[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5963700A - Electrode structure for particle accelerator - Google Patents

Electrode structure for particle accelerator

Info

Publication number
JPS5963700A
JPS5963700A JP17441782A JP17441782A JPS5963700A JP S5963700 A JPS5963700 A JP S5963700A JP 17441782 A JP17441782 A JP 17441782A JP 17441782 A JP17441782 A JP 17441782A JP S5963700 A JPS5963700 A JP S5963700A
Authority
JP
Japan
Prior art keywords
cylindrical body
contactor
retightening
accelerating electrode
washer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17441782A
Other languages
Japanese (ja)
Inventor
浜岡 正義
勢登 利孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17441782A priority Critical patent/JPS5963700A/en
Publication of JPS5963700A publication Critical patent/JPS5963700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明稈、粒子カロ速器の加速性能を改良した電極構造
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode structure that improves the acceleration performance of a culm and particle calorometer.

粒子加速器の高周波加速空胴は、第1図に示すように円
筒胴1と端板2とで真空容器を構成し、円筒胴1に所定
間隔で加速電極3を取付けている。そして電子又は陽電
子等の粒子は、矢印Aから入射され、高周波で加速され
て矢印Bから放出される。
As shown in FIG. 1, the high-frequency acceleration cavity of the particle accelerator includes a cylindrical body 1 and an end plate 2 forming a vacuum vessel, and accelerating electrodes 3 are attached to the cylindrical body 1 at predetermined intervals. Particles such as electrons or positrons are incident from arrow A, accelerated by high frequency, and emitted from arrow B.

この粒子加速器の高周波加速空胴において、加速電極の
取付部は、加速性能を向上するため電気接触が完全で電
気的接触抵抗の小さい構造が要求される。すなわち高周
波加速空胴のQ値は、(加速空胴西に蓄積されるエネル
ギ)/(加速空胴での損失エネルギ)に比例するため、
電気接触が不完全であると、加速性能が低下するつまた
大電力の高周波を用いる加速空胴においては、不完全な
接触があると、接触部の局部発熱及び放電等の不具合を
生じる。
In the high frequency acceleration cavity of this particle accelerator, the attachment part of the accelerating electrode is required to have a structure with perfect electrical contact and low electrical contact resistance in order to improve acceleration performance. In other words, the Q value of the high frequency acceleration cavity is proportional to (energy stored in the west of the acceleration cavity)/(energy lost in the acceleration cavity),
If the electrical contact is incomplete, the acceleration performance will deteriorate.In addition, in an acceleration cavity that uses high-power, high-frequency waves, if the electrical contact is incomplete, problems such as local heat generation and discharge will occur at the contact portion.

従って粒子加速器は、与えられた共振周波数で高い加速
電界を得るため、加速電極3の間隔、同心度、傾きなど
のアライメントを非常に高精度に芯出しし、二定間隔ご
とに円筒胴1から吊シさげている。また加速空胴内には
、第2図に一点鎖線Hで示すような高周波の壁損失によ
るしかして以上の条件下で用いられている従来の加速電
極の取付構造は、第3図に拡大して示すように、円筒胴
1を貫通する加速電極ステム4と、同ステム4と円筒胴
1との間に介装するコンタクタ5と、ガスケット押え6
で押えられ加速電極ステム4の貫通部を真空シールする
ガスケット7.8と、加速電極ステム4を円筒胴1に締
付固定する締付ナツト9とを具備し、円筒胴1の内表面
、加速電極ステム4の表面及びコンタクタ5の表面にそ
れぞれ銅めっき層1m。
Therefore, in order to obtain a high accelerating electric field at a given resonant frequency, the particle accelerator aligns the accelerating electrodes 3 with very high precision in terms of spacing, concentricity, inclination, etc. It's hanging. Furthermore, inside the accelerating cavity, there is a high-frequency wall loss as shown by the dashed line H in Fig. 2. As shown, an accelerating electrode stem 4 passing through the cylindrical body 1, a contactor 5 interposed between the stem 4 and the cylindrical body 1, and a gasket retainer 6
The inner surface of the cylindrical body 1 is provided with a gasket 7.8 for vacuum sealing the penetration part of the accelerating electrode stem 4, and a tightening nut 9 for tightening and fixing the accelerating electrode stem 4 to the cylindrical body 1. A copper plating layer of 1 m is provided on the surface of the electrode stem 4 and the surface of the contactor 5, respectively.

