[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5977620A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPS5977620A
JPS5977620A JP57186951A JP18695182A JPS5977620A JP S5977620 A JPS5977620 A JP S5977620A JP 57186951 A JP57186951 A JP 57186951A JP 18695182 A JP18695182 A JP 18695182A JP S5977620 A JPS5977620 A JP S5977620A
Authority
JP
Japan
Prior art keywords
film
substrate
magnetic
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57186951A
Other languages
Japanese (ja)
Other versions
JPH0430083B2 (en
Inventor
Mamoru Sugimoto
守 杉本
Satoshi Nehashi
聡 根橋
Akihiko Kawachi
河内 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57186951A priority Critical patent/JPS5977620A/en
Publication of JPS5977620A publication Critical patent/JPS5977620A/en
Publication of JPH0430083B2 publication Critical patent/JPH0430083B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a vertical magnetic recording medium which has excellent vertical magnetic anisotropy without depending on the material of a substrate and has improved durability by forming a vertically magnetized film on a nonmagnetic cobalt alloy film. CONSTITUTION:A nonmagnetic Co alloy consisting of Co incorporated therein with >=45wt% Ta, etc. is formed as an underlying film 5, to >=0.2mu thickness on a substrate 1 such as glass, alumina or the like. A vertically magnetized film 3 of Co-Cr, etc. is then formed on the film 5 to >=0.2mu thickness. The excellent vertically magnetized film is obtd. by the film 5 irrespectively of the material of the substrate 1 and a magnetic recording medium havint high adhesion force among the substrate 1, the film 5 and the film 3 without giving rise to peeling, etc. and having good durability is obtd.

Description

【発明の詳細な説明】 本発明は、垂直磁気記録媒体に関する。[Detailed description of the invention] The present invention relates to perpendicular magnetic recording media.

従来の水平磁気記録は、記録密度が哉くなるにつれ、隣
p合った磁化による反磁界の影響で3)〜原)キロビッ
トパーインチC以下Kbpiと略す)が限界とされてい
たのに対し、岩崎俊−教授が提唱した垂直磁気記録は、
記録密度が高くなるにつれ、反磁界による磁化の杓ち消
しか減少するという特徴を有し、最大記録密度は、20
0〜300 Kbpiも可能といわれている。
In conventional horizontal magnetic recording, as the recording density decreased, the limit was 3) to 3) kilobits per inch (abbreviated as Kbpi) due to the influence of demagnetizing fields caused by adjacent magnetizations. Perpendicular magnetic recording proposed by Professor Shun Iwasaki,
As the recording density increases, the magnetization due to the demagnetizing field decreases, and the maximum recording density is 20
It is said that 0 to 300 Kbpi is also possible.

垂直磁気記録媒体の構成は、用途によって、各種考えら
れている。第1図にその例を示す。
Various configurations of perpendicular magnetic recording media have been considered depending on the application. An example is shown in FIG.

第1図Cα)は、基板1の上に高透磁率膜2を形成し、
その上に垂直磁化軸3を形成した、最も一般的な構成で
ある。−創:に−1i石透磁率脱はパー・マロイ、コバ
ルト系アモルファス股等か用いられている。
In FIG. 1 Cα), a high magnetic permeability film 2 is formed on a substrate 1,
This is the most common configuration in which a perpendicular magnetization axis 3 is formed thereon. -In order to reduce the magnetic permeability of -1i stones, per-malloy, cobalt-based amorphous materials, etc. are used.

第1図161は、基板上に直接垂直磁化膜3を形成した
媒体1.第1図161は、垂直磁化膜の磁気qk性を主
に向上させるため圧改良されたもので、垂直磁化膜3と
高透磁率膜20間に中間層4を設りた媒体である。一般
に、中間層4は、 E3io、  、チタン等が考えら
ノしている。
FIG. 1 161 shows a medium 1 in which a perpendicular magnetization film 3 is formed directly on a substrate. 161 in FIG. 1 is a medium in which the pressure has been improved mainly to improve the magnetic qk properties of the perpendicular magnetization film, and an intermediate layer 4 is provided between the perpendicular magnetization film 3 and the high permeability film 20. Generally, the intermediate layer 4 is made of E3io, titanium, or the like.

