[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5972244A - Adaptive forecasting encoding system - Google Patents

Adaptive forecasting encoding system

Info

Publication number
JPS5972244A
JPS5972244A JP18235482A JP18235482A JPS5972244A JP S5972244 A JPS5972244 A JP S5972244A JP 18235482 A JP18235482 A JP 18235482A JP 18235482 A JP18235482 A JP 18235482A JP S5972244 A JPS5972244 A JP S5972244A
Authority
JP
Japan
Prior art keywords
signal
residual
residual signal
quantization
quantizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18235482A
Other languages
Japanese (ja)
Other versions
JPH038136B2 (en
Inventor
Masaaki Yoda
雅彰 誉田
Nobuhiko Kitawaki
北脇 信彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18235482A priority Critical patent/JPS5972244A/en
Publication of JPS5972244A publication Critical patent/JPS5972244A/en
Publication of JPH038136B2 publication Critical patent/JPH038136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/04Differential modulation with several bits, e.g. differential pulse code modulation [DPCM]
    • H03M3/042Differential modulation with several bits, e.g. differential pulse code modulation [DPCM] with adaptable step size, e.g. adaptive differential pulse code modulation [ADPCM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Abstract

PURPOSE:To shorten an encoding and decoding processing time and to improve an S/N ratio by detecting the periodic locality of the residual electric power from a locally decoded residual signal, and adapting the number of quantized bits of the residual signal backward on the basis of the detection result. CONSTITUTION:The difference signal (residual signal) between an input signal X(n) from an input terminal 21 and a forecasted signal X'(n) is generated by a subtracter 22 and quantized by a quantizer 23, whose output is sent as a code sequence I(n) to an output buffer 24. The code sequence I(n) is quantized reversely by a reverse quantizer 25 simultaneously, and an adder 26 adds its output e'(n) and the forecasted signal X'(n) together to input a locally decoded signal X''(n) to a forecasting device 27. The quantization width and number of quantized bits of the quantizer 23 and the coefficient of the forecasting device 27 are adapted on the basis of the decoded residual signal e'(n).

Description

【発明の詳細な説明】 この発明は例えば16〜32キロビット/秒程度の情報
速度で、音声信号等を能率良く右号化するに適する適応
予測符号化方式(1関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an adaptive predictive coding system (1) suitable for efficiently encoding audio signals and the like at an information rate of about 16 to 32 kilobits/second, for example.

〈従来技術〉 従来の適応予測符号化では、予測器の予測係数及び量子
化幅を入力信号の性質(二適合させることより、符号化
効率の向上を図っていた。さら(=符号化効率の向上を
図るものとして量子化ビット数を擬似残差電力の時間的
な偏り(1応じて不均一に割当てる方法が提案された。
<Prior art> In conventional adaptive predictive coding, coding efficiency was improved by adapting the predictive coefficients and quantization width of the predictor to the characteristics of the input signal. In order to improve this, a method has been proposed in which the number of quantization bits is allocated unevenly according to the temporal bias (1) of the pseudo residual power.

例えば特願昭54−042858、特願昭56−177
564+=示されている適応予測符号化では、入力信号
から残差電力を検出した後、ビット割当て処理を行うフ
ォワード形適応化を用いていた。
For example, patent application No. 54-042858, patent application No. 56-177.
564+=The adaptive predictive coding shown uses forward adaptation in which bit allocation processing is performed after detecting the residual power from the input signal.

即ち第1図(=示すよう(−入力端子11からの入力信
号x (n)は適応予測1符号化部12で予測符号化さ
れて多重化部13へ供給される。−万人力信号X(n)
は擬似残差電力算出部14へも供給され、予測符号化部
12での入力信号と予測信号との差信号(残差信号)と
対応した擬似残差電力V+が算出され、その算出にもと
すき、予測符号化部12内の残差信号(二対する量子化
(−おける量子化幅が量子化幅制御信号へ(nlにより
適応的C二制御される。また前記擬似残差電力Vjはビ
ット割当て部15ζ−人力されて、ビット割当て信号b
 (n)が算出され、これにより予測符号化部12仁お
ける残差信号に対する符号化ビットが適応的(二割当て
られる。擬似残差電力Viは多重化部13へ入力されて
残算信号の符号化出力と共C二条重化されて伝送路16
−・送出される。
That is, as shown in FIG. n)
is also supplied to the pseudo residual power calculation unit 14, and the pseudo residual power V+ corresponding to the difference signal (residual signal) between the input signal and the predicted signal in the predictive coding unit 12 is calculated. Then, the residual signal in the predictive encoding unit 12 (2 pairs of quantization widths is adaptively controlled by the quantization width control signal (nl). Also, the pseudo residual power Vj is Bit allocation unit 15ζ - manually generated bit allocation signal b
(n) is calculated, and the coded bits for the residual signal in the predictive encoding unit 12 are adaptively assigned (2). The pseudo residual power Vi is input to the multiplexing unit 13 and the code of the residual signal The transmission line 16 is overlapped with the C output and the transmission line 16.
-・Sent.

