的に比例した電圧を有する信号が出力
されるのが理想的であるが、実際には、差圧(Pl−P
2)と出力電圧とには完全な直線的比例関係はなく非直
線的となる。このような半導体圧力センサの感度の非直
線性△lは、差圧の正負により対称釣上なるのが好まし
いが、ダイヤフラム(6)が平坦な場合には、上記感度
の非直線性△lは、第2図の曲線(7)のように非対称
的となる。これは、差圧(Pl−P2)が正のときと、
負のときとで、ダイヤプラム(6)のたわみ量がわずか
に異なることにより生じる。このような感度の非直線性
へlの差圧の正負による非対称性は、低圧測定及びダイ
ヤフラムが逆方向に変形する圧力測定の際の測定精度低
下の一因となるので、対称となるようにせねばならない
。そこで、従来においては、エツチング加工によりダイ
ヤスラム(6)の中央部にふくらみを形成するととによ
り上記問題を解決していた。By the way, originally, a semiconductor pressure saw sensor uses differential pressure (Pl
Ideally, a signal having a voltage linearly proportional to the differential pressure (Pl-P2) would be output.
2) and the output voltage do not have a completely linear proportional relationship, but are non-linear. It is preferable that the sensitivity non-linearity Δl of such a semiconductor pressure sensor is symmetrically balanced depending on the positive and negative differential pressure, but if the diaphragm (6) is flat, the sensitivity non-linearity Δl is , becomes asymmetrical as shown in curve (7) in FIG. This is when the differential pressure (Pl-P2) is positive and
This occurs because the amount of deflection of the diaphragm (6) differs slightly between the negative and negative times. This nonlinearity of sensitivity and the asymmetry caused by the positive and negative differential pressures of l contribute to a decrease in measurement accuracy during low pressure measurements and pressure measurements where the diaphragm deforms in opposite directions, so it is necessary to make it symmetrical. Must be. Conventionally, the above problem was solved by forming a bulge in the center of the diamond slum (6) by etching.
ところが、エツチング加工では上記ふくらみを十分な加
工精度上再現性をもって形成するときけ困難であシ、信
頼性の高いダイヤフラムを得ることができなかった。However, in the etching process, it is difficult to form the above-mentioned bulge with sufficient processing precision and reproducibility, and a highly reliable diaphragm cannot be obtained.
U発明の目的コ
本発明は、上記事情を参酌してなされたもので半導体圧
力センサ用のダイヤフラム形成のだめの加工を高精度か
つ高能率で行うと吉もに、差圧の正負において非直線性
が対称となる高性能かつ高信頼性の半導体圧力センサを
得ることのできるダイヤプラム製造方法を提供すること
を目的とする。UObject of the Invention The present invention has been made in consideration of the above-mentioned circumstances, and aims to process the diaphragm formation cap for semiconductor pressure sensors with high precision and high efficiency. An object of the present invention is to provide a method for manufacturing a diaphragm that can obtain a high-performance and highly reliable semiconductor pressure sensor with symmetrical characteristics.
[発明の概要]
シリコン単結晶基板に対して研削砥石を遊星運動させる
際、上記研削砥石の自転軸を公転軸に対してわずかに傾
かせて研削加工し、ダイヤフラムの中央部に周辺部に対
してふくらみを有するように凹部を形成したのち、この
凹部内面のみをエツチング加工するようにしたものであ
る。[Summary of the Invention] When a grinding wheel is caused to move planetarily with respect to a silicon single crystal substrate, the rotation axis of the grinding wheel is slightly tilted with respect to the revolution axis, and the grinding process is performed so that the central part of the diaphragm is ground relative to the peripheral part. After the recess is formed to have a bulge, only the inner surface of the recess is etched.
[発明の実施例]
以下、本発明を回置を参照して、実施例に基づいて詳述
する。[Embodiments of the Invention] Hereinafter, the present invention will be described in detail based on Examples with reference to the present invention.