本発明は、Mr1図I6)の基本構成に関するものであ
る。第1図161の様に基板の上に垂直磁化H〜を直接
形成すると、基板のI質、表面性によって磁気特性が悪
化する。基板の影響を少くするには、垂泊磁化膜JL7
を厚くする。、基板の上に呵0ツ、チタン等非磁性膜を
形成し、その上に垂@磁化膜を形成する等が考えられる
が、前者は垂直磁化膜の膜厚が薄い方が良い垂直磁気記
録システムの場合には不適当であるし、後者は基板及び
垂直磁化軸との密着に間融がある。
The present invention relates to the basic configuration of Mr1 diagram I6). If perpendicular magnetization H~ is directly formed on the substrate as shown in FIG. 1 161, the magnetic properties will deteriorate depending on the I quality and surface properties of the substrate. To reduce the influence of the substrate, perpendicular magnetization film JL7
thicken. It is conceivable to form a non-magnetic film such as titanium on the substrate and form a perpendicularly magnetized film on top of it, but in the former case, the thinner the perpendicularly magnetized film is, the better for perpendicular magnetic recording. In the case of a system, the latter is not suitable, and the latter has a problem in the close contact with the substrate and the perpendicular magnetization axis.

木兄8Aは、かかる点に鑑みたもので、その目的は、基
板による磁気特性の影響を無くシ、垂直磁化膜単層媒体
よpも、優れた垂直磁気異方性を有する垂直磁気記録媒
体を作シだすことにある。
Kinei 8A was developed in consideration of these points, and its purpose is to eliminate the influence of the magnetic properties by the substrate, and to create a perpendicular magnetic recording medium that has superior perpendicular magnetic anisotropy compared to single-layer perpendicular magnetization film media. The goal is to start producing.

以下、具体的な実施例のもとに本発明を詳述する。Hereinafter, the present invention will be explained in detail based on specific examples.

実施例1 IP= M 性コバルトタンタル(以下CQ −Taと
略す)合釜痕を裾部磁化膜の下地に用いた。その基本4
1□#成を第2図に示すTaが、45重量−以上C,)
内に混入するとeO−Ta膜は非磁性化する。ガラス基
板の上に直接コバルトΦクロム垂直磁化膜(以下、cO
−Cr膜と略す)単層jMtJ成した場合と本発明によ
“″′磁性co−Ta膜を下地にし、その上にC□ −
Cr膜を形成した場合においてco −(EfM0厚と
CQ −Cfの垂直磁気異方性磁界(以下、助と略す)
−との関係を第3図に示す。CQ−Tα非磁性料は、C
ow ”a5(1(N :!t ’16 )であル、膜
厚は0.2μmである。Ilkは、トルクメーターによ
って測定した。点l116は、垂直磁化2層膜の特性で
あシ、実線7社、本発明による非磁性CQ T(zを下
地に設けた垂直磁化2層膜の特性を示した。特にcm 
−cy膜が0・3趣以下において、本発明の効果が歴然
としている。
Example 1 IP=M cobalt tantalum (hereinafter abbreviated as CQ-Ta) dowel marks were used as the base of the skirt magnetization film. Basics 4
1□# structure is shown in Figure 2. Ta is 45 weight - or more C,)
When mixed into the eO-Ta film, it becomes non-magnetic. Cobalt Φ chromium perpendicular magnetization film (hereinafter referred to as cO
In the present invention, a magnetic co-Ta film is used as a base layer, and a C□ -
When a Cr film is formed, co - (EfM0 thickness and CQ -Cf perpendicular magnetic anisotropy field (hereinafter abbreviated as "suke")
- is shown in Figure 3. The CQ-Tα nonmagnetic material is C
ow"a5(1(N:!t'16), and the film thickness is 0.2 μm. Ilk was measured by a torque meter. Point l116 is the characteristic of the perpendicular magnetization two-layer film. The solid line shows the characteristics of the perpendicularly magnetized two-layer film with non-magnetic CQ T (z) as the base layer.
The effect of the present invention is obvious when the -cy film is 0.3 or less.

