JPS5968919A - Polypropylene film condenser - Google Patents
Polypropylene film condenserInfo
- Publication number
- JPS5968919A JPS5968919A JP57179344A JP17934482A JPS5968919A JP S5968919 A JPS5968919 A JP S5968919A JP 57179344 A JP57179344 A JP 57179344A JP 17934482 A JP17934482 A JP 17934482A JP S5968919 A JPS5968919 A JP S5968919A
- Authority
- JP
- Japan
- Prior art keywords
- film
- electron beam
- capacitor
- irradiated
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、誘電体層として、不活性ガス雰囲気下で電
子線を照射したポリプロピレンフィルム(以下PPフィ
ルムと呼称)を用いるコンデンサに関し、耐電圧性にす
ぐれ、静電容量が大で小型化しうるコンデンサに関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a capacitor that uses a polypropylene film (hereinafter referred to as PP film) irradiated with electron beams in an inert gas atmosphere as a dielectric layer, which has excellent voltage resistance and a high capacitance. This invention relates to a capacitor that has a large capacity and can be made smaller.
今日の電気機器は高電圧化、大容量化および小型化の要
望が強い。 コンデンサに対しても静電容量の増大と小
型化の要求が高まっている。 コンデンサの容量は、誘
電体の誘電率(ε)に比例し、厚さに逆比例するが、誘
電体の厚みを薄くすると耐電圧性(絶縁破壊強度)の低
下を招くので限度がある。Today's electrical equipment has strong demands for higher voltage, larger capacity, and smaller size. There is also an increasing demand for capacitors to have increased capacitance and be made smaller. The capacitance of a capacitor is proportional to the permittivity (ε) of the dielectric and inversely proportional to the thickness, but there is a limit because reducing the thickness of the dielectric causes a decrease in withstand voltage (dielectric breakdown strength).
従来、コンデンサの誘電体として用いられている代表的
なフィルムはPPフィルムであるが、コンデンサの大容
量化と小型化とをはかるために一層耐電圧性の高い誘電
体が要望されている。PPフィルムの耐電圧性を向上さ
せる方法としては、PPフィルムをメタクリル酸メチル
に浸漬し電子線を照射しメタクリル酸メチルをPPフィ
ルムの表面にグラフト重合させる方法が知られている(
実公昭58−21410)。 しかしこのPPフィルム
は、極性基を有するメタクリル酸メチルを表面にグラフ
ト重合させたため、グラフト重合処理をしていないPP
フィルムに比べて誘電体損失(tanδ)が大きくなる
という欠点を有する。Conventionally, a typical film used as a dielectric material for capacitors is a PP film, but in order to increase the capacity and reduce the size of capacitors, there is a demand for dielectric materials with even higher voltage resistance. A known method for improving the voltage resistance of a PP film is to immerse the PP film in methyl methacrylate, irradiate it with an electron beam, and graft polymerize the methyl methacrylate onto the surface of the PP film (
Jitsukō 58-21410). However, since this PP film had methyl methacrylate, which has a polar group, graft-polymerized on its surface, it
It has a disadvantage that the dielectric loss (tan δ) is larger than that of a film.
また、浸漬処理と電子線照射という2段階の操作を行わ
ねばならず、さらに電子線照射が空気中で行われている
ためポリプロピレンの分解劣化が生じもろくなるという
欠点がある。In addition, a two-step operation of dipping treatment and electron beam irradiation must be performed, and since the electron beam irradiation is performed in air, there is a disadvantage that the polypropylene decomposes and deteriorates, making it brittle.
この発明の発明者はこのような状況において鋭意研究し
た結果この発明をなすにいたったものであって、高分子
物フィルムの誘電体層を電極箔間に積層して巻回したコ
ンデンサ素子からなるコンデンサであって、高分子物フ
ィルムが、不活性ガス雰囲気下で電子線を照射したポリ
プロピレンフィルムであることを特徴とするポリプロピ
レンフィルムコンデンサを提供するものである。The inventor of this invention has made this invention as a result of intensive research under these circumstances, and the invention consists of a capacitor element in which a dielectric layer of polymeric film is laminated between electrode foils and wound. The present invention provides a polypropylene film capacitor characterized in that the polymer film is a polypropylene film irradiated with an electron beam in an inert gas atmosphere.
