[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5977020A - Exhaust muffler - Google Patents

Exhaust muffler

Info

Publication number
JPS5977020A
JPS5977020A JP18545682A JP18545682A JPS5977020A JP S5977020 A JPS5977020 A JP S5977020A JP 18545682 A JP18545682 A JP 18545682A JP 18545682 A JP18545682 A JP 18545682A JP S5977020 A JPS5977020 A JP S5977020A
Authority
JP
Japan
Prior art keywords
flow
exhaust
opening
branch
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18545682A
Other languages
Japanese (ja)
Inventor
Michio Mizukami
水上道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP18545682A priority Critical patent/JPS5977020A/en
Publication of JPS5977020A publication Critical patent/JPS5977020A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/06Silencing apparatus characterised by method of silencing by using interference effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To eliminate exhaust noise effectively with simple and small device by branching pulsating exhaust wave from engine into plural flows then shifting phase of expansion timing for every branch to expand pulsating wave and converting to constant pressure flow. CONSTITUTION:Exhaust from engine is led as plusating pressure wave to the flow-in port 4 of muffler 1 and expanded in expansion chamber 9. Then it is passed through plural branch paths 11a-11d formed between spiral guide walls 10 planted on the outercircumferential face of conical head 8 to a gap 7 between outer tube 1 and inner tube 6. Consequently exhaust flow is branched and converted into spiral flow. Here single line of opening 12 is made circumferentially in the inner tube 6 where distances from the downstream end of each branch paths 11a-11d to the opening 12 are made different. Consequently each exhaust branch will reach to the opening 12 with timing shift and expand. Thereafter each exhaust branch will be guided through a guide vane 18 to the delivery port 5.

Description

【発明の詳細な説明】 本発明は車輌用エンジン、汎用エンジン等の排気消音器
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust muffler for vehicle engines, general-purpose engines, etc.

エンジンの排気騒音対策が社会間跣としてクローズアッ
プされて相当な年月が軽過するが、未だ充分な効果を見
ない。
Countermeasures against engine exhaust noise have been in the spotlight as a social issue for many years, but sufficient effects have yet to be seen.

エンジンの排気を消音する手段として従来から種々の形
式が採用されており、たとえば排気の圧力波を膨張室に
導いて膨張させたのち収縮させ不操作を複数回に亘り繰
り返すことにより圧力波を減衰させる濾波器方式、消音
室の容積内で排気の共鳴作用を利用して音エネルギを消
耗させる共鳴吸収方式、音波の干渉により音を減衰させ
る干渉方式、あるいはウール材などの吸音物質によυ吸
音する吸音方式などが知られている。しかしながらこわ
らの各消音方式は単独で使用しても充分な効果を期待で
きず、各種形式を複数種組み合せて使用しているのが現
状であるが、このような消音器は構造がきわめて複雑で
あり、製造手間を果し、しかも消音能力において今−歩
の向上が望まれる。
Various methods have been used to muffle the sound of engine exhaust. For example, pressure waves are attenuated by guiding the pressure waves of the exhaust into an expansion chamber, expanding them, and then deflating them and repeating no operation multiple times. a resonance absorption method that consumes sound energy by utilizing the resonance effect of exhaust air within the volume of a sound-deadening chamber, an interference method that attenuates sound through the interference of sound waves, or a sound absorption method that uses sound-absorbing materials such as wool. Sound absorption methods are known. However, each of Kowara's sound deadening methods cannot be expected to have a sufficient effect even when used alone, and the current situation is that multiple types of various types are used in combination, but these silencers have extremely complex structures. Therefore, it is desired to reduce the manufacturing time and to improve the sound-deadening ability.

本発明はこのような事情にもとづきなされたもので、そ
の目的とするところは、構造が簡単でありながら消音能
力に優れた排気消音器を提供しようとするものである。
The present invention has been made based on the above circumstances, and its object is to provide an exhaust muffler that has a simple structure and excellent muffling ability.