実施例? 基板として、アルミナ酸化処理をしたアルミを用い、c
m : Cf垂直磁化膜の厚みを0.2μmと固定した
場合において、非磁性CQ −Taの膜厚とCQ−Cf
膜の垂直磁気異方性磁界との関係を第4図忙示す。アル
ミナ基板1忙直接形成し、膜厚も0.2μmと薄いCG
−CF膜の場合は、垂直磁気異方性が#1とんど無いの
に対し、下地にco60TaIIo非磁性膜を形成させ
ると、 CQTα非磁性膜厚が厚くなるにつれ、その上
にあるC0Ct−膜の垂直磁気異方性が、急激に増加し
た。
Example? As the substrate, aluminum treated with alumina oxidation was used, and c
m: When the thickness of the Cf perpendicular magnetization film is fixed at 0.2 μm, the film thickness of nonmagnetic CQ-Ta and CQ-Cf
Figure 4 shows the relationship between the perpendicular magnetic anisotropy of the film and the magnetic field. CG is formed directly on an alumina substrate, and the film thickness is as thin as 0.2 μm.
- In the case of a CF film, there is almost no #1 perpendicular magnetic anisotropy, but when a co60TaIIo nonmagnetic film is formed on the underlying layer, as the thickness of the CQTα nonmagnetic film increases, the C0Ct- The perpendicular magnetic anisotropy of the film increased rapidly.

なお、非磁性コバルト合金膜は、コバルトタンタル系に
限られるわけではない。他に、非磁性コバルトクロム、
非磁性コバルトニオブ、非磁性コバルトタングステン、
非磁性コバルトモリブテン非磁性コバルトバナジウム、
非磁性コバルトチタン、更には非磁性コバルト3元系で
もよい。また主磁極、補助磁極対向型の磁気ヘッドにお
いてはCQ−Cf膜の下に高透磁率膜を設けると記録再
生効率は上昇するが、パーマ日イ等の変わシに高透磁率
アモルファスCo−TcLを設けると、記録再生効率の
上昇のみならず、C:、Q−Crの垂直磁気異方性及び
耐久性も上昇する仁とはいうまでもない。
Note that the nonmagnetic cobalt alloy film is not limited to cobalt tantalum. In addition, non-magnetic cobalt chromium,
Non-magnetic cobalt niobium, non-magnetic cobalt tungsten,
Non-magnetic cobalt molybdenum, non-magnetic cobalt vanadium,
Non-magnetic cobalt titanium or even non-magnetic cobalt ternary system may be used. In addition, in magnetic heads with main poles and auxiliary poles facing each other, providing a high magnetic permeability film under the CQ-Cf film increases the recording and reproducing efficiency. Needless to say, the provision of the above not only increases the recording and reproducing efficiency, but also increases the perpendicular magnetic anisotropy and durability of C: and Q-Cr.

以上のように本発明によれば、cOCg−垂直磁化膜の
垂直磁気異方性は、基板の材質によらない。
As described above, according to the present invention, the perpendicular magnetic anisotropy of the cOCg-perpendicularly magnetized film does not depend on the material of the substrate.

Co Cj−膜厚が0.2μmと薄い場合でもHk >
 5KO,である等の特徴を有するものである。
Co Cj - Hk > even when the film thickness is as thin as 0.2 μm
It has characteristics such as 5 KO.

【図面の簡単な説明】[Brief explanation of drawings]

