JPS5959190A - Preparation of protease - Google Patents
Preparation of proteaseInfo
- Publication number
- JPS5959190A JPS5959190A JP16848482A JP16848482A JPS5959190A JP S5959190 A JPS5959190 A JP S5959190A JP 16848482 A JP16848482 A JP 16848482A JP 16848482 A JP16848482 A JP 16848482A JP S5959190 A JPS5959190 A JP S5959190A
- Authority
- JP
- Japan
- Prior art keywords
- bacterium
- protease
- bacillus
- neutral protease
- genus bacillus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/52—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
- C12N9/54—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、バチルス属細菌から得たプロテアーゼ遺伝子
を遺伝子工学的な手法を用い、同種の或は別種のバチル
ス属細菌へ導入すて形質転換を行い、該形質転換株を用
いてプロテアーゼを製造することに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention involves introducing a protease gene obtained from a Bacillus bacterium into the same or different Bacillus bacterium for transformation using genetic engineering techniques, and transforming the transformed strain. The present invention relates to the production of protease using.
バチルス属細菌のプロテアーゼは、工業用途に広く使用
されており、有用なプロテアーゼ製造法の開発の産業上
の意義は極めて大きい。従来、その製造法としてバチル
ス・アミロリキファシェンス(B 、a4erflL
gw4aCL<ni )あるいはバチルス・アミロサツ
カリチカス(B、ηb、mCdLahLiLcu、i
)等の゛高プロテアーゼ生産能を有するバチルス属細菌
を培養し、その培養液上清からプロテアーゼを回収する
方法が実施されてきた。この方法において使用される高
プロテアーゼ生産能を有するバチルス属細菌は、目的と
するプロテアーゼ以外にも別種のプロテアーゼ、アミラ
ーゼ、リボヌクレアーゼ、レバンシュクラーゼ等の酵素
を培養液中に蓄積することが広く知られている。従って
従来法においては、多くの種類の酵素が蓄積された培養
液上清から1的とする酵素のみを分離回収するのに、多
くの困難が伴い且つ繁雑な工程が必要とされていた。ま
た従来法においてはプロテアーゼの生産性を向上させる
目的に対しては、偶然に頼る突然変異操作以外に実際的
に有効な方法は知られていなかった。Bacillus bacterium proteases are widely used in industrial applications, and the development of a useful protease production method has great industrial significance. Conventionally, Bacillus amyloliquefacens (B, a4erflL) has been used as its production method.
gw4aCL<ni ) or Bacillus amylosacchulicicus (B, ηb, mCdLahLiLcu, i
A method has been implemented in which bacteria of the genus Bacillus having a high protease-producing ability such as ``Bacillus'' are cultured, and protease is recovered from the culture supernatant. It is widely known that the Bacillus bacteria used in this method, which have a high protease production ability, accumulate other enzymes such as protease, amylase, ribonuclease, and levansucrase in the culture solution in addition to the target protease. ing. Therefore, in the conventional method, many difficulties and complicated steps were required to separate and recover only one enzyme from a culture supernatant in which many types of enzymes were accumulated. Furthermore, in conventional methods, no practically effective method was known for the purpose of improving protease productivity other than mutational manipulation that relies on chance.
本発明者らは従来法のかかる問題点を一気に解決する方
法について深く検討した結果、高プロテアーゼ生産菌か
ら得られるプロテアーゼ遺伝子を、他の菌体外酵素また
は最終製品への混入を嫌う別種の菌体外酵素を培養液中
に殆ど蓄積しないバチルス属細菌へ導入して形質転換さ
せることにより、目的とするプロテアーゼのみを多量に
培養液中に蓄積させ、該プロテアーゼを効率的に回収精
製することが可能であり、また蓄積量に関しても該形質
転換株は高プロテアーゼ生産性である染色体DNA供与
株より多量に目的とするプロテアーゼを蓄積し得ること
を見出し、更にプロテアーゼ生産性の改良に関しても導
入されたプロテアーゼ遺伝子の発現の改善あるいはコピ
ー数の増加により合目的に達成し得ることを見出して本
発明に到達した。The present inventors have deeply considered a method to solve these problems of the conventional method at once, and have found that the protease gene obtained from a high protease producing bacterium can be used with other extracellular enzymes or with a different type of bacterium that does not like to be mixed into the final product. By introducing an extracorporeal enzyme into a Bacillus bacterium that hardly accumulates in the culture solution and transforming it, it is possible to accumulate only a large amount of the target protease in the culture solution, and to efficiently collect and purify the protease. It was found that the transformed strain can accumulate a larger amount of the target protease than the chromosomal DNA donor strain, which has high protease productivity, and was also introduced to improve protease productivity. The present invention was achieved by discovering that the purpose can be achieved by improving the expression or increasing the copy number of the protease gene.