この発明のコンデンサは誘電体として、不活性ガス雰囲
気下で電子線を照射したPPフィルムを用いることを特
徴とするものである。The capacitor of the present invention is characterized in that a PP film irradiated with an electron beam in an inert gas atmosphere is used as a dielectric.
この発明のコンデンサに用いられるPPフィルムは、前
記先行技術のグラフト重合PPフィルムと比べて誘電率
と耐電圧性は同等であるが誘電体損失が著しく小さく、
さらVcPPフィルムの分解劣化が著しく少ないという
利点を有する。 また未照射PPフィルムと比べて誘電
率および誘電体損失が同等でしかも耐電圧性が高いとい
う利点を有するものである。 従ってこの発明によれば
、よシ小型で耐電圧性が大きくしかも大容量のコンデン
サが得られる。The PP film used in the capacitor of the present invention has the same dielectric constant and voltage resistance as the graft polymerized PP film of the prior art, but has significantly lower dielectric loss.
Furthermore, it has the advantage that decomposition and deterioration of the VcPP film is significantly less. Furthermore, it has the advantage that it has the same dielectric constant and dielectric loss as the unirradiated PP film, and has high voltage resistance. Therefore, according to the present invention, a capacitor that is smaller in size, has high voltage resistance, and has a large capacity can be obtained.
この発明に用いられるPPフィルムとしては、従来コン
デンザ用に用いられている2軸延伸PPフイルムなどの
PPフィルムが用いられ、その厚みなどはコンデンサの
種類によって適宜選択される。As the PP film used in this invention, a PP film such as a biaxially stretched PP film conventionally used for capacitors is used, and its thickness is appropriately selected depending on the type of capacitor.
捷たPPフィルムへの電子線照射は、窒素、ヘリウム、
ネオン、アルゴンなどのごとき不活性ガスの雰囲気下、
室温で行われ、電子線照射装置としては通常用いられて
いるものでよく飼えば変圧器型、バンプグラ−7型、コ
ツククロフトウオルトン型等の電子線加速器が挙げられ
る。 PPフィルムは、電子線照射量が増大するにつれ
て、耐電圧特性は増大し、誘電率はほとんど変化しない
が、一方誘電体損失が増大し比抵抗(p)が減少すると
ともに特に照射量が極端に大きくなるともろくなる。
従って電子線照射量には適切な範囲があり、コンデンサ
の種類、PPフィルムの種類、厚みなどによって適切な
照射量が選択される。 例えば22μm厚の2軸延伸P
Pフイルム全用いた場合、室温で0.5〜5.0 Mr
ad iでの電子線照射量が適切である。Electron beam irradiation to the shredded PP film is performed using nitrogen, helium,
Under an atmosphere of inert gas such as neon or argon,
The electron beam irradiation is carried out at room temperature, and examples of commonly used electron beam irradiation devices include electron beam accelerators such as transformer type, Bumpgra-7 type, and Kotscroft-Walton type. As the amount of electron beam irradiation increases, the dielectric strength of PP film increases, and the dielectric constant hardly changes, but on the other hand, the dielectric loss increases and the specific resistance (p) decreases, especially when the amount of irradiation increases. As it grows, it becomes brittle.
Therefore, there is an appropriate range for the electron beam irradiation amount, and the appropriate irradiation amount is selected depending on the type of capacitor, the type and thickness of the PP film, etc. For example, 22 μm thick biaxially stretched P
When using the entire P film, 0.5 to 5.0 Mr at room temperature
The electron beam irradiation amount at ad i is appropriate.
つぎにこの発明を実験例と実施例によって説明するがこ
の発明を限定するものではない。Next, this invention will be explained by experimental examples and examples, but this invention is not limited to this invention.