第1甲は、垂直磁気記録媒体の構成例を示すもの、第2
図は、本発明による構成を示すもの。 第3図tよ、コバルトクロム単層膜と本発明による下地
に非磁性コバルトタンタルを有したコバルトクロム2層
膜において、コバルトクロムの膜厚に対する垂直磁気異
方性磁界をプロットしたもの、第4図は、本発明による
非磁性コバルトタンタルの膜厚の効果を示しえものであ
る。 1・一基板 2・・高透磁率膜 3・争垂直磁化膜 4・・中間層 5・・非磁性コバルト合金膜 6・・単層膜の磁気特性 711・2層膜Q磁気特性 以   上 出願人 株式会社諏訪精工舎 代理人 弁理士最 上  務 第1図 第2図 co−(:y  frls  tk;ckuess  
()Am)第3図 0    0、(ジλ   o、3     武tCo
−丁”aFrl−七kickwss (JJm)第4図
Part 1 A shows an example of the configuration of a perpendicular magnetic recording medium, Part 2
The figure shows a configuration according to the present invention. Figure 3, T, is a plot of the perpendicular magnetic anisotropy field versus the film thickness of cobalt chromium for a cobalt chromium single layer film and a cobalt chromium double layer film with non-magnetic cobalt tantalum as an underlayer according to the present invention. The figure shows the effect of the non-magnetic cobalt tantalum film thickness according to the present invention. 1. Substrate 2. High magnetic permeability film 3. Perpendicular magnetization film 4. Intermediate layer 5. Non-magnetic cobalt alloy film 6. Magnetic properties of single layer film 711. Q magnetic properties of double layer film Above application Person Suwa Seikosha Co., Ltd. Agent Patent Attorney Mogami Figure 1 Figure 2 co-(:y frls tk;ckuess
() Am) Fig. 3 0 0, (jiλ o, 3 TaketCo
-Ding”aFrl-7 kickwss (JJm) Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 非41様性コバルト系、合金膜の上に垂直磁化膜を形成
したことを特徴とする垂直磁気記録媒体。
A perpendicular magnetic recording medium characterized in that a perpendicular magnetization film is formed on a non-41-like cobalt alloy film.
JP57186951A 1982-10-25 1982-10-25 Vertical magnetic recording medium Granted JPS5977620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186951A JPS5977620A (en) 1982-10-25 1982-10-25 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186951A JPS5977620A (en) 1982-10-25 1982-10-25 Vertical magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5977620A true JPS5977620A (en) 1984-05-04
JPH0430083B2 JPH0430083B2 (en) 1992-05-20

Family

ID=16197574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186951A Granted JPS5977620A (en) 1982-10-25 1982-10-25 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5977620A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632883A (en) * 1985-04-22 1986-12-30 International Business Machines Corporation Vertical recording medium with improved perpendicular magnetic anisotropy due to influence of beta-tantalum underlayer
US4657824A (en) * 1985-10-28 1987-04-14 International Business Machines Corporation Vertical magnetic recording medium with an intermetallic compound nucleating layer
US4722869A (en) * 1985-07-03 1988-02-02 Hitachi, Ltd. Magnetic recording medium
JPS63300428A (en) * 1987-05-29 1988-12-07 Matsushita Electric Ind Co Ltd Production of perpendicular magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632883A (en) * 1985-04-22 1986-12-30 International Business Machines Corporation Vertical recording medium with improved perpendicular magnetic anisotropy due to influence of beta-tantalum underlayer
US4722869A (en) * 1985-07-03 1988-02-02 Hitachi, Ltd. Magnetic recording medium
US4657824A (en) * 1985-10-28 1987-04-14 International Business Machines Corporation Vertical magnetic recording medium with an intermetallic compound nucleating layer
JPS63300428A (en) * 1987-05-29 1988-12-07 Matsushita Electric Ind Co Ltd Production of perpendicular magnetic recording medium

Also Published As

Publication number Publication date
JPH0430083B2 (en) 1992-05-20

Similar Documents

Publication Publication Date Title
KR100328750B1 (en) Magnetic disc apparatus
US5285339A (en) Magnetoresistive read transducer having improved bias profile
JP2006209943A (en) Perpendicular magnetic recording medium with magnetic torque layer coupled to perpendicular recording layer
TW200830298A (en) Perpendicular magnetic recording medium with multilayer recording structure including intergranular exchange enhancement layer
JPS6063710A (en) Magnetic recording medium
JPH0573880A (en) Magnetic recording medium and manufacture thereof
JPS5977620A (en) Vertical magnetic recording medium
JP2004152454A (en) Magnetic head and its manufacturing method
JPH06295431A (en) Perpendicular magnetic recording medium
JPH0845035A (en) Thin film magnetic head
JPH048852B2 (en)
JPS63106917A (en) Magnetic recording medium
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JPH0664730B2 (en) Magnetic recording body
JPS61177633A (en) Production of vertical magnetic recording medium
JPH03160615A (en) Thin-film type magnetic recording medium
JPH0831639A (en) Vertical magnetic recording medium
JPS6057503A (en) Magnetic recording and reproducing device
JPS61258322A (en) Magneto-resistance effect head
JPH01173312A (en) Magnetic recording medium
JPH04245007A (en) Magnetic head
JPS63146215A (en) Perpendicular magnetic recording medium
JPH05266454A (en) Perpendicular magnetic recording medium
JPH03130915A (en) Perpendicular magnetic recording medium and its production
JPS6083209A (en) Magnetic head for vertical magnetic recording