JPS597713A - Thermal power equipment - Google Patents
Thermal power equipmentInfo
- Publication number
- JPS597713A JPS597713A JP11541782A JP11541782A JPS597713A JP S597713 A JPS597713 A JP S597713A JP 11541782 A JP11541782 A JP 11541782A JP 11541782 A JP11541782 A JP 11541782A JP S597713 A JPS597713 A JP S597713A
- Authority
- JP
- Japan
- Prior art keywords
- medium
- condenser
- evaporator
- liquefied
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、冷熱発電設備に係り、特にランキンサイクル
を有する冷熱発電設備(以下、冷発と略)に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to cold power generation equipment, and particularly to cold power generation equipment having a Rankine cycle (hereinafter abbreviated as cold power generation).
従来の冷発例を第1図により説明する。A conventional cold eruption example will be explained with reference to FIG.
第1図で、凝縮器10とランキン媒体ポンプ(以下、媒
体ポンプと略)11.媒体ポンプ11と蒸発器12、蒸
発器ルと膨張タービン(以下、タービンと略)13.タ
ービン13と凝縮器10とは、閉回路をなすようにそれ
ぞれ導管(資)〜羽で連結され、タービン13には、発
電a14が連接されている。凝縮H10には、伝熱管2
0aが内股され、その一端には、低温液化ガス送液ポン
プ(以下、送液ポンプと略)15に連結された導管あが
連結されている。送液ポンプ15と低温液化ガス貯蔵タ
ンク(以下、タンクと略)16とは、導管謁で連結され
ている。伝熱管20aの他端は、導管間で加温H17に
連結されている。加温a17には、別途使用先(図示省
略)に連結された導管37が連結されている。加温a1
7には、伝熱管20bが内設され、その一端には、導管
間が、他端には導管39がそれぞれ連結されている。蒸
発器12には、伝熱管20cが内股され、その一端には
、導管39が、他端には、熱媒排出路(以下、排出路と
略)50aに開放した導管梱がそれぞれ連結されている
。なお、ランキン媒体(以下、媒体と略)には、フロン
、プロパン等が使用されている。In FIG. 1, a condenser 10 and a Rankine medium pump (hereinafter abbreviated as medium pump) 11. Medium pump 11, evaporator 12, evaporator and expansion turbine (hereinafter abbreviated as turbine) 13. The turbine 13 and the condenser 10 are connected through conduits to blades to form a closed circuit, and the turbine 13 is connected to a power generation a14. Heat exchanger tube 2 is used for condensation H10.
0a is folded inwards, and a conduit 0a connected to a low temperature liquefied gas liquid feeding pump (hereinafter abbreviated as liquid feeding pump) 15 is connected to one end thereof. The liquid pump 15 and the low temperature liquefied gas storage tank (hereinafter abbreviated as tank) 16 are connected through a conduit. The other end of the heat exchanger tube 20a is connected to the heating H17 between the conduits. A conduit 37 that is connected to a separate user (not shown) is connected to the heating a17. heating a1
7 has a heat transfer tube 20b installed therein, one end of which is connected between the conduits, and the other end of which is connected to a conduit 39. A heat transfer tube 20c is arranged inside the evaporator 12, and one end of the heat transfer tube 20c is connected to a conduit 39, and the other end thereof is connected to a conduit package that is open to a heat medium discharge path (hereinafter referred to as a discharge path) 50a. There is. Note that Freon, propane, etc. are used as the Rankine medium (hereinafter abbreviated as medium).