排気音はエンジンの排気脈動にもとづく圧力波であり、
この圧力波は膨張させることにより消音させることがで
きるとともに、脈動流を定常流に変換することも消音に
効果があることは知られている。本発明はエンジンから
の脈動波を複数の流れに分流させ、これら各分流ごとに
膨張タイミングの位相をずらせることにより、脈動波を
膨張させ、かつ定圧流に変換することを基本的原理とす
る。そして分流に螺旋回流れを与え、この螺旋回流によ
り各分流の膨張タイミングの位相を異ならせるようにし
て構造が簡単で小形化できる排気消音器(重機トイする
Exhaust sound is a pressure wave based on the engine exhaust pulsation.
It is known that sound can be muffled by expanding this pressure wave, and that converting a pulsating flow into a steady flow is also effective in muffling sound. The basic principle of the present invention is to expand the pulsating waves from the engine and convert them into constant pressure flows by dividing the pulsating waves from the engine into multiple flows and shifting the phase of the expansion timing for each of these divided flows. . Then, a spiral flow is applied to the branched flow, and the phase of the expansion timing of each branched flow is different due to this spiral flow, thereby making the structure of the exhaust muffler simple and compact.

以下本発明の一実施例を図面にもとづき説明する。An embodiment of the present invention will be described below based on the drawings.

図において1は消音器本体となる円形外筒であり、両端
が閉塞板2および3によって閉止されておシ、これら閉
塞板2および3に排気流入口4、吐出口5を有してしる
。流入口4は図示しないエンジンの排気管に連通され、
吐出口5は大気に開放される。
In the figure, reference numeral 1 denotes a circular outer cylinder which becomes the main body of the muffler, and both ends are closed by closing plates 2 and 3, and these closing plates 2 and 3 have an exhaust inlet 4 and an exhaust outlet 5. . The inlet 4 communicates with an exhaust pipe of an engine (not shown),
The discharge port 5 is open to the atmosphere.

eFi内筒であり、上記外筒1とほぼ同心状に設けられ
ている。内筒6の外周面と外筒1の内周面との間には全
周および内筒6の全長に亘って連続した間隙7が確保さ
れている。なお間隙7の他端は閉塞板3により閉封され
ている。内筒6の一端は円錐ヘッド8により閉止されて
いるとともに他端は吐出口5に開放されている。上記円
錐ヘッド8は流入口4と離間対向されており、この円錐
ヘッド8と流入口4との間に位置して外筒1内には第1
の膨張室9が形成されている。
This is an eFi inner cylinder, and is provided approximately concentrically with the outer cylinder 1. A continuous gap 7 is provided between the outer peripheral surface of the inner cylinder 6 and the inner peripheral surface of the outer cylinder 1 over the entire circumference and the entire length of the inner cylinder 6. Note that the other end of the gap 7 is closed by a closing plate 3. One end of the inner cylinder 6 is closed by a conical head 8, and the other end is open to the discharge port 5. The conical head 8 is spaced apart from and facing the inlet 4, and is located between the conical head 8 and the inlet 4, and has a first tube inside the outer cylinder 1.
An expansion chamber 9 is formed.

円錐ヘッド8の外周面には複数、たとえば4個のガイド
壁10・・・が立設されている。これらガイド壁10・
・・は翼形をなし、それぞれ周方向に90度の角度を存
して離間されているとともに、各ガイド壁10・・・は
螺旋状に曲成さねている。
A plurality of guide walls 10, for example, four guide walls 10, are provided on the outer peripheral surface of the conical head 8. These guide walls 10・
... have an airfoil shape, and are spaced apart from each other at an angle of 90 degrees in the circumferential direction, and each guide wall 10 ... is curved in a spiral shape.

各ガイド壁10・・・の軸方向に沿う長さは同じであシ
、旋回ピッチも同じである。そしてこれらガイド壁10
は軸方向の一端から他端に至るまでの間に、たとえば9
0度の角度だけひねられてしる。したがってこれらガイ
ド壁1θ・・・間には前記第1の膨張室9と間隙7とを
結ぶ4個の分流通路118〜lidが形成され、これら
分流通路1’la〜lidは螺旋状をなしている。
The length of each guide wall 10 along the axial direction is the same, and the turning pitch is also the same. And these guide walls 10
For example, 9 from one end to the other end in the axial direction.
It is twisted by an angle of 0 degrees. Therefore, four branch passages 118-lid connecting the first expansion chamber 9 and the gap 7 are formed between these guide walls 1θ, and these branch passages 1'la-lid have a spiral shape. I am doing it.

