JPS597206B2 - This is the best way to get started. - Google Patents
This is the best way to get started.Info
- Publication number
- JPS597206B2 JPS597206B2 JP50101365A JP10136575A JPS597206B2 JP S597206 B2 JPS597206 B2 JP S597206B2 JP 50101365 A JP50101365 A JP 50101365A JP 10136575 A JP10136575 A JP 10136575A JP S597206 B2 JPS597206 B2 JP S597206B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- copper
- solid electrolyte
- weight
- polarization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Conductive Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、固体電解質を用いる電池、重量計、大容量コ
ンデンサ等の素子の銅電極の改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in copper electrodes for devices such as batteries, gravimeters, and large-capacity capacitors that use solid electrolytes.
銅は、酸性水溶液中で平滑電極としても分極が小さく、
化学量論的溶解析出を行うので、重量計として用いる場
合でも平滑電極を用いている。Copper has low polarization even as a smooth electrode in an acidic aqueous solution.
Since stoichiometric solution deposition is performed, a smooth electrode is used even when used as a gravimeter.
銀塩を中心とする固体電解質素子の場合、金属極は多孔
質電極にしても分極が大きく、また時間による変動が大
きい。例えば、一方の電極に金、他方の電極に銀、その
間に銀塩固体電解質を介在させ、金属極上に析出した銀
が溶解し終わつた時の電位変動を信号として利用する重
量計素子では、水溶液を用いる場合に比べて使用電流範
囲が狭いので、大きさの異なる素子を何種類も用意せね
ぱならない等の不都合がある。また、一方の電極にAg
2S、Ag2Se、Ag2Teのような分極性電極を、
他方の電極に銀を用いる重量計素子においても、基準極
を別個に設け、分極性電極のみの電位変動を利用する配
慮をしている。In the case of a solid electrolyte element mainly made of silver salt, the metal electrode has large polarization even if it is a porous electrode, and also has large fluctuations over time. For example, in a gravimeter element that uses gold on one electrode, silver on the other electrode, and a silver salt solid electrolyte in between, and uses the potential fluctuation as a signal when the silver deposited on the metal electrode finishes dissolving, it is possible to use an aqueous solution. Since the usable current range is narrower than in the case of using a conventional method, there are inconveniences such as having to prepare several types of elements of different sizes. Also, one electrode has Ag
Polarizable electrodes such as 2S, Ag2Se, Ag2Te,
Even in the weighing device using silver for the other electrode, consideration is given to providing a separate reference electrode and utilizing potential fluctuations of only the polarizable electrode.
さらに、一方の電極に多孔質炭素、他方の電俸に銀を用
いる二極構造の電気二重層素子によつて重量計としたり
、エネルギー貯蔵を行う試みもあるが、使用電流密度を
小さくしないと、誤差が大きくなつたり、損失が大きく
なる欠点がある。Furthermore, there are attempts to use bipolar electric double layer devices with porous carbon for one electrode and silver for the other electrode to use as a weighing scale or to store energy, but the current density used must be reduced. , the disadvantage is that the error becomes large and the loss becomes large.
先に、一方の電極に桜活性炭のような分極性電極を、他
方の電極に銅を、電解質に銅塩系の銅イオン伝導性固体
電解質を用いる電気二重層キャパシタが提案されたが、
銅電極は銀電極以上に分極が大きくて実用上支障となつ
ていた。本発明は、この種電池、電気二重層キャパシタ
などの固体電解質を用いる素子用の銅電極の分極を小さ
くすることを目的とするもので、放電分極が小さく電圧
の高い電池、あるいは損失の小さい電気二重層キャパシ
タを与える銅電極を提供するものである。Previously, an electric double layer capacitor was proposed that uses a polarizable electrode such as cherry activated carbon for one electrode, copper for the other electrode, and a copper salt-based copper ion conductive solid electrolyte for the electrolyte.
Copper electrodes have greater polarization than silver electrodes, which has been a practical problem. The purpose of the present invention is to reduce the polarization of copper electrodes for devices using solid electrolytes such as this type of battery and electric double layer capacitor. A copper electrode is provided to provide a double layer capacitor.