即ち、本発明は、バチルス属細菌の菌体外中性プロテア
ーゼ生産菌の染色体DNAを切断し、得られた DNA
断片をベクターを用いる方法で同種または別種のバチル
ス属細菌へ導入して形質転換を行い、該形質転換株から
目的とする中性プロテアーゼ遺伝子あるいは該プロテア
ーゼ遺伝子を含む供与染色体DNA断片が導入された微
生物を連木発明において用いられる染色体DNA供与菌
として用いるバチルス属細菌は、バチルス・アミロリキ
ファシエンス、バチルス・アミロサツカリチカスあるい
はバチルス・ナラトウ(B、−μα)のような菌体外中
性プロテアーゼ高生産性のものが望ましいが、特に制限
があるものではなく、バチルスeズブチリス(B、 z
JfQJQ、+ )あるいはバチルス・ステアロサーモ
フィルス) 730.1la4ff−、ti−e、侃σ
P/L註wi )等の菌体外中性プロテアーゼ産生能を
有するバチルス属細菌であれば如何なるものでも使用可
能である。That is, the present invention involves cleaving the chromosomal DNA of an extracellular neutral protease-producing bacterium of the genus Bacillus, and using the resulting DNA.
A microorganism into which a neutral protease gene of interest or a donor chromosomal DNA fragment containing the protease gene has been introduced from the transformed strain by introducing the fragment into a Bacillus bacterium of the same or different species using a vector and performing transformation. The Bacillus bacteria used as the chromosomal DNA donor bacteria used in the Renki invention include extracellular neutral proteases such as Bacillus amyloliquefaciens, Bacillus amylosactucariticus, or Bacillus naratou (B, -μα). High productivity is desirable, but there are no particular restrictions, such as Bacillus subtilis (B, z
JfQJQ, +) or Bacillus stearothermophilus) 730.1la4ff-, ti-e, 侃σ
Any Bacillus bacterium capable of producing extracellular neutral protease such as P/L Note wi) can be used.
本発明で述べる菌体外中性プロテアーゼとは菌体外に蓄
積されるプロテアーゼのうち至適pHが中性附近で、活
性中心にセリン残基を持たないメ3−
タロプロテアーゼをさすものである。The extracellular neutral protease described in the present invention refers to meta-3-taloprotease, which has an optimal pH near neutrality and does not have a serine residue in its active center, among proteases accumulated outside the cell. .
菌体外中性プロテアーゼ生産菌からの染色体DNA の
調製は、フェノールを用いる5abi、6−MLx4L
L 法 (BLLyC/iL#m、PrLtyp〜j
、ACCスミ72 619 (1963) )
するいはクロロホルム−イソアミルアルコールを用
いるMa4mw4法(J、 Mσ1. B=J、 3−
208 (1961) ) 等の通常用いられる方法
で実施可能である。Preparation of chromosomal DNA from extracellular neutral protease producing bacteria is carried out using 5abi, 6-ML x 4L using phenol.
L method (BLLyC/iL#m, PrLtyp~j
, ACC Sumi 72 619 (1963))
Alternatively, the Ma4mw4 method using chloroform-isoamyl alcohol (J, Mσ1. B=J, 3-
208 (1961)) and the like.