4a、5aを設けている。そしてこれら鋼めっき層1 
m 、 4 m 、 、5 aにより、高周波電流が矢
印Cに示すように加速電極ステム3の表面からコンタク
タ5を介して円筒胴1内表面に流れる際、その電気抵抗
を小さくしている。
4a and 5a are provided. And these steel plating layers 1
m, 4m, , 5a reduce the electrical resistance when the high frequency current flows from the surface of the accelerating electrode stem 3 to the inner surface of the cylindrical body 1 via the contactor 5 as shown by arrow C.

この時加速空胴の電気的性能を大きく左右する要因とし
て、円筒胴1と加速電極ステム4とを結ぶコンタクタ5
の接触面圧がある。この接触面圧は、熱負荷の加わる運
転時及び停止時のいずれにおいても銅めっき層1a、4
a、5aが′単に接触している程度では不可で、めっき
層同志の強力な接触面圧が要求される。
At this time, the contactor 5 connecting the cylindrical body 1 and the accelerating electrode stem 4 is a factor that greatly influences the electrical performance of the accelerating cavity.
There is a contact surface pressure of This contact surface pressure is maintained between the copper plating layers 1a and 4 both during operation with a heat load and during stoppage.
It is not possible if a and 5a are merely in contact with each other; a strong contact surface pressure between the plating layers is required.

この高周波加速空胴を最初に組立てる際、加速電極を高
精度に組込まねばならない。このため、熱負荷による各
部材の熱膨張が生じない運転停止時に行う。この場合こ
のように組立てられた加速空胴は、締付ナツト9を所定
締付トルクで締付けても運転状態になると上述した壁損
失による発熱により、円筒胴1と加速電極ステム4の発
熱量の違い及び冷却効果の差異による温度差更には材質
の違いによる線膨張率の差異が生じる。しかし電極取付
部を構成する各部品は、剛性が高く、変位分を吸収する
ことができない。このため、締付厚さ寸法dが伸びたシ
縮んだシし、この結果コンタクタ5の上下面接触部a及
びbの接触面圧が第4図に示すように過大になったシ、
あるいは第5図に示すように不足したシする。接触面圧
Pと締付厚さ寸法dの撓みδとの関係を第6図に示すと
、Plが必要接触面圧であるが、締付厚さ寸法dの変化
分士Δδに対応する接触面圧変化分士ΔP1が大きく、
Plに対して非常に大きく影響することを示し上下面接
触部a及びbi接触面圧が過大すぎると銅やつき層1 性変形を生じ、運転停止時に熱負荷がなくなると締付厚
さ寸法dが小さくなる。その結果コイタフタ5と円筒胴
1の間に呼量が生じ、強力な接触面圧の保持が不可能と
な、る。
When initially assembling this high-frequency acceleration cavity, the accelerating electrode must be assembled with high precision. Therefore, this is done when the operation is stopped, when thermal expansion of each member due to thermal load does not occur. In this case, when the accelerating cavity assembled in this way is put into operation even if the tightening nut 9 is tightened to a predetermined tightening torque, the amount of heat generated by the cylindrical body 1 and the accelerating electrode stem 4 decreases due to the heat generated by the above-mentioned wall loss. Temperature differences occur due to differences in cooling effects, and differences in linear expansion coefficients occur due to differences in materials. However, each component constituting the electrode mounting portion has high rigidity and cannot absorb displacement. For this reason, the tightening thickness dimension d has expanded and shrunk, and as a result, the contact pressure of the upper and lower contact portions a and b of the contactor 5 has become excessive as shown in FIG.
Or, as shown in FIG. 5, there is a shortage. Fig. 6 shows the relationship between the contact surface pressure P and the deflection δ of the tightening thickness dimension d. Pl is the required contact surface pressure, but the contact pressure corresponding to the change Δδ of the tightening thickness dimension d is shown in FIG. The surface pressure change ΔP1 is large,
If the contact pressure of the upper and lower contact areas a and bi is too large, the copper burnt layer 1 will undergo thermal deformation, and if the thermal load is removed when the operation is stopped, the tightening thickness dimension d will decrease. becomes smaller. As a result, a volume of air is produced between the carp taffeta 5 and the cylindrical body 1, making it impossible to maintain a strong contact surface pressure.