本発明の銅電極は、銅イオン伝導電性の固体電解質とア
マルガム化した銅粉との混合物の成形体よりなることを
特徴とする。The copper electrode of the present invention is characterized in that it is made of a molded body of a mixture of a solid electrolyte that conducts copper ions and amalgamated copper powder.
以下、本発明を実施例によつて詳しく説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.
第1図は固体電解質素子の構成例を示す。図において、
1は銅電極で、アマルガム化した銅粉と銅イオン伝導電
性固体電解質の混合物とを成形したものである。2は集
電板として作用する銅網で、銅電極1を仮成形した上に
のせ、本成形によつて圧着している。FIG. 1 shows an example of the structure of a solid electrolyte element. In the figure,
1 is a copper electrode formed from a mixture of amalgamated copper powder and a solid electrolyte that conducts copper ions. Reference numeral 2 denotes a copper mesh serving as a current collector plate, which is placed on the temporarily formed copper electrode 1 and is crimped during the final forming.
3はリードで、集電板2上にハンダ、銀ペーストなどに
より電気的に接続されている。A lead 3 is electrically connected to the current collector plate 2 by solder, silver paste, or the like.
4は固体電解質層である。4 is a solid electrolyte layer.
5は銅電極1の対極をなす電極で、素子が電池の場合は
、Pbl2、Pb02、MnO2などの正極活物質と固
体電解質との混合成形物を、電量計の場合は白金、金の
ような不活性金属板を、電気二重層キヤパシタの場合は
、活性炭のような表面積の大きい不活性電極材料と固体
電解質との混合成型物をそれぞれ用いる。5 is a counter electrode to the copper electrode 1. When the device is a battery, it is a mixture of a positive electrode active material such as Pbl2, Pb02, MnO2, and a solid electrolyte, and in the case of a coulometer, it is a mixture of a positive electrode active material such as Pbl2, Pb02, MnO2, etc., and a solid electrolyte such as platinum or gold. In the case of an electric double layer capacitor, a molded mixture of an inert electrode material with a large surface area such as activated carbon and a solid electrolyte is used as the inert metal plate.
6は電極反応を起こさない金属からなる集電容器で、電
極5を収納している。Reference numeral 6 denotes a current collecting container made of a metal that does not cause electrode reactions, and houses the electrode 5.
7は対極のリードで、集電容器6にハンダ、銀ペースト
等により電気的に接続されている。Reference numeral 7 denotes a counter electrode lead, which is electrically connected to the current collector container 6 by solder, silver paste, or the like.
8は銅電極1、固体電解質4、電極5などの素子本体を
収納した外装ケースで、素子本体との間には埋込用樹脂
であるエポキシ系樹脂が充填されている。Reference numeral 8 denotes an exterior case that houses the element body such as the copper electrode 1, solid electrolyte 4, and electrode 5, and the space between the element body and the element body is filled with an epoxy resin as a embedding resin.
この素子を作るには次のようにする。To make this element, proceed as follows.
まず、円筒形押型の中に、集電容器6を挿入し、この容
器6内に電極5を構成する物質、すなわち対極物質と固
体電解質との混合粉末を入れて50シの圧力で仮プレス
し、ついで固体電解質4を構成する物質の粉末を充填し
て仮プレスする。First, a current collector container 6 is inserted into a cylindrical pressing die, and a material constituting the electrode 5, that is, a mixed powder of a counter electrode material and a solid electrolyte, is placed in the container 6 and temporarily pressed at a pressure of 50 cm. Next, powder of a substance constituting the solid electrolyte 4 is filled and temporarily pressed.
さらにその上にアマルガム化銅粉と固体電解質との混合
粉末を充填して仮プレスし、その上に約20メツシユの
銅ネツトを載置し、4t/(177iの圧力で3分間ホ
ツトプレスして成形体とする。この成形体にリード3,
7を取り付けて素子本体とし、これを外装ケース8に挿
入し、埋込用樹脂9で埋め込む。ここで、銅イオン伝導
性固体電解質としては各 二種のものが るが、次式1
で示されるハロゲン化第一銅と式2又は3で示される擬
アトマツタン化合物のアルキルハライドとの混合物を加
熱して得られる複塩が適当である。Further, a mixed powder of amalgamated copper powder and solid electrolyte was filled on top of it and temporarily pressed, about 20 meshes of copper net was placed on top of it, and hot pressed for 3 minutes at a pressure of 4t/(177i) to form it. A lead 3,
7 is attached to form an element body, which is inserted into an exterior case 8 and embedded with embedding resin 9. Here, there are two types of copper ion conductive solid electrolytes, and the following formula 1
A double salt obtained by heating a mixture of a cuprous halide represented by the formula and an alkyl halide of a pseudo-atomatutan compound represented by the formula 2 or 3 is suitable.