実1’1l(PPフィルムへの電子線照射試験)22μ
m厚の2@延伸PPフイルムに、空気中および窒素雰囲
気下約25℃でそれぞれ電子線照射した後の特性を25
℃で測定し第1表と第2表に示した。Fruit 1'1l (electron beam irradiation test on PP film) 22μ
Characteristics of a stretched PP film of 2 m thickness after being irradiated with an electron beam at approximately 25°C in air and in a nitrogen atmosphere were determined at 25°C.
It was measured at °C and shown in Tables 1 and 2.
第1表 空気中で電子線照射されたPPフィルム第1表
の結果から明らかなように、空気中で電子線照射すると
誘電体損失が急徴に増大するとともに、pp樹脂自体が
分解劣化するためコンデンサに用いることはできない。Table 1 PP film irradiated with electron beam in air As is clear from the results in Table 1, irradiation with electron beam in air rapidly increases dielectric loss and causes the PP resin itself to decompose and deteriorate. It cannot be used for capacitors.
第2表窒素ガス雰囲気下で電子線照射されたフィルム第
2表の結果から明らかなように、窒素ガス雰囲気下約2
5℃で電子線を照射しその線量を増大していくと、耐直
流電圧電流傾度は増大し銹電率はわずかに増大するが、
一方誘電体損失も増大し、比抵抗が低下する。 このフ
ィルムの場合照射線量が5.0と10.0Mraaの場
合かなりもろくなっていた。 従ってこのPPフィルム
の場合、照射線量としては、約5.0 M rad以下
の範囲が適切であることを示している。 また照射線〃
[が高い程不紅済なので、この点も考慮して照射線量は
適宜選択される。Table 2 Films irradiated with electron beams under nitrogen gas atmosphere As is clear from the results in Table 2, under nitrogen gas atmosphere approximately 2
When the electron beam is irradiated at 5°C and the dose is increased, the withstand DC voltage and current slope increases and the corrosion rate increases slightly, but
On the other hand, dielectric loss also increases and specific resistance decreases. This film became quite brittle at irradiation doses of 5.0 and 10.0 Mraa. Therefore, in the case of this PP film, it is shown that a range of approximately 5.0 M rad or less is appropriate as the irradiation dose. Also radiation 〃
The higher [ is, the less red the color is, so the irradiation dose is appropriately selected taking this point into consideration.
次に窒素ガス雰囲気下で電子線を照射したPPフィルム
を用いて作製したコンデンサの実施例について述べる。Next, an example of a capacitor manufactured using a PP film irradiated with an electron beam in a nitrogen gas atmosphere will be described.
実施例1 (電力用コンデンサ)
第1図(コンデンサ素子要部の断面図)に示すように、
窒素雰囲気下約25℃で電子線を照射した22μm厚の
PP2軸延伸フイルム(1)を8枚重ねた誘電体層(2
)にアルミニウム電極箔(3)が接するようにしたコン
デンサ素子に、鉱物油(5181種1号電気絶縁油)を
含浸させた構成の電力用コンデンサを、電子線照射量の
異なる2種のPPフィルムを使用して作製した。 電子
線未照射のPPフィルム使用の対照品を含めて各コンデ
ンサの特性を25℃で測定して結果を第3表に示した。Example 1 (Power capacitor) As shown in Figure 1 (cross-sectional view of the main part of the capacitor element),
A dielectric layer (2) consisting of 8 stacked 22 μm thick PP biaxially stretched films (1) irradiated with an electron beam at approximately 25°C in a nitrogen atmosphere.
) with aluminum electrode foil (3) in contact with the capacitor element impregnated with mineral oil (Class 5181 No. 1 electrical insulating oil). was created using. The characteristics of each capacitor, including a control product using a PP film that had not been irradiated with an electron beam, were measured at 25° C. and the results are shown in Table 3.
第8表
※ AOL・・・・・・ACT−t(交流電圧時間特性
)が105秒の長時間印可時の耐交流電圧電位
傾度。Table 8 * AOL... AC voltage potential gradient withstand when ACT-t (AC voltage time characteristics) is applied for a long time of 105 seconds.