第3図は、本実施例において用いられる研削装置の要部
を示すもので、第4図に示すカップ形砥石(8)は、自
転用スピンドル(9)に同軸に固定されている。上記自
転用スピンドル(9)は、偏心軸受(1Qにより軸支さ
れている。この偏心軸受OQは、介挿体旧)を介して円
柱状の支持体04に取付けられている。FIG. 3 shows the main parts of the grinding device used in this embodiment, and the cup-shaped grindstone (8) shown in FIG. 4 is coaxially fixed to a rotating spindle (9). The rotation spindle (9) is supported by an eccentric bearing (1Q). This eccentric bearing OQ is attached to a cylindrical support 04 via an insert.
この支持体021の外周面には1図示せぬ環装体が装着
され、高圧空気源から供給された高圧空気を偏心軸受0
0)内に設けられているエア・タービン機構に導入して
、自転用スピンドル(9)を高速回転させるようになっ
ている。さらに、支4持休α2は図示せぬ軸受に軸支さ
れた公転用スピンドル(13)に同軸に固定されている
。この公転用スピンドル(+3)は、図示せぬ電動機に
より回転駆動されるようになっている。上記自転用スピ
ンドル(9)の軸線(14)は、公転用スピンドル0階
の軸線aツに対して角度θ(好ましくは、005〜0.
;つ度)傾斜するようになっている。A ring body (not shown) is attached to the outer circumferential surface of the support body 021, and high pressure air supplied from a high pressure air source is supplied to the eccentric bearing 021.
0) to rotate the autorotation spindle (9) at high speed. Further, the support 4 support α2 is coaxially fixed to a revolution spindle (13) which is supported by a bearing (not shown). This revolution spindle (+3) is driven to rotate by an electric motor (not shown). The axis (14) of the rotation spindle (9) is at an angle θ (preferably 005 to 0.
; degree) is inclined.
すなわち、軸線(1aの一端は軸線α榎のカップ形砥石
(8)側の交へ06)において交差し、他端は支持体α
功の下端面上において、軸線−からe。だけ偏心した位
置と交差するようになっている。したがって、軸線α乃
は公転用スピンドル0階の回転にともない交点aOを頂
点とする円錐を形成するようになっている。That is, the axis (one end of 1a intersects with the axis α on the cup-shaped grindstone (8) side 06), and the other end intersects with the support α
On the lower end surface of the gong, from the axis - to e. It intersects with the eccentric position. Therefore, the axis αno forms a cone with the intersection point aO as the apex as the revolution spindle rotates at the 0th floor.
なお、図示せぬが、本実施例の研削装置には、円板状の
シリコン・ウニ・・である被加工物aのを、この被加工
物07)の主面が公転用スピンドル(+、3)の軸線0
9吉直交するように、保持固定する保持装置が設けられ
ている。また、カップ形砥石(8)は、図示せぬ送りテ
ーブルにより公転用スピンドル031の軸線0!19に
沿って昇降されるようになっている。このカップ形砥石
(8)は、第4図に示すように、先端部中央には凹部a
8が設けられていて、先端周縁部は、円環状の研削作用
面α9となっている。そして、この研削作用面(1傷の
外径「1は、研削加工面I上における自転用スピンドル
(9)の軸線04)の公転用スピンドルa階の軸線−に
対する偏心量eよりも大きく、研削作用面(11の内径
「2は、偏心量eよりも小さく設定され、研削中に研削
作用面(11を軸心09が通るように設定されている(
第3図参照)Qつぎに、本実施例のダイヤフラム製造方
法について述べると、まず、例えば厚み1朋、直径22
朋の円板状のシリコン単結晶基板である被加工物α力の
一方の主面に拡散抵抗層(イ)を拡散形成する七と(z
r)
もに、被加工物aυの他方の主面に、Si3N4層碕を
形成する。しかして、上記構成の研削装置を用いて、ま
ず、被加工物α力を保持装置に固定し、公転用スピンド
ル0階を電動機によ!1l11〜50r・p−mで回転
駆動させるとともに、自転用スピンドル(9)をエア・
タービン機構によシ20,000〜100.00Or・
p・mで高速回転させ、送りテーブルを矢印(2湯方向
に下降させて、カップ形砥石(8)を被加工物07)に
向って切込ませる。すると、カップ形砥石(8)は、第
6図のように、矢印(2謙方向に自転運動しながら、矢
印(24)方向に公転運動する。その結果、例えば深さ
875μm、直径17囮の丸穴(2つが形成される。ま
た、カップ形砥石(8)の研削作用面(lωは、つねに
丸穴(ハ)の中心(ハ)を通過するので、第7図に示す
ような中央部分に△H(5〜30μm)及び底部周縁か
ら中央部にかけての傾斜角θが0.05〜0.3度の円
錐状のふくらみを有し厚みが中心部で例えば125μm
のダイヤフラム(5)が形成される。しかして、第8図
に示すように、被加工物(5)の下底面、外周面、上端
面にホトレジスト、ワックス等をマスク弼として被着さ
せ、例えばフッ硝酸からなるエツチング液により丸穴(
2ツの内面をエツチング加工する。そして、2〜5μm
/分の加工速度で徐々に犯μm程度加工しダイヤフラム