調製された供与染色体 DNAは、次いでベクターと連
結する為に切断される。供与染色体DNAの切断は、・
通常制限エンドヌクレアーゼを用いる方法によって実施
されるが、特にこれに限定されるものではなく、例えば
物理的に剪断力を加えて切断する方法でも目的とする中
性プロテアーゼ遺伝子を切断しない限り実施可能である
。制限エンドヌクレアーゼを用いて供与 DNAを切断
する場合、完全切断をおこす反応条件を用いるならば、
目的とする中性プロテアーゼ遺伝子に切断部位を持たな
い制限エンドヌクレアーゼであれば如何なるものも使用
可能であり、また部分的にしか切断4−
のように制限エンドヌクレアーゼは用いる条件に応じて
種々のものが選択可能であるが、ベクターとの連結の容
易さからは用いようとするベクターに唯一の切断部位を
有するものが望ましい。The prepared donor chromosomal DNA is then cut for ligation with the vector. The cutting of donor chromosomal DNA is
This is usually carried out by a method using a restriction endonuclease, but it is not limited to this. For example, it can also be carried out by physically applying a shearing force to cut it, as long as it does not cut the neutral protease gene of interest. be. When cutting donor DNA using a restriction endonuclease, if reaction conditions that cause complete cleavage are used,
Any restriction endonuclease that does not have a cutting site in the target neutral protease gene can be used, and various restriction endonucleases can be used depending on the conditions used, such as those that cut only partially. However, from the viewpoint of ease of ligation with a vector, it is desirable to have a unique cleavage site in the vector to be used.
ベクターとしては、宿主として用いるバチルス属細菌中
で複製可能なものであれば、プラスミドあるいはファー
ジの区別なく使用可能である。ベクターとして用いうる
プラスミドは、前述のとおり用いようとする宿主中で複
製可能なものであれば如何なるものでもよいが、特定の
制限エンドヌクレアーゼによる唯一の切断部位を有し、
抗生物質耐性等のマーカーを有するものが、供与染色体
DNA との結合および形質転換株選択の容易さから
望ましい。このようなプラスミドの例としては、スタフ
ィロコッカス(SicLP〜1erc、σGCu))由
来のクロラムフェニコール耐性マーカーラ有スルpC1
94、pc 221. pc 223 (Pwc、 N
a1i、 Act、 5CjUSA 741680
(1977) )、 カナマイシン耐性マーカーを有
するpUBllo(J、 13tLOムル=1. 13
4.318(1,978) )等を挙げることが出来る
。当然これらのプラスミドは本発明の好適なベクターと
なるが、バチルス属細菌に由来する生理的性質不明のプ
ラスミドも何らかのマーカーを附与することで本発明の
好適なベクターとなり得る。As a vector, any vector can be used regardless of whether it is a plasmid or a phage, as long as it is replicable in the Bacillus bacteria used as the host. The plasmid that can be used as a vector may be any plasmid as long as it can be replicated in the intended host as described above, but it has a unique cleavage site by a specific restriction endonuclease,
Those with markers such as antibiotic resistance are desirable for ease of binding with donor chromosomal DNA and selection of transformed strains. An example of such a plasmid is pC1 with the chloramphenicol resistance marker derived from Staphylococcus (SicLP~1erc, σGCu).
94, pc 221. pc 223 (Pwc, N
a1i, Act, 5CjUSA 741680
(1977) ), pUBllo with kanamycin resistance marker (J, 13tLO mul = 1.13
4.318 (1,978)). Naturally, these plasmids are suitable vectors for the present invention, but plasmids derived from bacteria belonging to the genus Bacillus and whose physiological properties are unknown can also be suitable vectors for the present invention by adding some kind of marker to them.
ベクターとしてファージを用いる場合も、そのファージ
DNAが宿主とするバチルス属細菌で複製可能であれば
如何なるものでもよい。このようナファーシノ例トシテ
z1.963T、96105、ρ11等をあげることが
出来る。When using a phage as a vector, any vector may be used as long as the phage DNA can be replicated in the host Bacillus bacterium. Examples of such materials include Toshite z1.963T, 96105, and ρ11.
切断された供与染色体 DNA断片を、上記ベクターに
挿入し結合させる為には、供与染色体とベクターとを同
一の制限エンドヌクレアーゼで切断し、しかる後に D
NAIJガーゼを用いて結合する方法が一般的であるが
、特にこの方法に限定されることな〈従来知られている
如何なる方法でも実施可能である。In order to insert and link the cut donor chromosome DNA fragment into the above vector, the donor chromosome and vector are cut with the same restriction endonuclease, and then D
Although a method of binding using NAIJ gauze is common, the method is not particularly limited to this method; any conventionally known method can be used.