×※体積比・・・コンデンサの容量=εX(ACL)”
で計算し、未照射PPフィルム使用の
ものを100として比較した。×*Volume ratio... Capacity of capacitor = εX (ACL)"
, and compared with the one using unirradiated PP film as 100.
電子線照射のppフィルムを用いたコンデンサは、対照
品と比べて誘電率は変らないがACLが高いので、体積
比からみて著しく小型化できることが分かる。It can be seen that the capacitor using the electron beam irradiated PP film has the same dielectric constant as the control product, but has a higher ACL, so it can be significantly miniaturized in terms of volume ratio.
実施例2 (乾式コンデンサ)
第2図に示すように、窒素雰囲気下約25℃で電子線を
照射した22μm厚のPP2軸延伸フイルムtill
1枚にアルミニウム電極箔(2)が接するようにしたコ
ンデンサ素子を、エポキシ樹脂で被覆成形した(16成
の乾式コンデンサを作製した。 電子線未照射のPPフ
ィルム使用の対照品を含めて各コンデンサの特性を測定
して結果を第4表に示した。Example 2 (Dry capacitor) As shown in Figure 2, a 22 μm thick PP biaxially stretched film was irradiated with an electron beam at about 25° C. under a nitrogen atmosphere.
A capacitor element with an aluminum electrode foil (2) in contact with one layer was coated and molded with epoxy resin (a 16-layer dry capacitor was fabricated. The characteristics were measured and the results are shown in Table 4.
第4表
電子線照射のPPフィルムを用いたコンデンサは、対照
品と比べて誘電率は変らないがAOLが高いので、体積
比からみて著しく小型化できることが分かる。Table 4 It can be seen that the capacitors using electron beam irradiated PP films have the same dielectric constant as the control product but have a high AOL, so they can be significantly miniaturized in terms of volume ratio.
第1図と第2図はそれぞれ、この発明の電力用コンデン
サおよび乾式コンデンサの一実施例のコンデンサ素子要
部の断面図である。
(1)、111)・・・窒素雰囲気下で電子線照射した
ppフィルム、(2)・・・PPフィルムの誘電(14
4、(3)、02・・・アルミニウム電極箔。FIGS. 1 and 2 are sectional views of essential parts of capacitor elements of an embodiment of a power capacitor and a dry capacitor of the present invention, respectively. (1), 111)...PP film irradiated with electron beam under nitrogen atmosphere, (2)...Dielectric of PP film (14
4, (3), 02... Aluminum electrode foil.
Claims (1)
巻回したコンデンサ素子からなるコンデンサであって、 高分子物フィルムが、不活性ガス雰囲気下で電子線を照
射したポリプロピレンフィルムであることを特徴とする
ポリプロピレンフィルムコンデンサ。[Claims] 1. A capacitor consisting of a capacitor element in which a dielectric layer of a polymeric film is laminated between electrode foils and wound, the polymeric film is exposed to an electron beam in an inert gas atmosphere. A polypropylene film capacitor characterized by being a polypropylene film irradiated with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57179344A JPS5968919A (en) | 1982-10-12 | 1982-10-12 | Polypropylene film condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57179344A JPS5968919A (en) | 1982-10-12 | 1982-10-12 | Polypropylene film condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5968919A true JPS5968919A (en) | 1984-04-19 |
JPH0126523B2 JPH0126523B2 (en) | 1989-05-24 |
Family
ID=16064194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57179344A Granted JPS5968919A (en) | 1982-10-12 | 1982-10-12 | Polypropylene film condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5968919A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010219329A (en) * | 2009-03-17 | 2010-09-30 | Prime Polymer Co Ltd | Method of manufacturing polypropylene film for film capacitor |
JP2010219328A (en) * | 2009-03-17 | 2010-09-30 | Prime Polymer Co Ltd | Polypropylene film for film capacitor, and the film capacitor |
JPWO2010107052A1 (en) * | 2009-03-17 | 2012-09-20 | 株式会社プライムポリマー | Polypropylene for film capacitor, polypropylene sheet for film capacitor, production method thereof, and use thereof |
JP2014195110A (en) * | 2014-05-26 | 2014-10-09 | Prime Polymer Co Ltd | Method for manufacturing polypropylene film for film capacitor |