また第5図に示すように円筒胴1とコンタクタ5が非接
−触状態では、加速性能が大幅に低下する。この解決策
として締付ナツト9を増給めすることが考えられ會。し
かし増給めすると加速電極4が平面的な回転運動をし、
加速電極4の位置が変化するので、共振周波数が狂い、
加速空胴としての性能を発揮できない。また冬とえ増給
めしたとしても、運転後再び停止状態になると再度接触
面圧が不足し、運転、停止を繰返すごとに増給め作業が
必要となる。
Further, as shown in FIG. 5, when the cylindrical body 1 and the contactor 5 are in a non-contact state, the acceleration performance is significantly reduced. As a solution to this problem, it has been considered to increase the number of tightening nuts 9. However, when the supply is increased, the accelerating electrode 4 makes a planar rotational movement,
As the position of the accelerating electrode 4 changes, the resonance frequency goes out of order.
It cannot demonstrate its performance as an accelerating cavity. Furthermore, even if the feed rate is increased in the winter, if the machine stops again after operation, the contact surface pressure will be insufficient again, and it will be necessary to increase the feed rate each time the machine is started and stopped.

その目的とするところは、運転時及び停止時のいずれに
おいても加速電極と円筒胴との高周波通路に所定の接触
面光を保持でき、しかもコンタクタの接触面圧を増加さ
せる場合、□加速電極の位置を狂わせることなく増給め
できる粒子加速器の一極構造を得んとするものである。
The purpose of this is to maintain a predetermined contact surface light in the high frequency path between the accelerating electrode and the cylindrical body both during operation and when stopped, and to increase the contact surface pressure of the contactor. The aim is to create a unipolar structure for a particle accelerator that can be increased without shifting its position.

  ゛すなわち本i明は円筒胴を貫通する加速電極ステ
ムと、同ステムと円筒胴間に介装され泥コンタクタと、
ガスケット押えで押えられ加速電極ステム貫通部を真空
シールするガスケットと、加速電極ステムをガスケット
押えを介して円筒速器の電極構造において、ガスケット
押えと締付ナツトとの間に増給め座金とばね座金とを介
装し、かつ増給め座金にガスケット押えを円筒胴方向に
押圧する増給めはルトを装着したこメー二二=ニー。i
t7+*−m□2゜m c−cmqする。
In other words, the present invention includes an accelerating electrode stem penetrating the cylindrical body, a mud contactor interposed between the stem and the cylindrical body,
A gasket that is held down by a gasket holder and vacuum-seals the accelerating electrode stem penetration part, and an increase washer and a spring are installed between the gasket holder and the tightening nut in the electrode structure of the cylindrical accelerator, with the accelerating electrode stem being held through the gasket holder. This is a 22-knee valve with a washer interposed therein, and a bolt that presses the gasket presser against the washer toward the cylindrical body. i
t7+*-m□2゜m c-cmq.

第7図は、粒子加速器の電極構造を示す断面図である。FIG. 7 is a cross-sectional view showing the electrode structure of the particle accelerator.

この電極構造は、円筒胴11に加速電極ステム12を貫
通し、円筒胴11の内表面にて円筒胴11と加速電極ス
テム12との間にコンタクタ13を介装している。加速
電極ステム12の貫通部には真空シール用のガスケット
14.15が設けられ、がスケット押え16で押圧され
ている。ガスケット押え16の上部には増締め座金17
が設けられている。この増締め座金17は、中央に透孔
を有する円板部17hの周囲に立上り部17bを設けた
もので、立上り部17bの下端を上記円筒胴11に接し
、円板部17aに増締めゲルト18を装着している。
In this electrode structure, an accelerating electrode stem 12 passes through a cylindrical body 11, and a contactor 13 is interposed between the cylindrical body 11 and the accelerating electrode stem 12 on the inner surface of the cylindrical body 11. Gaskets 14 and 15 for vacuum sealing are provided at the penetration portion of the accelerating electrode stem 12, and are pressed by a socket holder 16. A retightening washer 17 is installed on the top of the gasket holder 16.
is provided. This retightening washer 17 is provided with a rising part 17b around a disk part 17h having a through hole in the center. I am wearing 18.

この増締めボルト18は、下端をガスケット押え16に
接している。更に加速電極ステム12の上端には、締付
ナツト19が装着しており、この締付ナツト19と増締
め座金17の円板部17色との間にばね座金20が介装
されている。
This retightening bolt 18 has its lower end in contact with the gasket retainer 16. Further, a tightening nut 19 is attached to the upper end of the accelerating electrode stem 12, and a spring washer 20 is interposed between the tightening nut 19 and the disc portion 17 of the retightening washer 17.