このようCニフォワード形適応化を用いた適応予測符号
化C:は次のような欠点があった。
Adaptive predictive coding C: using such forward adaptation has the following drawbacks.

(1)  一定のフレーム毎に擬似残差電力の検出を行
うため、符復号化処理で約60ミ)’秒の時間遅れが生
じる。
(1) Since the pseudo residual power is detected for each fixed frame, a time delay of about 60 milliseconds occurs in the encoding/decoding process.

(2)残差信号と同時に電力情報を伝送するため(二余
分の情報量を必要とする。
(2) To transmit power information at the same time as the residual signal (two extra amounts of information are required).

〈発明の概要〉 この発明は従来のフォワード形のビット割当てのもつ欠
点を除去するため、局部復号化された残差信号から残差
電力の周期的な局在性を検出し、これにもとづいて残差
信号の量子化ビット数をバンクワードに適応化すること
を特徴とした適応予測符号化である。
<Summary of the Invention> In order to eliminate the drawbacks of the conventional forward type bit allocation, the present invention detects the periodic locality of the residual power from the locally decoded residual signal, and based on this detects the periodic locality of the residual power. This is adaptive predictive coding characterized by adapting the number of quantization bits of the residual signal to bank words.

〈実施例〉 ゛ 第2図はこの発明の実施例を示す。入力端子11から入
力される入力信号x (n、)と、予測信号x(nlと
の差信号(残差信号)が減算器22でとられ、その残差
信号は量子化器23で量子化されて符号系列I (n)
として出力バッファ24へ送られる。それと同時(二符
号系列工(川゛は逆量子化器25で逆量子△ 化され、その出力e (n、)と予測信号x(n)とを
加算器26で加算して局部復号化信号0(n)が求めら
れて予測器27へ入力される。量子化器23における量
子化幅及び量子化ビット数、また予測器27の係数は復
号化された残差信号◇(n)(二もとづいて適応化され
る。
<Embodiment> ゛Figure 2 shows an embodiment of the present invention. A difference signal (residual signal) between the input signal x (n,) input from the input terminal 11 and the predicted signal x (nl) is obtained by a subtracter 22, and the residual signal is quantized by a quantizer 23. code sequence I (n)
It is sent to the output buffer 24 as a. At the same time, (two-code sequence processing) the river is inversely quantized by the inverse quantizer 25, and its output e (n,) and the predicted signal x (n) are added together by the adder 26 to produce a locally decoded signal. 0(n) is calculated and input to the predictor 27.The quantization width and number of quantization bits in the quantizer 23, as well as the coefficients of the predictor 27, are calculated using the decoded residual signal ◇(n)(2). It is adapted accordingly.

次(二各部の適応化処理について述べる。量子化幅適応
化部28では、残差信号会(川を用いて次式により量子
化幅△(n)をサンプル毎に適応化する。
Next, the adaptation processing of each section will be described. The quantization width adaptation section 28 adapts the quantization width Δ(n) for each sample using the residual signal function (river) according to the following equation.

△(nlz)=△o&’v”(r+) v(n)=βV(n−1)十(1−β) Q2 (nl
G (I (川)ここでv(n)は第nサンプル時点に
おける残差電力の推定値、△0.βは定数である。G 
(I (nl >は過負荷時における残差電力の推定値
の修正係数であり、量子化レベルが最も外側(過負荷状
態)の場合はG(I(川)=Go≧1とし、それ以外の
場合はG (I (n) ) = 1とする。
△(nlz) = △o&'v''(r+) v(n) = βV(n-1) 10(1-β) Q2 (nl
G (I (river) where v(n) is the estimated value of the residual power at the nth sample time, Δ0.β is a constant.G
(I (nl >) is a correction coefficient for the estimated value of residual power during overload, and when the quantization level is the outermost (overload state), G (I (river) = Go ≥ 1, otherwise In this case, G (I (n)) = 1.