KR20200093654A (en) | 2017-12-25 | 2020-08-05 | 에이비비 파워 그리즈 스위처랜드 아게 | Biaxially oriented polypropylene films, power capacitors, and associated manufacturing methods and systems |
WO2021186674A1 (en) * | 2020-03-19 | 2021-09-23 | 日新電機株式会社 | Film for film capacitors, metallized film for film capacitors, and film capacitor |
-
1982
- 1982-10-12 JP JP57179344A patent/JPS5968919A/en active Granted
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010219329A (en) * | 2009-03-17 | 2010-09-30 | Prime Polymer Co Ltd | Method of manufacturing polypropylene film for film capacitor |
JP2010219328A (en) * | 2009-03-17 | 2010-09-30 | Prime Polymer Co Ltd | Polypropylene film for film capacitor, and the film capacitor |
JPWO2010107052A1 (en) * | 2009-03-17 | 2012-09-20 | 株式会社プライムポリマー | Polypropylene for film capacitor, polypropylene sheet for film capacitor, production method thereof, and use thereof |
US9449761B2 (en) | 2009-03-17 | 2016-09-20 | Prime Polymer Co., Ltd. | Polypropylene for film capacitor, polypropylene sheet for film capacitor, method for producing the same, and uses of the same |
JP2014195110A (en) * | 2014-05-26 | 2014-10-09 | Prime Polymer Co Ltd | Method for manufacturing polypropylene film for film capacitor |
KR20200093654A (en) | 2017-12-25 | 2020-08-05 | 에이비비 파워 그리즈 스위처랜드 아게 | Biaxially oriented polypropylene films, power capacitors, and associated manufacturing methods and systems |
EP3732698A4 (en) * | 2017-12-25 | 2021-09-01 | ABB Power Grids Switzerland AG | Biaxially oriented polypropylene film, power capacitor, and associated manufacturing method and system |
WO2021186674A1 (en) * | 2020-03-19 | 2021-09-23 | 日新電機株式会社 | Film for film capacitors, metallized film for film capacitors, and film capacitor |
Also Published As
Publication number | Publication date |
---|---|
JPH0126523B2 (en) | 1989-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3363156A (en) | Capacitor with a polyolefin dielectric | |
US5305178A (en) | Capacitor with increased electrical breakdown strength and method of forming the same | |
US3450968A (en) | Electrical elements with impregnated dielectrics and insulators | |
US3457478A (en) | Wound film capacitors | |
DE60219305T2 (en) | DIELECTRIC FLUIDUM | |
JPS5968919A (en) | Polypropylene film condenser | |
US3179862A (en) | Dual-film metallized condensers | |
US3221227A (en) | Wound capacitor and method of making | |
US3706131A (en) | Method for the formation of a unilaterally metallized electret foil | |
GB2100068A (en) | Consolidated structure of conductive members and insulation therebetween | |
US3227934A (en) | Wouni) electric capacitor | |
JPS58161314A (en) | Condenser | |
Umemura et al. | Dielectric behavior of solid/liquid insulation system | |
US3649878A (en) | Nonpolar solid electrolytic capacitor | |
JP2920240B2 (en) | Metallized film capacitors | |
USRE27824E (en) | Capacitor with impregnated polypropylene dielectric | |
JP2900751B2 (en) | Film capacitor and manufacturing method thereof | |
US3619745A (en) | Capacitor having an impregnated dielectric | |
USRE27823E (en) | Impregnated polypropylene ptlm in a sealed housing | |
JP2655856B2 (en) | Manufacturing method of electrolytic capacitor | |
JP3018693B2 (en) | Oil-filled condenser | |
Binder et al. | Use of gas plasmas to increase breakdown strengths in polycarbonate film/foil capacitors | |
JPH02305421A (en) | Metallized film capacitor | |
JPS6184817A (en) | Capacitor | |
US3622390A (en) | Process for improving capacitors |