また上記円筒胴11の内表面加速電極ステム12の表面
、及びコンタクタ13の表面にはそれぞれ鋼めっき層1
1m、12&、13%が形成されている。
Further, the inner surface of the cylindrical body 11, the surface of the accelerating electrode stem 12, and the surface of the contactor 13 are coated with a steel plating layer 1, respectively.
1m, 12&, 13% are formed.

次にこのように構成された電極構造の作用を説明する。Next, the operation of the electrode structure configured as described above will be explained.

運転停止時の常温状態においてコンタクタ13を加速電
極ステム12に装着後、締付ナツト19を所定トルクで
締付ける。この締付力は、ばね座金20及び増締め座金
17を介して円筒胴11に伝達され、コンタクタ13の
接触面に初期接触面圧P、が発生する。この初期接触面
圧P。
After the contactor 13 is attached to the accelerating electrode stem 12 in a normal temperature state when the operation is stopped, the tightening nut 19 is tightened to a predetermined torque. This tightening force is transmitted to the cylindrical body 11 via the spring washer 20 and the retightening washer 17, and an initial contact surface pressure P is generated on the contact surface of the contactor 13. This initial contact surface pressure P.

により、加速電極ステム12と円筒胴11との高周波通
路(コンタクタ13の接触部)が完全な接触を得るため
の必要接触面圧となる。
As a result, the high frequency passage (contact portion of the contactor 13) between the accelerating electrode stem 12 and the cylindrical body 11 has the necessary contact surface pressure to obtain complete contact.

この状態を第8図(イ)に示す。図中S、はコンタクタ
13のばね定数、S、はばね座金20のばね定数、S3
はS、とS2の合成はね定数を示す。なお加速電極ステ
ム12の軸方向の変形量、締付ナツト19及び増締めゲ
ルト18のねじ部変形量及び増締め座金17の変形量は
、コンタクタ13及びばね座金20のばね定数に比し極
めて小さいので無視しうる。第8図(イ)に示すように
コンタクタ13のばね定数は、ばね座金20のばね定数
に比し機能上非常に大きく設定される。これはコンタク
タ13のばね定数が小さいと加速電極組立時軸方向変位
(はね撓み)を大きくして、所定の締付力(接触面圧)
を得−ることとなるので、やわらかいコンタクタ13に
支持された加速電極ステム′12の上下方向の位置決め
に支障があり、性能低下の原因を誘発するためである。
This state is shown in FIG. 8(a). In the figure, S is the spring constant of the contactor 13, S is the spring constant of the spring washer 20, and S3
represents the composite spring constant of S and S2. Note that the amount of axial deformation of the accelerating electrode stem 12, the amount of deformation of the screw portion of the tightening nut 19 and the retightening gel 18, and the amount of deformation of the retightening washer 17 are extremely small compared to the spring constants of the contactor 13 and the spring washer 20. Therefore, it can be ignored. As shown in FIG. 8(A), the spring constant of the contactor 13 is set to be functionally much larger than the spring constant of the spring washer 20. This is because if the spring constant of the contactor 13 is small, the axial displacement (spring deflection) is increased when the accelerating electrode is assembled, and the predetermined tightening force (contact surface pressure) is increased.
This is because the vertical positioning of the accelerating electrode stem '12 supported by the soft contactor 13 is hindered, leading to a decrease in performance.

□ 第8図(イ)の状態で、所定の接触面圧P1を得たのち
、増締め?シト18を所定トルクで締付け、ガスケット
14,15を圧縮し、真空シールを行なう。増締め?シ
ト18の締付けによシ、増締め座金17が上昇し、コン
タクタ13及びばね座金20が更に圧縮される。この結
果第8図(ロ)に示すようにコンタクタ13に変位δ1
、ば−ね座金20に変位δ、が生じ、接触面圧はP。
□ In the condition shown in Figure 8 (a), after obtaining the specified contact surface pressure P1, do you tighten it again? The seat 18 is tightened to a predetermined torque, the gaskets 14 and 15 are compressed, and vacuum sealing is performed. Additional tightening? As the seat 18 is tightened, the retightening washer 17 rises, and the contactor 13 and spring washer 20 are further compressed. As a result, as shown in FIG. 8(b), the contactor 13 has a displacement δ1.
, a displacement δ occurs in the spring washer 20, and the contact surface pressure is P.

からP、に変化する。It changes from P to P.

しかしてこの状態で運転状態に入ると、円筒胴11と加
速電極ステム12の発熱量の違い及び冷却効果の差位に
よる温度差、更に材質の違いによる線膨張率の差異によ
り変位が生じる。
However, when the operating state is entered in the levered state, displacement occurs due to the difference in heat generation amount between the cylindrical body 11 and the accelerating electrode stem 12, the temperature difference due to the difference in cooling effect, and the difference in linear expansion coefficient due to the difference in material.