このようにして得られる組換体DNA分子(供与染色体
DNA断片とベクターとの結合体)は次に宿主であるバ
チルス属細菌に導入される。宿主として用いるバチルス
属細菌は本発明実施の目的に応じて種々のものが選択可
能である。即ち、他の菌体外酵素の蓄積を抑えて目的と
する中性プロテアーゼを選択的に多量に培養液中に蓄積
量しめようとする場合は、菌体外酵素蓄積量の低いバチ
ルス属細菌を宿主として用いればよ(、また他の特定の
菌体外酵素と目的とする中性プロテアーゼとの同時蓄積
を回避したい場合は、その特定の酵素の欠損株であるバ
チルス属細菌を宿主として用いればよい。また逆にある
特定の菌体外酵素と目的とする中性プロテアーゼとを同
時に培養液中に蓄積せしめようとする場合は、その特定
の酵素を培養液中に蓄積するバチルス属細菌を宿主とし
て用いればよい。The recombinant DNA molecule thus obtained (conjugate of donor chromosomal DNA fragment and vector) is then introduced into a host bacterium belonging to the genus Bacillus. Various bacteria of the genus Bacillus to be used as a host can be selected depending on the purpose of carrying out the present invention. In other words, if you want to selectively accumulate a large amount of the target neutral protease in the culture solution by suppressing the accumulation of other extracellular enzymes, use Bacillus bacteria that have a low accumulation of extracellular enzymes. (Also, if you want to avoid simultaneous accumulation of other specific extracellular enzymes and the target neutral protease, you can use a Bacillus bacterium that is deficient in that specific enzyme as a host.) On the other hand, if you want to accumulate a specific exoenzyme and the desired neutral protease in the culture solution at the same time, use a Bacillus bacterium that accumulates the specific enzyme in the culture solution as a host. It can be used as
かくして選ばれた宿主菌であるバチルス属細菌へ組換体
DNA分子を導入して形質転換を行わしめ未ためには
、コンピテント細胞を用いる形質転換法(M6.p−、
GJiL、 G仏a、 167251 (1979)
) アするいはプロトプラストを用いる形質転換法(M
v、I−。In order to introduce the recombinant DNA molecule into the Bacillus genus bacterium, which is the host bacteria selected in this way, and perform transformation, a transformation method using competent cells (M6.p-,
GJiL, G Buddha a, 167251 (1979)
) Transformation method using water or protoplasts (M
v, I-.
7−
G偲、Gtηzf、ヱ、 111 (1979)、 )
を用いることで実施可能であるが、これら二つの方法に
伺ら限定されることな〈従来知られている全ての方法で
実施例
得られる形質転換株から目的とする中性プロテにより一
次選択を実施し、更に宿主のプロテアーゼ活性の変化を
指標に選択する方法が容易である。7-G, Gtηzf, 111 (1979), )
However, the method is not limited to these two methods. Primary selection is carried out using the desired neutral protein from the transformant obtained by all conventionally known methods. It is easy to carry out and select using changes in host protease activity as an indicator.
選択された形質転換株を用いて目的とする中性プロテア
ーゼを培養液中に蓄積せしめるには何ら特定の方法を要
しない。即ち培地としては、炭素源、窒素源、無機イオ
ン、更に必要に応じてビタミン等の有機微量栄養素を含
有する通常のものを用いることができる。培養は好気的
条件下で培地のpHおよび温度を適宜調節し乍ら実質的
に所望量の中性プロテアーゼが蓄積するまで実施される
。No specific method is required to accumulate the desired neutral protease in the culture medium using the selected transformed strain. That is, as a culture medium, a usual medium containing a carbon source, a nitrogen source, inorganic ions, and further organic micronutrients such as vitamins as necessary can be used. Cultivation is carried out under aerobic conditions while adjusting the pH and temperature of the medium as appropriate until a substantially desired amount of neutral protease is accumulated.
培養後の培養液からの中性プロテアーゼの回収8−
しか蓄積しないものであれば、培養液上清に通常の有機
溶媒あるいは無機塩類を加えて得られる沈澱中の中性プ
ロテアーゼの割合は極めて大きく沈澱を乾燥することに
より、混在酵素の少ない中性:1
プロテアーゼ粗酵゛素粉末を容易に得ることができる。Recovery of neutral protease from the culture solution after culture 8- If only 8- is accumulated, the proportion of neutral protease in the precipitate obtained by adding ordinary organic solvent or inorganic salts to the culture supernatant is extremely large. By drying the precipitate, a neutral:1 protease crude enzyme powder containing less mixed enzymes can be easily obtained.