前記内筒6VCは周方向姉沿う1箇所に、第3図に示す
時計回り方向に向って開口した1条の開口部12が設け
られている。この開口部12の開口方向は後述するが螺
旋回流の上流側に向っている。なお開口部12の開口縁
13け上流側に向って数量ないし数1.0間の寸法lだ
け延長されている。また開口部12は内筒6の全長に亘
って連続されているものである。
The inner cylinder 6VC is provided with a single opening 12 opening in the clockwise direction shown in FIG. 3 at one location along the circumferential direction. The opening direction of this opening 12 will be described later, but it is directed toward the upstream side of the spiral flow. Note that the opening edge 13 of the opening 12 is extended by a dimension 1 between 1.0 and 1.0 toward the upstream side. Further, the opening 12 is continuous over the entire length of the inner cylinder 6.

内筒6の内部は第2の膨張室14を成しておシ、その内
部には中心部に位置して円筒状、もしくは円柱状のホル
ダ15が、ステー16 + 12を介して設けられてい
る。そして内筒6とホルダ15との間には多数枚のガイ
ド翼18・・・が架は渡されている。各ガイド翼18は
120度程1度の扇形をなしているとともに1、排気流
が螺旋回流となるように周方向および軸方向に浴って螺
旋状にひねシ曲成されている。なおガイド翼18の螺旋
状ピッチはガイド壁1θ・・・の螺旋状ピッチよりも小
さく形成されている。
The inside of the inner cylinder 6 forms a second expansion chamber 14, and a cylindrical or cylindrical holder 15 is provided in the center via stays 16+12. There is. A large number of guide wings 18 are placed between the inner cylinder 6 and the holder 15. Each guide vane 18 has a fan shape of about 120 degrees and is spirally twisted in the circumferential direction and the axial direction so that the exhaust flow becomes a spiral flow. Note that the helical pitch of the guide blades 18 is smaller than the helical pitch of the guide walls 1θ.

このようなガイド翼18・・・は軸方向に活って等間隔
を存して内筒6内に配置されている。なお、本実施例の
上記各部材は全て圧延鋼板もしくはステンレスにより成
形されている。また間隙7の断面積はホ搭流入口4の断
面積よりも太きく形成されている。さらには間隙7の軸
方向長さは螺旋回流が1回生位旋回できる程度の長さを
有して覧ハる。
Such guide blades 18 are arranged in the inner cylinder 6 at equal intervals in the axial direction. Note that all of the above-mentioned members of this embodiment are formed from rolled steel plates or stainless steel. Further, the cross-sectional area of the gap 7 is larger than the cross-sectional area of the chamber inlet 4. Furthermore, the axial length of the gap 7 is such that the spiral flow can rotate once.

このような構成による実施例の作用について説明する。The operation of the embodiment with such a configuration will be explained.

エンジンから放出される排気は脈動圧力波として流入口
4から本消音器へ導ひかれる。流入口4から流入した排
気圧力波は第1の膨張室9において一旦膨張される。そ
してこの第1の膨張室9から分流通路11h〜lldを
通って間隙7へ流れ込む。この際、分流通路11h〜1
1dはガイド壁10・・・によって区画されているので
、膨張室9から間隙7に向りて流れる排気流はたとえば
4本の流れに分流されるとともに、各分流は分流通路1
1h〜lldが螺旋状をなしているので螺旋回流れに変
換される。なお各分流は分流通路11a〜lldを通る
過程で順次収縮される。
The exhaust gas emitted from the engine is guided into the muffler through the inlet 4 as a pulsating pressure wave. The exhaust pressure wave flowing in from the inlet 4 is once expanded in the first expansion chamber 9. Then, it flows from this first expansion chamber 9 into the gap 7 through the branch passages 11h to lld. At this time, the branch passages 11h to 1
1d is divided by the guide walls 10..., so the exhaust flow flowing from the expansion chamber 9 toward the gap 7 is divided into, for example, four streams, and each branch flow is divided into four streams.
Since 1h to lld have a spiral shape, the flow is converted into a spiral flow. Note that each branch flow is sequentially contracted while passing through the branch flow passages 11a to 11d.

各分流通路11a〜lldを通った螺旋回流れは間隙7
内に入り、この間隙7において慣性流によって螺旋流に
旋回されている。ところで、上記分流通路は周方向に沿
って4個の通路に区画されたものであり、これに対して
内筒6には周方向に活って1条の開口部12が開設され
ている。したがって各分流通路1ノIL〜lidの下流
端から開口部12に至る距離は各々異なる。
The spiral flow passing through each branch passage 11a to lld is
The fluid enters the gap 7 and is turned into a spiral flow by the inertial flow. By the way, the above-mentioned branch passage is divided into four passages along the circumferential direction, and on the other hand, a single opening 12 is opened in the inner cylinder 6 in the circumferential direction. . Therefore, the distances from the downstream ends of the respective branch passages 1L to 1D to the openings 12 are different.