(5)を±1μmの公差範囲内で、中央部が例えば75
μmになるように仕上げる。しかして、第9図に示すよ
うに、被加工物αηの丸穴(2暖側の上端面に、ガラス
接着によシ、中央部に貫通孔である受圧孔(ハ)が形成
されだ円柱状の台座(30)を接着する。このように、
本実施例は、ダイヤフラムCηが中央部にふくらみを有
しているので、差圧(P。Although not shown, in the grinding apparatus of this embodiment, the main surface of the workpiece a, which is a disk-shaped silicon sea urchin, is attached to the revolution spindle (+, 3) axis 0
A holding device is provided to hold and fix the parts so that they are perpendicular to each other. Further, the cup-shaped grindstone (8) is moved up and down along the axis 0!19 of the revolution spindle 031 by a feed table (not shown). As shown in Fig. 4, this cup-shaped grindstone (8) has a recess a in the center of the tip.
8 is provided, and the peripheral edge of the tip forms an annular grinding surface α9. This grinding surface (the outer diameter of one scratch "1" is the axis 04 of the rotating spindle (9) on the grinding surface I) is larger than the eccentricity e with respect to the axis - of the revolution spindle (9), and the grinding The inner diameter "2" of the working surface (11) is set smaller than the eccentricity e, and is set so that the axis 09 passes through the grinding working surface (11) during grinding.
(Refer to Figure 3)QNext, to describe the method for manufacturing the diaphragm of this embodiment, first, for example, the diaphragm has a thickness of 1 mm and a diameter of
A diffusion resistance layer (A) is diffused and formed on one main surface of the workpiece (α), which is a disk-shaped silicon single-crystal substrate.
r) Form a Si3N4 layer on the other main surface of the workpiece aυ. Using the grinding device with the above configuration, first, the workpiece α force is fixed to the holding device, and the 0th floor of the revolution spindle is moved by the electric motor! While rotating at 1l11~50rpm, the rotation spindle (9) is driven by air.
Turbine mechanism is 20,000~100.00Or・
Rotate at high speed at p.m and lower the feed table in the direction of the arrow (2) to make the cup-shaped grindstone (8) cut into the workpiece 07. Then, as shown in Fig. 6, the cup-shaped grindstone (8) rotates in the direction of the arrow (24) and revolves in the direction of the arrow (24). Two round holes are formed. Also, since the grinding surface (lω) of the cup-shaped grindstone (8) always passes through the center (C) of the round hole (C), the central part as shown in Fig. 7 ΔH (5 to 30 μm) and a conical bulge with an inclination angle θ of 0.05 to 0.3 degrees from the bottom periphery to the center, and the thickness is, for example, 125 μm at the center.
A diaphragm (5) is formed. As shown in FIG. 8, photoresist, wax, etc. are applied as a mask to the lower bottom surface, outer peripheral surface, and upper end surface of the workpiece (5), and circular holes (
Etch the inner surfaces of the two pieces. And 2-5 μm
Gradually process the diaphragm (5) to a tolerance of ±1 μm at a processing speed of 75 μm at the center.