以下の例では、CuBrと、トリエチレンジアミンジメ
チルブロマイドとから得た複塩を用いた。In the following examples, a double salt obtained from CuBr and triethylenediamine dimethyl bromide was used.
第2図はアマルガム化の程度の異なる銅電極についての
分極を比較したものである。すなわち、銅電極1は固体
電解質の含量10重量%で、電極重量1.5f!、固体
電解質4の重量は1.59、電極5は桜活性炭10重量
%と固体電解質との混合物49とし、1mAの電流で陽
極化したときの分極の変化を示す。ここで曲線Aは銅を
アマルガム化しない場合、Bは銅に対する水銀量の添加
割合2.5モル%、Cは5モル%、Dは10モル%、E
は20モル%の場合をそれぞれ示す。図から明らかなよ
うに、水銀の添加割合が5モル%程度で分極が著しく小
さくなり、経時変化も少なくなる。FIG. 2 compares the polarization of copper electrodes with different degrees of amalgamation. That is, the copper electrode 1 has a solid electrolyte content of 10% by weight and an electrode weight of 1.5f! , the weight of the solid electrolyte 4 is 1.59, the electrode 5 is a mixture 49 of 10% by weight of cherry activated carbon and the solid electrolyte, and the change in polarization when anodized with a current of 1 mA is shown. Here, curve A shows the case where copper is not amalgamated, B shows the addition ratio of mercury to copper at 2.5 mol%, C shows 5 mol%, D shows 10 mol%, and E
shows the case of 20 mol%. As is clear from the figure, when the addition ratio of mercury is about 5 mol %, the polarization becomes significantly small and the change over time becomes small.
次に第3図は、銅電極の固体電解質含量を変えた場合の
分極を比較したもので、銅に対する水銀の添加割合は5
モル%とし、他の条件は上述の場合と同じである。Next, Figure 3 compares the polarization when the solid electrolyte content of the copper electrode is changed, and the addition ratio of mercury to copper is 5.
The other conditions are the same as those described above.
曲線Fは電解質含量0,Gは電解質含量5重量%、Hは
電解質含量10重量%、Iは電解質含量20重量%、J
は電解質含量30重量%の場合をそれぞれ示し、.銅電
極中に10重量%程度の電解質を添加すると分極が最も
小さくなる。第4図は、銅電極の電解質含量を10重量
%とし、その重量を変えた場合の分極の比較を示す。Curve F has an electrolyte content of 0, G has an electrolyte content of 5% by weight, H has an electrolyte content of 10% by weight, I has an electrolyte content of 20% by weight, and J
indicates the case where the electrolyte content is 30% by weight, and . Polarization is minimized when approximately 10% by weight of electrolyte is added to the copper electrode. FIG. 4 shows a comparison of polarization when the electrolyte content of the copper electrode is 10% by weight and the weight is varied.
他の条件は前記と同じである。ここで、曲線Kは銅ネツ
トのみ、Lは銅電極1の重量0.59、Mは重量1.0
9、Nは重量1.59、Oは重量2.09の場合をそれ
ぞれ示す。銅電極の重量1.59以上では変化がないが
、多孔質極で重量の大きい方が分極を小さくする上では
望ましい。Other conditions are the same as above. Here, the curve K is only for the copper net, L is the weight of the copper electrode 1, which is 0.59, and M is the weight, which is 1.0.
9, N indicates the case where the weight is 1.59, and O indicates the case where the weight is 2.09. There is no change when the weight of the copper electrode is 1.59 or more, but a porous electrode with a larger weight is preferable in order to reduce polarization.