気化した媒体(以下、気化媒体と略)は、凝縮器10で
、タンク16から送液ポンプ15を介し導管35゜あを
経て伝熱管20aに供給され、伝熱管20aを流通する
低温液化ガス、例えば、LNGの冷熱を利用して凝縮、
液化される。液化された媒体(以下、液化媒体と略)は
、凝縮器lOから媒体ポンプ11を介し導管(資)、
31を経て蒸発器12に供給される。この液化媒体の一
部は蒸発器ルて、導管お、伝熱管20b、導管39を経
て伝熱管20cに供給され、伝熱管20cを流通した後
、導管伯より排出路50 aに排出される加熱源、例え
ば、海水により加熱、気化される。この気化媒体は、蒸
発!1112から導管路を経てタービン13に供給され
、ここで膨張することでター上2131発電M114を
駆動する。タービン13で膨張した気化媒体は、タービ
ン13から導管おを経て凝縮器lOに循環供給され、こ
こで再び凝縮。The vaporized medium (hereinafter abbreviated as vaporized medium) is supplied from the tank 16 to the heat transfer tube 20a via the liquid feed pump 15 and the conduit 35° in the condenser 10, and is a low-temperature liquefied gas flowing through the heat transfer tube 20a. For example, condensation using the cold energy of LNG,
liquefied. The liquefied medium (hereinafter abbreviated as liquefied medium) is transferred from the condenser IO to a conduit (supply) via a medium pump 11.
31 and is supplied to the evaporator 12. A part of this liquefied medium is supplied to the heat exchanger tube 20c through the evaporator, the conduit O, the heat exchanger tube 20b, and the conduit 39, and after flowing through the heat exchanger tube 20c, it is heated and discharged from the conduit 50a to the discharge path 50a. heated and vaporized by a source, e.g. seawater. This vaporizing medium evaporates! It is supplied from 1112 to the turbine 13 via a conduit, and expands there to drive the turbine 2131 power generation M114. The vaporized medium expanded in the turbine 13 is circulated from the turbine 13 through the conduit O to the condenser IO, where it is condensed again.
液化される。一方、伝熱管20aを流通する間に、気化
媒体を凝縮、液化することで気化したLNGは、導管あ
を経て加温器17に供給され、ここで、導管路より伝熱
管20bに供給され、伝熱管20bを流通した後に、導
管39より伝熱管20cに送給される海水により加温さ
れた後に、加温器17から導管37を経て別途使用先に
送給される。liquefied. On the other hand, LNG vaporized by condensing and liquefying the vaporization medium while flowing through the heat exchanger tube 20a is supplied to the warmer 17 through the conduit, and here, is supplied to the heat exchanger tube 20b from the conduit, After flowing through the heat exchanger tube 20b, the seawater is heated by the seawater supplied to the heat exchanger tube 20c from the conduit 39, and then separately sent to the user via the conduit 37 from the warmer 17.
このような冷光ては、油、例えば、タービンで気化媒体
が膨張する際、゛タービンで使用されている潤滑油が気
化媒体に混入し、したがって、蒸発器での液化媒体の潤
滑油濃度が高まるため、蒸発器で激しい発泡現象が生じ
、その結果、ミストな多量に同伴した気化媒体がタービ
ンに供給されるようになるため、タービンが損傷して運
転が不可能となり冷光を連続して運転できなくなるとい
った欠点があった。Such cold light is caused by oil, for example, when the vaporized medium expands in a turbine, the lubricating oil used in the turbine mixes with the vaporized medium, thus increasing the lubricating oil concentration of the liquefied medium in the evaporator. As a result, a severe foaming phenomenon occurs in the evaporator, and as a result, a large amount of mist entrained vaporized medium is supplied to the turbine, which damages the turbine and makes it impossible to operate the cold light continuously. There was a drawback that it disappeared.
本発明の目的は、上記した欠点を除去することで、連続
して運転できる冷光な提供することにある。The object of the present invention is to eliminate the above-mentioned drawbacks and thereby provide a light-emitting device that can be operated continuously.
本発明の特徴は、凝JIi!器から蒸発器に送給される
途中若しくは凝縮器より一部抜出された液化媒体から、
該液化媒体に混入している油を分離する油分離器を設け
ると共に、核油分離器で油を分離された気化媒体を凝縮
器に戻す導管を油分離器と凝縮器とに連結したことで、
蒸発器での液化媒体の油濃度を低下させて激しい発泡現
象を抑制するようにしたことにある。The feature of the present invention is that it is easy to use! From the liquefied medium that is being fed from the vessel to the evaporator or partially extracted from the condenser,
An oil separator is provided to separate oil mixed in the liquefied medium, and a conduit is connected to the oil separator and condenser to return the vaporized medium from which the oil has been separated by the kernel oil separator to the condenser. ,
The purpose is to reduce the oil concentration of the liquefied medium in the evaporator to suppress severe foaming.