Finish to a thickness of μm. As shown in Fig. 9, a pressure receiving hole (c), which is a through hole, is formed in the center of the round hole (2) on the warm side of the workpiece αη by glass bonding. Glue the columnar pedestal (30).In this way,
In this embodiment, since the diaphragm Cη has a bulge in the center, the differential pressure (P).
−P2)が正の七きと、負のときとで、たわみが等しく
なり、第2図の曲線Gυのように、感度の非直線性△Δ
が対称上なる。本実施例のような研削加工によるダイヤ
フラムCηへのふくらみ形成は、従来のエツチング加工
による方法に比べて、加工精度が高く、再現性がすぐれ
ている。さらに、本実施例は、研削加工により高速で丸
穴0!19を形成するとともに、引き続いて5〜50μ
mの範囲でエツチング加工を行うことにより、研削加工
によシ生じた丸穴(2最内壁面の破砕層を除去できる。-P2) is positive and negative, the deflection is equal, and as shown by the curve Gυ in Figure 2, the sensitivity nonlinearity △Δ
is symmetrical. Forming the bulge in the diaphragm Cη by grinding as in this embodiment has higher processing accuracy and better reproducibility than the conventional etching method. Furthermore, in this example, a round hole of 0!19 is formed at high speed by grinding, and a hole of 5 to 5
By performing the etching process in the range of m, it is possible to remove the crushed layer on the innermost wall surface of the round hole (2) created by the grinding process.
また、丸穴(2!9の底部と側壁との交差部分に丸みが
生じることなく、ダイヤフラム(27)の厚みを全域に
わたって所定寸法になるように制御することができるよ
うになる。さらに、丸穴(2四を研削加工により形成し
ているので、ダイヤフラム(27)の側壁を高くするこ
とカSできるので、台座(30)をガラス接着した際の
熱歪の影響を回避するととができる。In addition, the thickness of the diaphragm (27) can be controlled to a predetermined dimension over the entire area without causing roundness at the intersection between the bottom of the round hole (2!9) and the side wall. Since the holes (24) are formed by grinding, the side wall of the diaphragm (27) can be made high, thereby avoiding the effects of thermal distortion when the pedestal (30) is bonded to glass.
なお、上記実施例においては、仕上げ加工をイオンエツ
チング加工により行っているが、これに限ることなく、
イオンエツチング、プラズマエツチング等のドライエツ
チングによシ行ってもよい。In addition, in the above example, the finishing process is performed by ion etching process, but it is not limited to this.
Dry etching such as ion etching or plasma etching may also be used.
この場合、化学的エツチングよりも加工精度カS向上し
、加工工程が簡略になるという格別の効果を奏する。ま
だ、ダイヤフラムにふくらみをもたせるための研削加工
は、上記実施例に限ることなく第10図に示すように、
研削作用端面6榎に夕°イヤフラム(331のふくらみ
に対応する円錐状の凹部04) bs影形成れた研削砥
石(3鴎により行ってもよい。In this case, the processing accuracy is improved compared to chemical etching, and the processing process is simplified, which is a special effect. However, the grinding process for making the diaphragm bulge is not limited to the above embodiment, but as shown in Fig. 10,
Grinding may be carried out using a grinding wheel (3 wheels) with an diaphragm (conical recess 04 corresponding to the bulge 331) formed on the end surface 6 for grinding.
[発明の効果]
本発明のダイヤフラム製造方法は、ふくらみを有するダ
イヤプラムの形成を研削加工とエツチングとを組合わせ
て行うようにしだので、以下に記す顕著な効果を奏する
。[Effects of the Invention] Since the diaphragm manufacturing method of the present invention forms a diaphragm having a bulge by combining grinding and etching, it produces the following remarkable effects.