△ 量子化ビット数は残差信号e (nlを一旦バツファ部
29(1蓄わえた後、これらのデータを用いて量子化ビ
ット適応化部31において算出される。量子化ビット適
応化部31の動作の詳細を第3図(二沿って説明する。
△ The number of quantization bits is calculated using the residual signal e (nl) in the buffer section 29 (1), and then using these data in the quantization bit adaptation section 31. The details of the operation will be explained with reference to FIG.

まずバッファ部29内のNb個の残差データe (−N
b) 、 e (−Nb+1 ) 、・・・・・・・・
・e(−1)を用いて残差信号の周期を検出する。
First, Nb residual data e (-N
b), e (-Nb+1),...
- Detect the period of the residual signal using e(-1).

周期T、は残差データの自己相関関数 ・・・・・・τ□、X が最大となる遅れ時間τとして
決定される。次(1時間軸を第4図イニ示すように周期
的シ二くり返す部分区間によって分割する。部分区間は
1周期T、内を等間隔(二分割した時の各区間であり、
これらが周期T、でくり返すものとする。分析フレーム
(n = −Nb、 −Nb+ 1 、−−−1 ) 
に対する部分区間の位ITdは第1番目の部分区間(第
4図でT (n) −1となるnが属する区間)内での
残差電力が最大となるように決定する。この時各部分区
間内での残差電力viは次式で求められる。
The period T is determined as the delay time τ at which the autocorrelation function of the residual data...τ□, X is maximum. Next (one time axis is divided into subintervals that repeat periodically as shown in Figure 4).The subintervals are equal intervals within one period T (each interval when divided into two,
Assume that these are repeated with a period T. Analysis frame (n = -Nb, -Nb+ 1, ---1)
The position ITd of the subinterval for is determined so that the residual power within the first subinterval (the section to which n, which is T (n) −1 in FIG. 4, belongs) is maximized. At this time, the residual power vi within each partial interval is determined by the following equation.

次に未来のNf個のす、ンプル時点(n=o 、1・・
・・・Nf−1)が属する部分区間を、上で決定された
部分区間を外挿することC二よって求める。この時未来
のNb個の残差信号e (0) 、 e (11−・−
・e (Nf−1>し対する量子化ビット数を次式で求
める。
Next, Nf points in the future (n=o, 1...
. . Nf-1) is found by extrapolating the above-determined subinterval C2. At this time, Nb future residual signals e (0), e (11-・-
- Find the number of quantization bits for e (Nf-1>) using the following formula.

n = 0 、1−−−−=N(。n = 0, 1---=N(.

ここでRは平均ビットレートCビット/サンプル)、C
:は未来のNf個のサンプル時点が属する部分区間の時
間長比率である。っまり復号化信号の波形歪が最小にな
るようC:量子化ビット数を時間的C二不均−C:割当
てる。
where R is the average bit rate C bits/sample), C
: is the time length ratio of the subinterval to which Nf future sample points belong. The number of quantization bits is allocated temporally so that the waveform distortion of the decoded signal is minimized.

予測器29は特願昭56−177564の適応予測符号
化方式で用いられたものと同様(二、パーコールラティ
ス型フィルタで構成され、予測器適応化部32において
パーコール係数は局部復号化△ 信号x(nlを用いて適応化される。
The predictor 29 is similar to the one used in the adaptive predictive coding method of Japanese Patent Application No. 177,564 (1982) (2. It is composed of a Percoll lattice type filter, and the Percoll coefficients are locally decoded in the predictor adaptation section 32. (Adapted using nl.

以上述べたよう1−残差信号は可変ビット数b (n3
で量子化されるため、その符号系列を一定の速度で伝送
するためC二は出力バッファ24を介して伝送する必要
がある。この場合残差信号の符号系列1(n)はN1個
のサンプルからなるフレーム単位で全ビット数が一定と
なるため、出力バッファ24の容量(長さ)は次式で与
えられる長さを超えることはない。
As mentioned above, the 1-residual signal has variable bit number b (n3
Therefore, in order to transmit the code sequence at a constant speed, C2 must be transmitted via the output buffer 24. In this case, the total number of bits of the code sequence 1(n) of the residual signal is constant in each frame consisting of N1 samples, so the capacity (length) of the output buffer 24 exceeds the length given by the following equation. Never.

ここでbmax、bmlnは量子化ビット数の最大値と
最小値を表わす。またこの時の遅延時間の上限は(バッ
ファ長の上限)/(2Rfs)(秒)で与えられる。こ
こでf5はサンプリング周波数である。
Here, bmax and bmln represent the maximum and minimum values of the number of quantization bits. Further, the upper limit of the delay time at this time is given by (upper limit of buffer length)/(2Rfs) (seconds). Here f5 is the sampling frequency.