すなわち第2図に矢印Aで示すごとく反時計方向の螺旋
回流が生じるものとすると、分流通路11hは反時計回
シ方向に沿って開口部12に最も近く、ついで分流通路
11b、1lcO順となり、分流通路11dは反時計回
り方向に沿って開口部12から最っとも遠い距離となる
That is, assuming that a spiral flow occurs in the counterclockwise direction as shown by arrow A in FIG. Therefore, the branch passage 11d is the farthest distance from the opening 12 along the counterclockwise direction.

このため、上記各分流通路11・・・によって分流され
かつ螺旋回流が与えらhた排便は、分流通路11aを通
った排気分流が最っとも早く開口部12に達する。開口
部12においては矢印Aで示す旋回流の上流向きに開口
されているため、上記排気分流は開口部12において開
口縁13で分岐さり1.1部分は開口部12を辿じて内
筒6内、つ1り第2の膨張室14内に流入する・この内
筒6に入り込む際に排気分流は膨張される。ついで分流
通路11bを通った排気分流は上記分流通路11aを通
った排気分流よりも約90#′の位相分遅りて開口部1
2に達し、この開口部Z2を介して内筒6内に流入する
。同じく、90度の位相を生じて分流通路11cを通っ
た抽気分流が開口部12から内筒6に流れ込む。さらに
また分流通路11dを通った排気分流は上記通路Jlc
を通った分流よシも90度遅れて開口部12に達する。
Therefore, among the defecation which has been divided by the above-mentioned division passages 11 and given a spiral circulation flow, the exhaust branch flow that has passed through the division passage 11a reaches the opening 12 the earliest. Since the opening 12 is opened in the upstream direction of the swirling flow shown by the arrow A, the exhaust branch flow is branched at the opening edge 13 in the opening 12, and the portion 1.1 follows the opening 12 and flows into the inner cylinder 6. One part of the exhaust gas flows into the second expansion chamber 14. When entering this inner cylinder 6, the exhaust gas branch is expanded. Then, the exhaust gas branching that has passed through the branching passage 11b reaches the opening 1 with a phase delay of about 90 #' than the exhaust branching that has passed through the dividing passage 11a.
2 and flows into the inner cylinder 6 through this opening Z2. Similarly, the extracted partial flow that has passed through the divided flow passage 11c with a phase of 90 degrees flows into the inner cylinder 6 from the opening 12. Furthermore, the exhaust gas branch that has passed through the branch passage 11d is connected to the passage Jlc.
The branch flow that has passed through also reaches the opening 12 with a delay of 90 degrees.

したがって各分流は互にタイミングがずれて開口部12
に薩するので、膨張タイミングの位相を生じる。
Therefore, the timing of each branch flow is shifted from the opening 12.
Since the phase changes, the phase of the expansion timing is generated.

さらにまた、各分流通路11a〜Ildを経て開口部1
2に達した各分流は、開口部12が軸方向に沿って開口
されているのに対し、これら分流は螺旋回流となってい
るので、各分流においては第1図の左側に近い流れが右
側に近い流れよりも先行して開口部12に達して膨張さ
せらハることになる。
Furthermore, the opening 1 passes through each branch passage 11a to Ild.
In each branched flow that reaches 2, the opening 12 is opened along the axial direction, but these branched flows are spiral flows, so in each branched flow, the flow closer to the left side in Fig. 1 is directed to the right side. This means that the flow reaches the opening 12 earlier than the flow that is closer to the flow, causing it to expand.