(イ)研削加工によシ丸穴の形成及び丸穴底部であるダ
イヤプラムのふくらみを高能率で形成しているので、各
種用途に応じた各種寸法のダイヤプラムを大量生産する
ことが可能となり、本発明によるダイヤフラムを用いた
圧力センヤ゛の価格低減に大幅に寄与する。(a) Since the round hole is formed through grinding and the bulge of the diaphragm, which is the bottom of the round hole, is formed with high efficiency, it is possible to mass produce diaphragms of various sizes for various uses. This greatly contributes to the cost reduction of the pressure sensor using the diaphragm according to the present invention.
(ロ)従来のエツチング加工のみによる丸穴形成に比べ
て、ダイヤフラムの側壁の高さを高くすることができ、
ダイヤフラムに台座をガラス接着した際の熱歪の拡散抵
抗層への影響を防止することができる。(b) The height of the side wall of the diaphragm can be increased compared to the conventional method of forming a round hole using only etching processing.
It is possible to prevent the influence of thermal strain on the diffusion resistance layer when the pedestal is bonded to the diaphragm with glass.
(ハ)研削加工により丸穴を形成するので、丸穴の底部
と側壁との交差部分に丸みが生じること力Sなく、かつ
ダイヤフラムにふくらみを所定寸法に高度の再現性をも
って形成することができる。(c) Since the round hole is formed by grinding, the intersection between the bottom of the round hole and the side wall is not rounded, and the bulge in the diaphragm can be formed to a predetermined size with a high degree of reproducibility. .
に) エツチング加工を研削加工に引続いて行うことに
より、丸穴内壁面に生じている研削加工による破砕層を
除去して、ダイヤプラムの仕上げ加工を高精度で行うと
とカSできる。(b) By performing the etching process subsequent to the grinding process, it is possible to remove the fractured layer caused by the grinding process that has formed on the inner wall surface of the round hole, and to perform the finishing process of the diaphragm with high precision.
(ホ) 上記(0) 、 0→、に)の諸効果が相俟っ
て、ダイヤフラムの歩留が高くなるとともに、本発明に
よるダイヤフラムを用いた圧力センサの性能及び信頼性
が著しく向上する。(e) The above effects (0), 0→, and) combine to increase the yield of diaphragms and significantly improve the performance and reliability of the pressure sensor using the diaphragm according to the present invention.
【図面の簡単な説明】
第1図は従来のダイヤフラム製造方法を説明するだめの
断面図、第2図は差圧と非直線性との関係を示す図、第
3図は本発明の一実施例のダイヤフラム製造に用いられ
る研削装置の要部説明図、第4図は同じくカップ形砥石
の要部断面図、第5図は本発明の一実施例における拡散
抵抗層及びガラス膜の形成を示す断面図、第6図は第4
図のカップ形砥石の遊星運動を示す図、第7図は第3図
の研削装fiftKよシ得られた被加工物の断面図、第
8図は第7図の被加工物に対するエツチング加工の説明
図、第9図はエツチング加工された被加工物への受圧台
の取付けを示す断面図、第10図は本発明の他の実施例
において用いられるカップ形砥石の断面図である。
(17)・・被加工物(シリコン単結晶基板)、Cω・
・丸 穴、
!271・・ダイヤフラム。
’l 1口
2
軍夕図
26
2、 軍70[Brief Description of the Drawings] Figure 1 is a cross-sectional view of a conventional diaphragm manufacturing method, Figure 2 is a diagram showing the relationship between differential pressure and nonlinearity, and Figure 3 is an embodiment of the present invention. FIG. 4 is a cross-sectional view of the essential parts of the cup-shaped grindstone, and FIG. 5 shows the formation of the diffusion resistance layer and glass film in one embodiment of the present invention. Cross-sectional view, Figure 6 is the 4th
Figure 7 shows the planetary motion of the cup-shaped grindstone in Figure 3, Figure 7 is a cross-sectional view of the workpiece obtained using the fiftK grinding machine in Figure 3, and Figure 8 shows the etching process for the workpiece in Figure 7. FIG. 9 is a cross-sectional view showing how a pressure receiving table is attached to an etched workpiece, and FIG. 10 is a cross-sectional view of a cup-shaped grindstone used in another embodiment of the present invention. (17)...Workpiece (silicon single crystal substrate), Cω・
·Round hole, ! 271...Diaphragm. 'l 1 mouth 2 army evening map 26 2, army 70
Claims (1)
ともに上記丸穴の底部にふくらみを設ける工程と、上記
丸穴の内面をエツチング加工により仕上げ加工する工程