受信側では伝送符号誤りがない場合、受信した残差デー
タを用いて送信側と同一の適応化処理が可能である。即
ち第2図(二おいて受信された残差データは入力バッフ
ァ33に入力され、これよりの出力は逆量子化器34で
逆量子化され、その逆量子化出力は加算器35で予測器
36よりの予測信号と加算されて復号出力として出力端
子37へ出力されると共(二、予測器36及び予測適応
化部38に入力される。そめ予測適応化部38により予
測器36の予測係数は適応制御される。逆量子化器34
の出力は量子化幅適応化部39、バッファ部41へ供給
され、量子化幅適応化部39の出〕]l二より逆量子化
器34の逆量子化幅が適応制御される。量子化ビット適
応化部42はバッファ部41の信号をもと(二量子化ビ
ット数を演算し、逆量子化器34で逆量子化するビット
数を適応制御する。量子化幅適応化部39、量子化ビッ
ト適応化部42、予測器適応化部38はそれぞれ送信側
の量子化幅適応化部28、量子化ビット数適応化部31
、予測゛器適応化部32と同様の構成及び動作1を行う
ものである。
On the receiving side, if there is no transmission code error, the same adaptation process as on the transmitting side can be performed using the received residual data. That is, the residual data received in FIG. 36 and is output as a decoded output to the output terminal 37 (2. It is input to the predictor 36 and the prediction adaptation section 38. The prediction adaptation section 38 adds the prediction signal of the predictor 36 The coefficients are adaptively controlled.Inverse quantizer 34
The output of is supplied to the quantization width adaptation section 39 and the buffer section 41, and the inverse quantization width of the inverse quantizer 34 is adaptively controlled by the output of the quantization width adaptation section 39. The quantization bit adaptation unit 42 calculates the number of quantization bits based on the signal from the buffer unit 41 and adaptively controls the number of bits to be inversely quantized by the inverse quantizer 34.The quantization width adaptation unit 39 , the quantization bit adaptation unit 42 and the predictor adaptation unit 38 are the quantization width adaptation unit 28 and the quantization bit number adaptation unit 31 on the transmitting side, respectively.
, and performs the same configuration and operation 1 as the predictor adaptation unit 32.

〈効 果〉 以上説明したよう(二この発明では量子化ビット数、量
子化幅、予測器の予測係数の適応化処理を全て残差デー
タを用いてパックワード(二行うために、従来の方式(
前述の昭54=042858又は昭56−177564
)l二くらべて、次の利点がある。
<Effects> As explained above (2) In this invention, the adaptation processing of the number of quantization bits, quantization width, and prediction coefficients of the predictor is all performed using packed words (2) using the residual data. (
The aforementioned 1977=042858 or 1977-177564
) has the following advantages.

(1)符復号化処理(:おける遅延時間は1ミリ秒以下
であり、大幅(二短縮できる。
(1) The delay time in the encoding/decoding process is less than 1 millisecond, which can be significantly reduced.

(2)残差信号だけを伝送すれば良く、伝送路上の符号
構成が簡単化される。
(2) Only the residual signal needs to be transmitted, and the code structure on the transmission path is simplified.

また量子化ビット適応化を用いない、従来の適応予測符
号化とくらべて音声入力≦二対する信号対量子化雑音比
(S/N比)が32キロビット/秒で382〜4.9d
B向上する。
Also, compared to conventional adaptive predictive coding that does not use quantization bit adaptation, the signal-to-quantization noise ratio (S/N ratio) for audio input ≦ 2 is 382 to 4.9 d at 32 kbit/s.
B improve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の量子化ビット適応化を用いた適応予測符
号化方式を示す構成図、第2図はこの発明(二よる適応
予測符号化方式の一例を示す構成図、第3図は量子化ビ
ット適応化部の動作を示すフローチャート、第4図は部
分区間の説明図である。 21:入力端子、22:減算器、23:量子化器、25
:逆量子化器、28.39:量子化幅適応化部、29.
41:バッファ、31.42:量子化ビット適応化部、
26:加算器、27゜36:予測器、32,38:予測
器適応化部、24:出力バッファ、33:入力バッファ
、25゜34:逆量子化器、37:出力端子。 特許出願人  日本電信電話公社
Fig. 1 is a block diagram showing an adaptive predictive coding method using conventional quantization bit adaptation; Fig. 2 is a block diagram showing an example of an adaptive predictive coding method based on the present invention (2); FIG. 4 is an explanatory diagram of the partial interval. 21: Input terminal, 22: Subtractor, 23: Quantizer, 25
: Inverse quantizer, 28.39: Quantization width adaptation unit, 29.
41: Buffer, 31.42: Quantization bit adaptation unit,
26: Adder, 27° 36: Predictor, 32, 38: Predictor adaptation unit, 24: Output buffer, 33: Input buffer, 25° 34: Inverse quantizer, 37: Output terminal. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)適応予測符号化C二おいて、局部復号化された残
差信号の電力の周期的な偏在性をパンクワードに検出す
る手段と、これら電力から残差信号の量子化ビット数を
時間的(二不均−に割当てる手段と、これら量子化ビッ
ト数を用いて残差信号を適応量子化する手段を有する適
応予測符号化方式。
(1) In adaptive predictive coding C2, a means for detecting the periodic uneven distribution of the power of the locally decoded residual signal as a puncture word, and a means for detecting the quantization bit number of the residual signal from these powers over time. An adaptive predictive coding system comprising means for allocating the number of bits non-uniformly and means for adaptively quantizing a residual signal using these quantization bit numbers.
JP18235482A 1982-10-18 1982-10-18 Adaptive forecasting encoding system Granted JPS5972244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18235482A JPS5972244A (en) 1982-10-18 1982-10-18 Adaptive forecasting encoding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18235482A JPS5972244A (en) 1982-10-18 1982-10-18 Adaptive forecasting encoding system