このようにして内筒6内に流入することにより膨張され
た各分流は、ガイド翼18によって案内されつつ螺旋回
流となって吐出口5へ向かう。この際、ガイド翼18の
螺旋回ピッチはガイド壁10よりも小さくしであるため
、内筒6内においては螺旋回ピッチが小さくなる。この
ことは、第1図の左端部より流入した旋回流が右端の吐
出口5に達するまでに5〜6回の旋回がなされるため螺
旋形流路長が長くなっていることであり、間隙7から開
口部12を通じて内筒6内に流入する旋回流のうち、第
1図の左端部から流入する旋回流は吐出口5に達する時
間を長く要し、よって間隙7の第1図の右端部から開口
部12を通じて内筒6に流入した旋回流が最も早く吐出
口5から大気に放出さね、最後に左端部から流入した旋
回流が吐出口5から放出されることになる。
Each branched flow thus expanded by flowing into the inner cylinder 6 becomes a spiral flow and heads toward the discharge port 5 while being guided by the guide blades 18 . At this time, since the helical pitch of the guide blades 18 is smaller than that of the guide wall 10, the helical pitch in the inner cylinder 6 becomes smaller. This means that the spiral flow flowing in from the left end in Figure 1 turns 5 to 6 times before reaching the discharge port 5 at the right end, so the length of the spiral flow path becomes longer. Among the swirling flows that flow into the inner cylinder 6 through the opening 12 from the gap 7, the swirling flow that flows from the left end in FIG. 1 takes a long time to reach the discharge port 5. The swirling flow that flows into the inner cylinder 6 from the left end through the opening 12 is discharged from the discharge port 5 to the atmosphere first, and the swirling flow that flows from the left end is discharged from the discharge port 5 last.

このような消音器によると、エンジンから放出される排
気脈動圧力波は、第1の膨張室9によって一旦膨′張さ
れたのち、分流通路11a〜11dを流れる過程で収縮
され、さらに内筒6の第2の膨張室14内に流れ込むと
きに再び膨張される。つまり2段階の膨張によって圧力
波が減衰される。
According to such a silencer, the exhaust pulsating pressure waves emitted from the engine are once expanded in the first expansion chamber 9, and then contracted in the process of flowing through the branch passages 11a to 11d. When it flows into the second expansion chamber 14 of No. 6, it is expanded again. In other words, the pressure waves are attenuated by the two-stage expansion.

加えて排気流をたとえば4つの流れに分流し、これら各
分流は開口部12を通じて内筒6内に流れ込むタイミン
グを異ならぜることにより各々膨張タイミングに位相を
生じさせるようにしたから、第4図に示す単一の排気脈
動圧力流Pは、互に位相がずれた4つの圧力波P r 
 + P2 *P3およびP4に減衰される。しかも、
開口部12が軸方向に沿って開口されていることおよび
分流が螺旋回流であることから、単一の分流は第1図の
左側から順次右側に向って開口部12に流入し、膨張タ
イミングが連続的に変化する。
In addition, the exhaust flow is divided into, for example, four flows, and each of these divided flows flows into the inner cylinder 6 through the opening 12 at different timings, thereby causing a phase in the expansion timing of each. The single exhaust pulsating pressure flow P shown in is composed of four mutually out-of-phase pressure waves P r
+ P2 *Attenuated to P3 and P4. Moreover,
Since the opening 12 is opened along the axial direction and the divided flow is a spiral flow, a single divided flow flows into the opening 12 sequentially from the left side of FIG. 1 to the right side, and the expansion timing is adjusted. Continuously changing.

このことは、第4図の圧力波P1〜P4の波形がなだら
かに連なることになり、よって特性Bで示すような定圧
流となる。したがって脈動流が定圧流に変換されるから
消音能力がきわめて高くなるなお、第4図で示す圧力波
P1は第1の分流通路11aを通った分流のものを示し
、P!は第2の分流通路11b、P3は第3の分流通路
11cおよびP4は第4の分流通路11dの分流を示す
。Pi〜P4が時間的に逆の順序となっているのは、先
に述べた通り、第1の分流がガイド翼180案内作用に
よシ第4の分流よシも遅れて吐出口5に流れてくること
による。
This means that the waveforms of pressure waves P1 to P4 in FIG. 4 are gently continuous, resulting in a constant pressure flow as shown by characteristic B. Therefore, since the pulsating flow is converted into a constant pressure flow, the silencing ability is extremely high. Note that the pressure wave P1 shown in FIG. indicates the second branch passage 11b, P3 indicates the third branch passage 11c, and P4 indicates the fourth branch passage 11d. The reason why Pi to P4 are in the reverse order in time is that, as mentioned earlier, the first branch flow is caused by the guiding action of the guide blade 180, and the fourth branch flow also flows to the discharge port 5 with a delay. By coming.