この変位を第8図(ハ)に示すように±Δδ とすると
接触面圧はP2±ΔP、となる。この場合接触面圧の小
さいP2−ΔP2となっても、必要接触面圧23以上と
なシ、常に必要な接触面圧が保持可能である。またP2
+ΔP2となってもΔP2のP、に対する比が小さいの
でコンタクタ13の両面における接触面圧も急増しない
。このため銅め゛つき層11a、′1ハ、13aが塑性
変形するようd過大な力□が加わらない。
Assuming that this displacement is ±Δδ as shown in FIG. 8(C), the contact surface pressure will be P2±ΔP. In this case, even if the contact surface pressure is small (P2-ΔP2), the necessary contact surface pressure can always be maintained as long as it is not less than 23. Also P2
Even if it becomes +ΔP2, since the ratio of ΔP2 to P is small, the contact surface pressure on both sides of the contactor 13 does not increase rapidly. Therefore, an excessive force d is not applied to plastically deform the copper plated layers 11a, '1c, and 13a.

以上説明したように本発明によれば、ばね定数の大きい
bンタクタにばね定数の小さいばね座金を組合せて合成
ばね定数を小さくするとともに増締め機構を追加しだの
で、締付厚さの変位分をほとんどはね座金で吸収するこ
とができ、大幅な接触面圧の変化なしに常に安定した接
触面圧の保持が可能となる。しかも増締めは、増締めボ
ルトでおこなうので、加速電極の芯出し精度を狂わせる
ことなく、増締めが可能となる顕蓄な効果を奏する。
As explained above, according to the present invention, a spring washer with a small spring constant is combined with a b-tanctor with a large spring constant to reduce the composite spring constant, and a retightening mechanism is added. Most of the splash can be absorbed by the washer, making it possible to maintain stable contact pressure at all times without significant changes in contact pressure. Furthermore, since retightening is performed using retightening bolts, retightening is possible without disturbing the centering accuracy of the accelerating electrode, which is a significant effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は粒子加速器の加速空胴の概観図、第2図は同加
速空胴内に熱負荷が生じる状態を示す説明図、第3図は
第1図のD部を示す従来の粒子加速器の電極構造の拡大
断面図、第4図は同電極構造においてコンタクタの接触
面圧が過大になった状態を示す断面図、第5図は同電極
構造においてコンタクタの接触面圧が過小になった状態
を示す図、第6図は同電極構造における撓み(δ)と接
触面圧CP)との関係を示す線図、第7図は本発明の一
実施例を示す粒子加速器の電極轡1飄の断面図、第8図
(イ)は同電極構造における締付ナツトを締付けた際の
撓み(δ)と接触面圧ψ)との関係を示す線図、同図(
ロ)は同電極構造における増締めナツトを締付けた際の
撓み(句と接触面圧ψ)との関係を示す線図、同図ぐう
は同電極構造における運転状態時の撓み(δ)と接触面
圧(P)11・・・円筒部、12・・・加速電極ステム
、13・・・コンタクタ、14.15・・・がスヶット
、16・・・fスケット押え、17・・・増締め座金、
77a・・・円板部、17b・・・立上シ部、18・・
・増締めボルト、19・・・締付ナツト、2o・・・ば
ね座金、11a、12a、13*・・・銅めっき層。
Figure 1 is an overview of the acceleration cavity of a particle accelerator, Figure 2 is an explanatory diagram showing the state in which heat load is generated within the acceleration cavity, and Figure 3 is a conventional particle accelerator showing section D in Figure 1. Fig. 4 is an enlarged cross-sectional view of the electrode structure, Fig. 4 is a cross-sectional view showing a situation where the contact surface pressure of the contactor is too high in the same electrode structure, and Fig. 5 is a cross-sectional view showing the state where the contact pressure of the contactor is too small in the same electrode structure. Figure 6 is a diagram showing the relationship between deflection (δ) and contact pressure CP) in the same electrode structure. Figure 7 is a diagram showing the electrode height of a particle accelerator according to an embodiment of the present invention. Figure 8 (a) is a cross-sectional view of the same electrode structure, and a line diagram showing the relationship between the deflection (δ) and the contact surface pressure ψ) when tightening the tightening nut.
B) is a diagram showing the relationship between the deflection (contact surface pressure ψ) when tightening the retightening nut in the same electrode structure, and the figure G is a diagram showing the relationship between the deflection (δ) and the contact surface pressure during operation in the same electrode structure. Surface pressure (P) 11... Cylindrical part, 12... Accelerating electrode stem, 13... Contactor, 14.15... is slit, 16... f sket holder, 17... Retightening washer ,
77a... Disc part, 17b... Standing part, 18...
- Retightening bolt, 19... Tightening nut, 2o... Spring washer, 11a, 12a, 13*... Copper plating layer.