Publications (2)

Publication Number Publication Date
JPS5972244A true JPS5972244A (en) 1984-04-24
JPH038136B2 JPH038136B2 (en) 1991-02-05

Family

ID=16116840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18235482A Granted JPS5972244A (en) 1982-10-18 1982-10-18 Adaptive forecasting encoding system

Country Status (1)

Country Link
JP (1) JPS5972244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251828A (en) * 1985-08-30 1987-03-06 Nec Corp Voice coding device
JPS6429121A (en) * 1987-07-24 1989-01-31 Nec Corp Method and apparatus for quantization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283014A (en) * 1975-12-29 1977-07-11 Matsushita Electric Ind Co Ltd Rectangular coordinates conversion coding
JPS5454507A (en) * 1977-10-11 1979-04-28 Nippon Telegr & Teleph Corp <Ntt> Coding processing system of adaptive expectancy
JPS56129444A (en) * 1980-03-17 1981-10-09 Nec Corp Adaptive type differential pcm system and its device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283014A (en) * 1975-12-29 1977-07-11 Matsushita Electric Ind Co Ltd Rectangular coordinates conversion coding
JPS5454507A (en) * 1977-10-11 1979-04-28 Nippon Telegr & Teleph Corp <Ntt> Coding processing system of adaptive expectancy
JPS56129444A (en) * 1980-03-17 1981-10-09 Nec Corp Adaptive type differential pcm system and its device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251828A (en) * 1985-08-30 1987-03-06 Nec Corp Voice coding device
JPS6429121A (en) * 1987-07-24 1989-01-31 Nec Corp Method and apparatus for quantization

Also Published As

Publication number Publication date
JPH038136B2 (en) 1991-02-05

Similar Documents

Publication Publication Date Title
US4811396A (en) Speech coding system
JPS5921039B2 (en) Adaptive predictive coding method
US4831636A (en) Coding transmission equipment for carrying out coding with adaptive quantization
US7289951B1 (en) Method for improving the coding efficiency of an audio signal
EP0720316A1 (en) Adaptive digital audio encoding apparatus and a bit allocation method thereof
EP0049271B1 (en) Predictive signals coding with partitioned quantization
US5509102A (en) Voice encoder using a voice activity detector
JPS5972244A (en) Adaptive forecasting encoding system
KR100984637B1 (en) Method and unit for substracting quantization noise from a pcm signal
US6012025A (en) Audio coding method and apparatus using backward adaptive prediction
JP2655063B2 (en) Audio coding device
JP2005516442A6 (en) Method and unit for removing quantization noise from a PCM signal
JP3294024B2 (en) Encoded transmission method of audio signal
JPS59129900A (en) Band division coding system
GB2322776A (en) Backward adaptive prediction of audio signals
JPS6134697B2 (en)
JP3107922B2 (en) Leak prediction coding method
JPS6251541B2 (en)
Dubnowski et al. Variable rate coding
JP2870608B2 (en) Voice pitch prediction device
JPH02183630A (en) Voice coding system
JPS60172847A (en) Adaptive forecast coding system
JP2952776B2 (en) Variable bit rate adaptive predictive coding
JPS63285059A (en) Coder and decoder
JPS623440B2 (en)