以上詳述したように本発明においては、任意のバチルス
属細菌を染色体 DNA供与菌とし、該供与菌の生産す
る菌体外中性プロテアーゼを、任意に選んだ宿主菌であ
るバチルス属細菌を用いて製造し得る利点を有する。従
って本発明においては・、染色体 DNA供与菌として
中性プロテアーゼ高星産性のバチルス属細菌を選び、ま
た宿主菌として菌体外酵素を殆んど蓄積しないバチルス
属細菌を選ぶことにより、目的とする中性プロテアーゼ
を多量に且つ混在酵素の混入を低く抑えて製造すること
が可能となる。以上のように、中性プロテアーゼの生産
性の改善および精製工程の簡略化によるプロテアーゼの
製造に及ぼす寄与は太きい。As detailed above, in the present invention, any bacterium of the genus Bacillus is used as a chromosomal DNA donor, and the extracellular neutral protease produced by the donor bacterium is transferred to a bacterium of the genus Bacillus, which is an arbitrarily selected host bacterium. It has the advantage that it can be manufactured using Therefore, in the present invention, by selecting a bacterium of the genus Bacillus that is highly productive of neutral proteases as a chromosomal DNA donor bacterium, and a bacterium of the genus Bacillus that hardly accumulates extracellular enzymes as a host bacterium, It becomes possible to produce a large amount of neutral protease while suppressing the contamination of contaminant enzymes. As described above, the improvement of the productivity of neutral protease and the simplification of the purification process will greatly contribute to the production of protease.
以下、実施例により本発明を更に説明する。The present invention will be further explained below with reference to Examples.
実施例
(1)中性プロテアーゼ高生産株B、twL、yu、几
Pt41aC2t−bxi p株からの染色体DNAの
調製;B、arn;yicdli、Ha=−e−nr
F株(ATCC23842)を21のNB培地(0,8
%肉エキス;0.8%ポリペプトン、0.2%酵母エキ
ス、 0.4%NaCl、pH7,2)を用い37°C
で4時間振盪培養し、対数増竺後期の菌体を集菌後、M
(147FLu4の方法(J 、Mef。Example (1) Preparation of chromosomal DNA from neutral protease high producing strains B, twL, yu, and 几Pt41aC2t-bxi p strains; B, arn; yicdli, Ha=-e-nr
F strain (ATCC23842) was grown in 21 NB medium (0.8
% meat extract; 0.8% polypeptone, 0.2% yeast extract, 0.4% NaCl, pH 7.2) at 37°C.
After culturing with shaking for 4 hours and collecting the bacterial cells at the late stage of logarithmic expansion, M
(Method of 147FLu4 (J, Mef.
B’=61.32081961) ) により染色体D
NAを調製した。得られたDNAは14.5+++47
であった。B'=61.32081961) ) gives chromosome D
NA was prepared. The DNA obtained was 14.5+++47
Met.
(2) B、 amyUtyJILP4aCL−e、n
i F株DNAの制限酵素による切断:
(1)で得られた供与DNAを制限エンドヌクレアーゼ
ECσR1を用い常法に従って切断した。(2) B, amyUtyJILP4aCL-e, n
i Cleavage of F strain DNA with restriction enzymes: The donor DNA obtained in (1) was cleaved using restriction endonuclease ECσR1 according to a conventional method.
(3)ベクターDNAの調製と制限酵素による切断:制
限エンドヌクレアーゼECσR1により常法に従って切
断した。(3) Preparation of vector DNA and cleavage with restriction enzymes: Cleavage was performed with restriction endonuclease ECσR1 according to a conventional method.
(4)供与DNAとベクターとの結合:(1)で得られ
たE、りR1処理プラスミドpUB11010μりを1
75μlの50mM T4i−−HCII (pH8,
0)緩衝液に懸濁し、W vhnLLnN、vn社製細
菌アルカリ性ホスファターゼ(BAP)10μlを添加
この BAP処理pUB110 1μlにECσR1処
理供与DNA断片(0,4μ91ttGlttll、蒸
留水13μ1110倍濃度リガーゼ用媛衝液(660m
M TルL〕−14Cl pH7,6,66mM M’
JC12,1’00mMジチオ/(ライトール、2mM
ATP)2pljおよびT4DNAリガーゼ溶液2μ7
(0,1単位)を添加し、15°Cで3時間インキュベ
ートし、65℃で5分間加熱して反応を停止した。(4) Binding of donor DNA and vector: 10 μl of E, R1-treated plasmid pUB110 obtained in (1)
75μl of 50mM T4i--HCII (pH 8,
0) Suspend in a buffer solution and add 10 μl of bacterial alkaline phosphatase (BAP) manufactured by WvhnLLnN, vn. To 1 μl of this BAP-treated pUB110, add the ECσR1-treated donor DNA fragment (0.4μ91ttGlttll, 13 μl of distilled water, 110 times concentrated ligase buffer solution (660ml).