そして上記構成は、単一の排気脈動圧力流を円錐ヘッド
8およびガイド壁10・・・によって複数に分流すると
ともに螺旋回流を生じさせ、これら複数に分けられた螺
旋回流を内筒6の開口部12に向かわせることによって
各膨張タイミングに位相を生じさせるようにしであるた
め、使用する部品点数が少く、構造が簡素化し製造も容
易となって安価に提供できる。また膨張タイミングの位
相をずらせることから、第2の膨張室14としての内筒
6の内容積を小形にすることができ、消音器の小形化が
可能となる。すなわち小形にも拘らず消音能力が大とな
る。
The above configuration divides a single exhaust pulsating pressure flow into a plurality of parts by the conical head 8 and the guide wall 10 . . . and generates a spiral flow. 12 to produce a phase in each expansion timing, the number of parts used is small, the structure is simplified, manufacturing is easy, and it can be provided at low cost. Further, since the phase of the expansion timing is shifted, the internal volume of the inner cylinder 6 serving as the second expansion chamber 14 can be made smaller, and the muffler can be made smaller. In other words, despite its small size, the noise reduction ability is large.

なお開口部12の開口縁13を寸法lだけ突出させるの
d11部部12を通じて螺旋回流の1部を円滑に内筒6
内に導入するためである。
Note that by protruding the opening edge 13 of the opening 12 by a dimension l, a part of the spiral flow can be smoothly passed through the inner cylinder 6 through the d11 portion 12.
This is for the purpose of introducing it within the company.

以上詳述した通り本発明によれば流入口を介して外筒内
に導入した排気脈動圧力流を円錐ヘッドとガイド壁によ
って分流するとともに螺旋回流を生じさせ、各分流旋回
流を外筒と内筒との間の間隙内で旋回させて内筒に形成
した開口部より、互に位相をずらせて内筒内に導入して
膨張させるようにしたものである。したがってこのもの
によると、圧力波の膨張にもとづく減衰に加えて各分流
の膨張タイミングをずらせたことによる定圧流への変換
作用によって排気音を効果的に消音することができ、消
音能力がきわめて高いものとなった。しかも圧力流を分
流させかつ螺旋回流を生じさせるために円錐ヘッドと螺
旋状のガイド壁を使用し、かつ膨張タイミングの位相差
を生じさせるために内筒に1条の開口部を設けたので、
構成が簡単であり、部品点数が少く、組立てに手間も要
せず安価に製造でき、さらには小形となるので実用には
きわめて好都合であるなどの利点を奏する。
As described in detail above, according to the present invention, the exhaust pulsating pressure flow introduced into the outer cylinder through the inlet is divided by the conical head and the guide wall, and a spiral flow is generated, and each divided swirling flow is divided between the outer cylinder and the inner cylinder. The tubes are rotated within the gap between the tube and the tube, and are introduced into the inner tube through an opening formed in the inner tube, out of phase with each other, and expanded. Therefore, according to this product, in addition to attenuation based on the expansion of pressure waves, exhaust noise can be effectively muffled by shifting the expansion timing of each branch flow to convert it into a constant pressure flow, and the sound muffling ability is extremely high. It became a thing. In addition, a conical head and a spiral guide wall were used to separate the pressure flow and create a spiral flow, and a single opening was provided in the inner cylinder to create a phase difference in the expansion timing.
The structure is simple, the number of parts is small, the assembly requires no effort and can be manufactured at low cost, and furthermore, it is compact, which is extremely convenient for practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第10は排気消音器の
断面図、第2図および第3図は第1図中■−■線および
II!−1線に沿う断面図、第4図は作用を説明するた
めの特性図である。 1・・・外筒、4・・・排気流入口、5・・・吐出口、
6・・・内筒、8・・・円錐ヘッド、10・・・ガイド
壁、12・・・開口部、18・・・ガイド翼。
The drawings show one embodiment of the present invention, and No. 10 is a cross-sectional view of an exhaust silencer, and FIGS. 2 and 3 are line ■-■ in FIG. 1 and II! A sectional view taken along line -1 and FIG. 4 are characteristic diagrams for explaining the action. 1...Outer cylinder, 4...Exhaust inlet, 5...Discharge port,
6... Inner cylinder, 8... Conical head, 10... Guide wall, 12... Opening, 18... Guide wing.