以上のように、銅イオン伝導性固体電解質を用いる電池
、電量剖、電気二重層キヤパシタなどの銅電極として、
マルガム化した銅粉と、銅イオン伝導性固体電解質の混
合物からなる成形体を用いることにより、放電分極を小
さくすることができ、その結果、電池の場合は電圧を高
くし、キヤパシタの場合はその損失を小さくし、また銅
電極による電位変化を無視できるようになすことができ
る。As mentioned above, as a copper electrode for batteries, coulometers, electric double layer capacitors, etc. that use copper ion conductive solid electrolytes,
By using a molded body made of a mixture of malgamized copper powder and a copper ion-conducting solid electrolyte, discharge polarization can be reduced, resulting in higher voltages in batteries and lower voltages in capacitors. Loss can be reduced and potential changes caused by the copper electrode can be ignored.
第1図は本発明の実施例における銅電極を用いた固体電
解質素子の縦断面図、第2図はアマルガム化の程度が異
なる銅電極の放電分極を比較した図、第3図は固体電解
質含量の異なる銅電極の放電分極を比較した図、第4図
は重量の異なる銅電極の放電分極を比較した図である。Figure 1 is a longitudinal cross-sectional view of a solid electrolyte element using a copper electrode in an example of the present invention, Figure 2 is a diagram comparing the discharge polarization of copper electrodes with different degrees of amalgamation, and Figure 3 is a diagram showing the solid electrolyte content. FIG. 4 is a diagram comparing the discharge polarization of copper electrodes with different weights. FIG. 4 is a diagram comparing the discharge polarization of copper electrodes with different weights.
Claims (1)
混合物の成形体よりなる固体電解質素子用銅電極。1. A copper electrode for a solid electrolyte element comprising a molded body of a mixture of a copper ion conductive solid electrolyte and amalgamated copper powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50101365A JPS597206B2 (en) | 1975-08-20 | 1975-08-20 | This is the best way to get started. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50101365A JPS597206B2 (en) | 1975-08-20 | 1975-08-20 | This is the best way to get started. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5225293A JPS5225293A (en) | 1977-02-25 |
JPS597206B2 true JPS597206B2 (en) | 1984-02-17 |
Family
ID=14298790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50101365A Expired JPS597206B2 (en) | 1975-08-20 | 1975-08-20 | This is the best way to get started. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS597206B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6783589B2 (en) * | 2001-01-19 | 2004-08-31 | Chevron U.S.A. Inc. | Diamondoid-containing materials in microelectronics |
-
1975
- 1975-08-20 JP JP50101365A patent/JPS597206B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5225293A (en) | 1977-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5621609A (en) | Composite electrode materials for high energy and high power density energy storage devices | |
EP0120928B1 (en) | Double layer capacitor | |
EP0044427B1 (en) | Solid state electric double layer capacitor | |
US4731705A (en) | Cell for electric double layer capacitors and process for manufacturing such a cell | |
JPH05144680A (en) | Electrolytic capacitor having cathode element wherein noble metal /base metal are commonly deposited and manufacture thereof | |
JP4436121B2 (en) | Power storage device and method for manufacturing power storage device | |
US4363079A (en) | Solid state double layer capacitor | |
RU2005102064A (en) | ACCUMULATOR BATTERY CONTAINING FOAM CARBON RECEIVERS | |
CA1077131A (en) | Metal oxide cells having low internal impedance | |
Rüetschi et al. | Surface coverage during hydrogen and oxygen evolution | |
US2542574A (en) | Alkaline dry cell | |
JPS597206B2 (en) | This is the best way to get started. | |
JP4538572B2 (en) | Capacitor and manufacturing method thereof | |
US3966494A (en) | Impregnation of electrodes for nickel cadmium batteries | |
US2852591A (en) | Potential producing cell and battery pile | |
Weininger | Halogen‐Activated Solid Electrolyte Cell | |
US20150147663A1 (en) | Electrical energy storage device with non-aqueous electrolyte | |
JP2008060333A (en) | Electric-double-layer capacitor | |
JP2608561B2 (en) | Stacked battery | |
JPS5849965B2 (en) | Manufacturing method of lithium ion conductive solid electrolyte | |
US3749606A (en) | Reversible cell having a solid electrolyte and a silver anode | |
JPS5940284B2 (en) | electric double layer capacitor | |
JPH11150042A (en) | Polarizable electrode with current collecting body | |
JP2886197B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2918590B2 (en) | Method for manufacturing solid electrolytic capacitor |