M T L]-14Cl pH7,6,66mM M'
JC12, 1'00mM Dithio/(Lytol, 2mM
ATP) 2plj and T4 DNA ligase solution 2μ7
(0,1 unit) was added, incubated at 15°C for 3 hours, and heated at 65°C for 5 minutes to stop the reaction.
(5)組換DNAえ分子のBo、、bdス1riirノ
1A289への導入および形質転換:
アミラーゼ欠損でかつプロテアーゼ生産性が低いB、−
a火bLノlA289(” 1906 m−a−tB5
、aaCA321 α=yE)株(オハイオ大学バチ
ルス ジエネテイツクストック センター保存株)を5
0iのペンアッセイ培地(DLiOr社製)で培養しC
z−tLnfIの方法(M、ム0. QUL、 Q−z
xf、里、111(1979))に従いプロトプラスト
を調製した。このプロトプラスト懸濁液0.125−と
りガーゼ反応混液(20μl)を用いCL−xgの方法
(同上文献)に従ってプロトプラストへの組換え DN
A分子の導入を実%に112P、04.0.5%グルコ
ース、0.02%MgC1120、旧%牛血清アルブミ
ン、0.8%寒天、m147.0)(。(5) Introduction and transformation of recombinant DNA molecules into Bo, bd strain 1A289: B, which is amylase deficient and has low protease productivity.
aTuesday bLノlA289(” 1906 m-a-tB5
, aaCA321 α=yE) strain (strain kept at the Ohio University Bacillus Genetics Stock Center)
Cultured in 0i pen assay medium (manufactured by DLiOr).
z-tLnfI method (M, Mu0. QUL, Q-z
Protoplasts were prepared according to the following method (1979). This protoplast suspension was recombined into protoplasts using a 0.125-gauze reaction mixture (20 μl) according to the method of CL-xg (ibid.).
Introduction of A molecules into actual %112P, 0.5% glucose, 0.02% MgC1120, old% bovine serum albumin, 0.8% agar, m147.0) (.
にフレーテインクし、37℃で24時間インキュベート
した。しかる後に DM3培地上に形成したカナマイシ
ン耐性形質転換株のコロニーを全て、つまようじを用い
て008%カゼイソ含有寒天培地(50μg〜カナマイ
シン含有)へ移し、37°Cでインキユベートシた。1
8時間後、コロニーのまわりに大型ハローを形成する株
6株を見出し、その中から中性プロテアーゼ活性の上昇
したMT−07i s株(FER,M−BP−1鮎)を
得た。本株からQhyCynm、らの方法(J 、13
aCムyLerJl i 34.31s (1978
) ) でプラスミドを抽出し、制限酵素ECR1で
切断した後、アガローズゲル電気泳動を行った結果、本
プラスミドには供与DNA断片が挿入されていることが
確認された。また本プラスミドを用いて、lA289株
を形質転換した場合、全てのカナマイシン耐性形質転換
株が中性プロテアーゼ高生産性となっていることも確認
された。and incubated at 37°C for 24 hours. Thereafter, all the colonies of the kanamycin-resistant transformants formed on the DM3 medium were transferred using toothpicks to an agar medium containing 008% caseiso (containing ~50 μg of kanamycin) and incubated at 37°C. 1
After 8 hours, 6 strains forming a large halo around the colony were found, and among them, the MT-07is strain (FER, M-BP-1 Ayu) with increased neutral protease activity was obtained. From this strain, the method of QhyCynm et al. (J, 13)
aCmuyLerJl i 34.31s (1978
)) After extracting the plasmid and cutting it with the restriction enzyme ECR1, agarose gel electrophoresis was performed, and as a result, it was confirmed that the donor DNA fragment had been inserted into this plasmid. Furthermore, when strain IA289 was transformed using this plasmid, it was confirmed that all kanamycin-resistant transformants had high productivity of neutral protease.