Claims (1)

【特許請求の範囲】[Claims] 円筒胴を貫通する加速電極ステムと、同ステムと円筒胴
間に介装されたコンタクタと、ガスケット押えで押えら
れ加速電極ステム貫通部を真空シールするガスケットと
、加速電極ステムを、ガスケット押、えを介して円筒胴
に締付固定する締付ナツトとを設けた粒子加速器の電極
構造において、ガスケット押えと締付ナツトとの間に、
増締め座金とばね座金とを介装し、かつ増締め座金に、
ガスケット押えを円筒胴方向に押圧する増締め?ルトを
装着してなる粒子加速器の電極構造。
An accelerating electrode stem that penetrates the cylindrical body, a contactor interposed between the stem and the cylindrical body, a gasket that is held down by a gasket holder and vacuum-seals the part through which the accelerating electrode stem passes, and a gasket holder that holds the accelerating electrode stem in place. In the electrode structure of a particle accelerator, which is provided with a tightening nut that is tightened and fixed to the cylindrical body via a
A retightening washer and a spring washer are interposed, and the retightening washer is
Retightening by pressing the gasket holder in the direction of the cylindrical body? Electrode structure of a particle accelerator equipped with a bolt.
JP17441782A 1982-10-04 1982-10-04 Electrode structure for particle accelerator Pending JPS5963700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17441782A JPS5963700A (en) 1982-10-04 1982-10-04 Electrode structure for particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17441782A JPS5963700A (en) 1982-10-04 1982-10-04 Electrode structure for particle accelerator

Publications (1)

Publication Number Publication Date
JPS5963700A true JPS5963700A (en) 1984-04-11

Family

ID=15978183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17441782A Pending JPS5963700A (en) 1982-10-04 1982-10-04 Electrode structure for particle accelerator

Country Status (1)

Country Link
JP (1) JPS5963700A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096389A (en) * 2009-10-27 2011-05-12 Mitsubishi Electric Corp Drift tube linear accelerator
JP2013206683A (en) * 2012-03-28 2013-10-07 Mitsubishi Heavy Ind Ltd Drift tube linear accelerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096389A (en) * 2009-10-27 2011-05-12 Mitsubishi Electric Corp Drift tube linear accelerator
JP2013206683A (en) * 2012-03-28 2013-10-07 Mitsubishi Heavy Ind Ltd Drift tube linear accelerator

Similar Documents

Publication Publication Date Title
EP0964461B1 (en) Non-aqueous electrolyte secondary cell
EP0191419B1 (en) Semiconductor power module with integrated heat pipe
US20100002397A1 (en) Base for power module
US4668373A (en) Target plate for cathode sputtering
US4276493A (en) Attachment means for a graphite x-ray tube target
US6050331A (en) Coolant plate assembly for a fuel cell stack
EP0104892A1 (en) Compact fuel cell stack
KR100642034B1 (en) Low temperature sputter target bonding method and target assemblies produced thereby
JPH10509839A (en) Fuel cell and stack made therefrom
DE69709980T2 (en) Battery system with a split battery housing with high thermal conductivity
JPS5963700A (en) Electrode structure for particle accelerator
US5072785A (en) Convectively cooled bolt assembly
US20020058176A1 (en) Fuel cell stack having intermediate plate for restricting movement of bolt members for fastening stacked body
JP2733525B2 (en) Stator assembly for power generating machinery
CH367865A (en) Device for converting thermal energy into electrical energy
Gabovich et al. Nonlinear waves at the surface of a liquid metal in
US5410631A (en) Clamp assembly for a vaporization boat
JP5178061B2 (en) Fuel cell
US20080116413A1 (en) Pneumatic tube assembly for electrical bonding of pneumatic components
CN110061157B (en) Top cover assembly and secondary battery comprising same
JPH09246092A (en) Electric capacitor
KR100405479B1 (en) End plate for fuel cell stack
CN218633197U (en) Pressing plate type cable lead-in device
JP4908691B2 (en) Fuel cell
US4196938A (en) Gas-discharge chamber electrode and electrode system using same