本発明の一実施例を第2図により説明する。なお、第2
図で、第1図と同−装置等は同一符号で示し説明を省略
する。An embodiment of the present invention will be explained with reference to FIG. In addition, the second
In the figure, the same devices and the like as in FIG. 1 are denoted by the same reference numerals and explanations will be omitted.
第2図で、油分離818には、導管(資)より分岐し、
弁間、逆止弁51が設けられた導管41が連結されてい
る。油分離器18の頂部には、導管42が連結され、導
管42は凝縮器10の頂部に連結されている。油分離a
18の底部には、排油タンク19に連結され弁52が設
けられた導管43が連結されている。油分離器18には
、伝熱管20dが内設され、その一端には、導管あより
分岐し弁部が設けられた導管Iが、他1台
端には、排出ysobに開放した導管朽がそれぞれ連結
されている。In FIG. 2, the oil separation 818 is branched from a conduit (supply),
A conduit 41 provided with a check valve 51 is connected between the valves. A conduit 42 is connected to the top of the oil separator 18 and conduit 42 is connected to the top of the condenser 10 . Oil separation a
A conduit 43 connected to the drain oil tank 19 and provided with a valve 52 is connected to the bottom of the drain 18 . The oil separator 18 is equipped with a heat transfer tube 20d, at one end of which there is a conduit I branched from the conduit and provided with a valve part, and at the other end there is a conduit I which is open to the discharge ysob. connected.
蒸3?taxzから導管32を経てタービン13に供給
された気化媒体は、ここで膨張し、その際、夕〜ビン1
3で使用されている潤滑油が気化媒体に混入する。@滑
油が混入した気化媒体はタービン13から導管おを経て
凝縮器10に循環供給され、ここで、タンク16から送
液ポンプ15を介し導管ア、34を経て伝熱管20aに
供給され伝熱管20aを流通するLNGの冷熱を利用し
て凝縮、液化する。この潤滑油が混入した液化媒体は、
凝縮器10から媒体ポンプ11を介し導管側、31を経
て蒸発器12に供給される訳であるが、しかし、この状
態を持続すれば、蒸発器νでの液化媒体の潤滑油濃度が
高まり、激しい発泡現象が生じるようになる。そこで、
導管側を媒体ポンプ11に向って流通する潤滑油が混入
した液化媒体を、一部1例えば、弁間の開度な調節する
ことで蒸発器12での液化媒体の潤滑油濃度が激しい発
泡現象を抑制可能な濃度以下となる量(以下、所定量と
略)抜出し、弁(資)、逆止弁51を介し導管41を経
て油分離器18に供給する。潤滑油が混入した液化媒体
は、ここで、弁53を開放することで導管ア、44を経
て伝熱管20dに供給され伝熱管20dを流通した後に
、導管45より排出される海水により加熱される。この
加熱により、液化媒体は蒸発気化し潤滑油と分離される
。気化媒体は油分離a18から導管42を紅て凝縮H1
01こ戻され、ここで、再び凝縮、液化される。一方、
潤滑油は油分離器18で次第に濃縮された後に、定期的
に弁52を開放することで油分離器18から弁52を介
し導管荀を経て排油タンク19に抜出され処理される。Steam 3? The vaporized medium supplied to the turbine 13 via the conduit 32 from the
The lubricating oil used in step 3 is mixed into the vaporizing medium. @The vaporized medium mixed with lubricating oil is circulated and supplied from the turbine 13 to the condenser 10 via the conduit O, and here, it is supplied from the tank 16 via the liquid feed pump 15 to the heat transfer tubes 20a via conduits A and 34. It is condensed and liquefied using the cold heat of LNG flowing through 20a. The liquefied medium mixed with this lubricating oil is
The lubricant is supplied from the condenser 10 to the evaporator 12 via the medium pump 11 and the conduit 31. However, if this state is maintained, the lubricating oil concentration of the liquefied medium in the evaporator ν will increase. Severe foaming phenomenon begins to occur. Therefore,
By controlling the liquefied medium mixed with lubricating oil flowing along the conduit side toward the medium pump 11, for example, by adjusting the opening between the valves, the concentration of the lubricating oil in the liquefied medium in the evaporator 12 can be increased by a severe foaming phenomenon. An amount (hereinafter abbreviated as a predetermined amount) that is below the concentration that can suppress the oil is extracted and supplied to the oil separator 18 via a conduit 41 via a check valve 51 and a check valve 51. By opening the valve 53, the liquefied medium mixed with lubricating oil is supplied to the heat transfer tube 20d via conduits A and 44, and after flowing through the heat transfer tube 20d, is heated by seawater discharged from the conduit 45. . Due to this heating, the liquefied medium is evaporated and separated from the lubricating oil. The vaporized medium flows through the conduit 42 from the oil separation a18 and condenses H1.