とを具備することを特徴とするダイヤフラム製造方法っThe method is characterized by comprising the steps of forming a round hole in a solicon single crystal substrate by grinding and providing a bulge at the bottom of the round hole, and finishing the inner surface of the round hole by etching. Diaphragm manufacturing method
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18747182A JPS5978578A (en) | 1982-10-27 | 1982-10-27 | Manufacture of diaphragm |
GB08327236A GB2130435B (en) | 1982-10-27 | 1983-10-12 | Semiconductor strain sensor and method for manufacturing the same |
DE19833338384 DE3338384A1 (en) | 1982-10-27 | 1983-10-21 | SEMICONDUCTOR STRETCH SENSOR AND METHOD FOR THE PRODUCTION THEREOF |
US06/820,598 US4622098A (en) | 1982-10-27 | 1986-01-21 | Method for manufacturing semiconductor strain sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18747182A JPS5978578A (en) | 1982-10-27 | 1982-10-27 | Manufacture of diaphragm |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5978578A true JPS5978578A (en) | 1984-05-07 |
JPS6410111B2 JPS6410111B2 (en) | 1989-02-21 |
Family
ID=16206658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18747182A Granted JPS5978578A (en) | 1982-10-27 | 1982-10-27 | Manufacture of diaphragm |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5978578A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007173487A (en) * | 2005-12-21 | 2007-07-05 | Disco Abrasive Syst Ltd | Method of processing wafer and device |
-
1982
- 1982-10-27 JP JP18747182A patent/JPS5978578A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007173487A (en) * | 2005-12-21 | 2007-07-05 | Disco Abrasive Syst Ltd | Method of processing wafer and device |
Also Published As
Publication number | Publication date |
---|---|
JPS6410111B2 (en) | 1989-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6629465B1 (en) | Miniature gauge pressure sensor using silicon fusion bonding and back etching | |
US20070284764A1 (en) | Sensing mechanism for crystal orientation indication mark of semiconductor wafer | |
JP5003015B2 (en) | Substrate grinding method | |
CN108793053A (en) | MEMS SOI wafers and preparation method and MEMS sensor and preparation method | |
JPS5978578A (en) | Manufacture of diaphragm | |
JPH09318474A (en) | Manufacture of sensor | |
US6004860A (en) | SOI substrate and a method for fabricating the same | |
US4622098A (en) | Method for manufacturing semiconductor strain sensor | |
JPH01227441A (en) | Semiconductor substrate | |
JPH08107092A (en) | Manufacture of soi substrate | |
JPH0335062B2 (en) | ||
JPH0368545B2 (en) | ||
JP2023152339A (en) | Manufacturing apparatus and manufacturing method | |
JPH03184756A (en) | Grinding method for wafer | |
JPH0155970B2 (en) | ||
JP2004354108A (en) | Angular velocity sensor and its manufacturing method | |
JP2944176B2 (en) | Ultra-precision polishing method and polishing apparatus for wafer | |
JP3648824B2 (en) | Surface grinding apparatus and surface grinding method | |
JP7533285B2 (en) | Inertial sensor and method for manufacturing the same | |
JPH03228326A (en) | Manufacture of semiconductor device | |
JPS62181875A (en) | Cup-wheel-shaped diamond grindstone | |
TW202326843A (en) | Grinding and polishing method of workpiece which shortens a period of empty cutting with idle rotation for the grinding wheel and improves production yield | |
JPH09309049A (en) | High-precision grinding method for semiconductor wafer | |
TW202210226A (en) | Grinding method capable of imparting higher rigidity to a workpiece after grinding | |
JPH0631954U (en) | Orientation flat grinding wheel |