Claims (1)

【特許請求の範囲】[Claims] 一端に排気流入口を有し他端に吐出口を設けた円形外筒
と、この外筒内にこの外筒の内周面と間隙を存してはぼ
同心状に設けられた内筒と、この内筒の一端を閉止して
上記排気流入口に対向された円錐ヘッドと、この円錐ヘ
ッドに設けられ上記流入口から導入された排気流を複数
個の流れに分流するとともにこれら分流を螺旋回流に変
えて上記間隙に案内する複数のガイド壁と、上記内筒に
形成されて上記間隙内の螺旋回流の上流側に向って開設
され軸方向に連続した1条の開口部と、この内筒内に軸
方向に沿って等間隔に設けられ上記開口部から流入さね
た排気を螺旋回流として順次吐出口へ導ひく多数のガイ
ド翼とを具備したことを特徴とする排気消音器。
A circular outer cylinder has an exhaust inlet at one end and an outlet at the other end, and an inner cylinder is provided approximately concentrically with the inner peripheral surface of the outer cylinder with a gap between the outer cylinder and the inner peripheral surface of the outer cylinder. , a conical head that faces the exhaust inlet with one end of the inner cylinder closed, and a conical head provided on the conical head to divide the exhaust flow introduced from the inlet into a plurality of flows, and to spiral these divided flows. a plurality of guide walls that convert the circular flow into the gap; a single opening formed in the inner cylinder and opened toward the upstream side of the spiral circular flow in the gap and continuous in the axial direction; An exhaust muffler characterized by comprising a large number of guide vanes provided in a cylinder at equal intervals along the axial direction and sequentially guiding the exhaust gas that has not flowed in from the opening into a discharge port as a spiral flow.
JP18545682A 1982-10-22 1982-10-22 Exhaust muffler Pending JPS5977020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18545682A JPS5977020A (en) 1982-10-22 1982-10-22 Exhaust muffler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18545682A JPS5977020A (en) 1982-10-22 1982-10-22 Exhaust muffler

Publications (1)

Publication Number Publication Date
JPS5977020A true JPS5977020A (en) 1984-05-02

Family

ID=16171105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18545682A Pending JPS5977020A (en) 1982-10-22 1982-10-22 Exhaust muffler

Country Status (1)

Country Link
JP (1) JPS5977020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679351B2 (en) * 2001-02-15 2004-01-20 Ttr Hp, Inc. Air turbine for combustion engine
CN100447377C (en) * 2004-05-14 2008-12-31 蒋爱臣 Energy saving muffler of exharst system in internal-combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679351B2 (en) * 2001-02-15 2004-01-20 Ttr Hp, Inc. Air turbine for combustion engine
CN100447377C (en) * 2004-05-14 2008-12-31 蒋爱臣 Energy saving muffler of exharst system in internal-combustion engine

Similar Documents

Publication Publication Date Title
US8474252B2 (en) Oval-to-round exhaust collector system
US3672464A (en) Muffler for internal combustion engine
US6415887B1 (en) Refractive wave muffler
US3913703A (en) Single inner assembly wave interference silencer
US3888331A (en) Power tuned wave interference silencer
AU730401B2 (en) Gas flow silencer
EP2354482B1 (en) Exhaust muffler device
JP2003314240A (en) Silencer for internal combustion engine
US4185715A (en) Sound-attenuating muffler for exhaust gases
KR20160021730A (en) Silencer
EP2007973A1 (en) Silencer of exhaust gases, in particular for motor vehicles
JPS5977020A (en) Exhaust muffler
JP2021139295A (en) Muffler
US8936133B2 (en) Four cycle internal combustion engine exhaust
SU530957A1 (en) Exhaust Muffler: Internal Combustion Engine
JP3337556B2 (en) Silencer
SU985343A1 (en) Multisection noise silencer
RU196363U1 (en) Exhaust silencer
RU166949U1 (en) EXHAUST NOISE MUFFLER FOR INTERNAL COMBUSTION ENGINES
RU2282730C2 (en) Exhaust muffler of internal combustion engine
US3747704A (en) Silencer
RU2333369C2 (en) Internal combustion engine silencer
RU1768771C (en) Silencer for internal combustion engine exhaust
RU33978U1 (en) Exhaust silencer
CN1282834A (en) Method and equipment for depressurizing high-pressure fluid in flow channel and attenuating pulsed dynamic energy of fluid