01, where it is condensed and liquefied again. on the other hand,
After the lubricating oil is gradually concentrated in the oil separator 18, by periodically opening the valve 52, the lubricating oil is discharged from the oil separator 18 through the valve 52 and through the conduit into the waste oil tank 19 for processing.
本実施例のような冷光ては、凝縮器から蒸発器に送給さ
れる途中の潤滑油が混入した液化媒体を所定量抜出して
油分離器に供給し、ここで、媒体と潤滑油とを分離して
いるので、蒸発器での液化媒体の潤滑油濃度が高まるこ
とがなく、蒸発器での激しい発泡現象を抑制でき、した
がって、ミストな多量に同伴することなく気化媒体がタ
ービンに供給されるため、タービンの損傷を防止でき冷
光を連続して運転することができる。In the cold light system of this embodiment, a predetermined amount of the liquefied medium mixed with lubricating oil that is being fed from the condenser to the evaporator is extracted and supplied to the oil separator, where the medium and lubricating oil are separated. Since it is separated, the lubricating oil concentration of the liquefied medium in the evaporator does not increase, and severe foaming phenomenon in the evaporator can be suppressed. Therefore, the vaporized medium is supplied to the turbine without being entrained in a large amount of mist. This prevents damage to the turbine and allows continuous cold light operation.
なお、本実施例では、潤滑油が混入した液化媒体を凝縮
器から蒸発器へ送給される途中で抜出して油分離器に供
給しているが、その他に、潤滑油が混入した液化媒体を
凝縮器より直接抜出して油分離器に供給するようにして
も良い。In this example, the liquefied medium mixed with lubricating oil is extracted on the way from the condenser to the evaporator and supplied to the oil separator. The oil may be directly extracted from the condenser and supplied to the oil separator.
本発明は、以上説明したように、凝縮器から蒸発器に送
給される途中若しくは凝縮器より一部抜出された液化媒
体から、該媒体に混入している油を分離する油分離器を
設けると共に、該油分離器で油を分離された気化媒体を
#!縮器に戻す導管を油分離器と凝縮器とに連結したこ
とで、蒸発器での激しい発泡現象を抑制できミストな多
量に同伴することなく気化媒体をタービンに供給できる
ので、タービンの損傷を防止でき冷光を連続して運転で
きる効果がある。As explained above, the present invention provides an oil separator that separates oil mixed in the liquefied medium while it is being fed from the condenser to the evaporator or partially extracted from the condenser. At the same time, the vaporized medium from which oil has been separated by the oil separator is #! By connecting the conduit that returns to the condenser with the oil separator and condenser, it is possible to suppress the severe foaming phenomenon in the evaporator and to supply the vaporized medium to the turbine without entraining a large amount of mist, thereby preventing damage to the turbine. It has the effect of being able to prevent cold light and operate the cold light continuously.
第1図は、従来の2ンキンサイクルを有する冷光の系統
図、第2図は、本発明によるランキンサイクルを有する
冷光の一実施例を示す系統図である。FIG. 1 is a system diagram of a conventional cold light having a 2-rankine cycle, and FIG. 2 is a system diagram showing an embodiment of a cold light having a Rankine cycle according to the present invention.
Claims (1)
で構成されランキンサイクルを有する冷熱発電設備にお
いて、前記凝縮器で凝縮、液化され前記蒸発器に送給さ
れる途中若しくは凝縮器より一部抜出されたランキン媒
体から、該媒体に混入している油を分離する油分離器を
設けると共にこ核分離器で油を分離され蒸発、気化した
ランキン媒体を凝縮器に戻す導管を油分離器と凝縮器と
に連結したことを特徴とする冷熱発電設備。1. In a cold-thermal power generation facility having a Rankine cycle and consisting of a condenser, an evaporator, an expansion turbine, and a generator, the condenser is condensed and liquefied in the condenser and is sent to the evaporator or from the condenser. An oil separator is installed to separate the oil mixed in the medium from the partially extracted Rankine medium, and the oil is separated by the oil separator, evaporated, and a conduit is installed to return the vaporized Rankine medium to the condenser. A cold power generation facility characterized by being connected to a separator and a condenser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11541782A JPS597713A (en) | 1982-07-05 | 1982-07-05 | Thermal power equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11541782A JPS597713A (en) | 1982-07-05 | 1982-07-05 | Thermal power equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS597713A true JPS597713A (en) | 1984-01-14 |
JPS6213493B2 JPS6213493B2 (en) | 1987-03-26 |
Family
ID=14662050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11541782A Granted JPS597713A (en) | 1982-07-05 | 1982-07-05 | Thermal power equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS597713A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59119003A (en) * | 1982-12-24 | 1984-07-10 | Hitachi Ltd | Operation of cryogenic power plant |
-
1982
- 1982-07-05 JP JP11541782A patent/JPS597713A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59119003A (en) * | 1982-12-24 | 1984-07-10 | Hitachi Ltd | Operation of cryogenic power plant |
JPH0143124B2 (en) * | 1982-12-24 | 1989-09-19 | Hitachi Seisakusho Kk |
Also Published As
Publication number | Publication date |
---|---|
JPS6213493B2 (en) | 1987-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6311504B1 (en) | Absorption heat pump and method for controlling the same | |
US5421157A (en) | Elevated temperature recuperator | |
US5584193A (en) | Absorption-type refrigeration systems and methods | |
KR20120128753A (en) | Rankine cycle system for ship | |
KR20070114167A (en) | Liquefied natural gas regasification plant | |
JPS6040707A (en) | Low boiling point medium cycle generator | |
JPH10332090A (en) | Treatment method of liquefied gas cooled at low temperature | |
US6052997A (en) | Reheat cycle for a sub-ambient turbine system | |
CZ2001788A3 (en) | Absorption refrigeration machine using the Platen-Munters system | |
JPH0952082A (en) | Apparatus for desalinating seawater | |
US3154930A (en) | Refrigeration apparatus | |
JPS597713A (en) | Thermal power equipment | |
US4561259A (en) | Method of operating a bimodal heat pump and heat pump for use of this method | |
JP5605557B2 (en) | Heat pump steam generator | |
EP0604629A1 (en) | Device for indirect cold generation for a refrigerating machine | |
JP3883894B2 (en) | Absorption refrigerator | |
US1961784A (en) | Regenerative heat cycle | |
JPH05302504A (en) | Low temperature power generating device using liquefied natural gas | |
JP2000325941A (en) | Device for desalting salt water | |
JPS5816137A (en) | Water cooling device for air conditioner | |
JPS60162166A (en) | Multiple effect absorption type refrigerator | |
US606326A (en) | Absorption refrige-rating-machine | |
KR840000451B1 (en) | Absorption refrigeration system | |
JPS59119003A (en) | Operation of cryogenic power plant | |
JPS56143305A (en) | Stopping system for liquefied natural gas thermal generating set |