110:テアーゼおよびアミラーゼの生産性を、染色体
1111、;毎
DNA 供与株であるB、 am、yJ16.1L1
tt−cfacL<−F株および組換DNA分子宿主株
であるB、 1JrLムノIA2F+9株と比較した結
果を第1表に示す。110: Tease and amylase productivity was determined from chromosome 1111; every DNA donor strain B, am, yJ16.1L1
Table 1 shows the results of comparison with the tt-cfacL<-F strain and the recombinant DNA molecule host strain B, 1JrL muno IA2F+9 strain.
培養はBY培地(0,5%肉エキス、0.2%酵母エキ
ス、1%ポリペプトン、0.2%NaC1pH7,2)
を用い30℃で24時間振盪して行った。Cultured in BY medium (0.5% meat extract, 0.2% yeast extract, 1% polypeptone, 0.2% NaCl pH 7.2)
The mixture was shaken for 24 hours at 30°C.
プロテアーゼ活性の測定はカゼインを基質とする萩原ら
の方法(J、 BQycLt7rL4’へ185(19
58))に従った。中性プロテアーゼとアルカリ性プロ
テアーゼの分別1=22mM ジインプロピルフルオ
ロフォスフェートまたは10mMエチレンジアミンテト
ラアセテートを加え、夫々を添加した場合に残第1表The protease activity was measured using the method of Hagiwara et al. (J, BQycLt7rL4' to 185 (19
58)) was followed. Fractionation of neutral protease and alkaline protease 1 = 22mM diimpropylfluorophosphate or 10mM ethylenediaminetetraacetate is added, and when each is added, the remaining Table 1
Claims (1)
体DNAを切断し、得られた DNA断片をベクターを
用いる方法で同種または別種のバチルス属細菌へ導入1
−て形質転換を行い、該形質転換株から目的とする中性
プロテアーゼ遺伝子あるいは該プロテアーゼ遺伝子を含
む供与染色体DNA断片が導入された微生物を選択し、
該微生物を培養し培養液に蓄積した中性プロテアーゼを
採取することを特徴とするプロテアーゼの製造法。Cleaving the chromosomal DNA of an extracellular neutral protease-producing bacterium of the Bacillus genus and introducing the resulting DNA fragment into the same or different Bacillus genus bacterium using a vector 1
- performing transformation, selecting a microorganism into which the target neutral protease gene or a donor chromosomal DNA fragment containing the protease gene has been introduced from the transformed strain;
A method for producing protease, which comprises culturing the microorganism and collecting neutral protease accumulated in the culture solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16848482A JPS5959190A (en) | 1982-09-29 | 1982-09-29 | Preparation of protease |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16848482A JPS5959190A (en) | 1982-09-29 | 1982-09-29 | Preparation of protease |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5959190A true JPS5959190A (en) | 1984-04-04 |
Family
ID=15868944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16848482A Pending JPS5959190A (en) | 1982-09-29 | 1982-09-29 | Preparation of protease |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5959190A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0133756A2 (en) * | 1983-07-06 | 1985-03-06 | Genex Corporation | Vector for expression of polypeptides |
JPS6070075A (en) * | 1983-06-24 | 1985-04-20 | ジェネンコア・インターナショナル,インコーポレイテッド | Carbonyl hydrolyzing enzyme of eukaryote |
JPS6091980A (en) * | 1983-07-06 | 1985-05-23 | ジェネックス・コーポレイション | Production of microorganism for developing protease |
EP0149241A2 (en) * | 1983-12-28 | 1985-07-24 | Agency Of Industrial Science And Technology | DNA base sequence containing regions involved in the production and secretion of a protein, recombinant DNA including the whole or a part of the DNA base sequence, and method of producing proteins by use of the recombinant DNA |
US5015574A (en) * | 1985-11-25 | 1991-05-14 | Agency Of Industrial Science And Technology | DNA sequence involved in gene expression and protein secretion, expression-secretion vector including the DNA sequence and the method of producing proteins by using the expression-secretion vector |
-
1982
- 1982-09-29 JP JP16848482A patent/JPS5959190A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6070075A (en) * | 1983-06-24 | 1985-04-20 | ジェネンコア・インターナショナル,インコーポレイテッド | Carbonyl hydrolyzing enzyme of eukaryote |
EP0133756A2 (en) * | 1983-07-06 | 1985-03-06 | Genex Corporation | Vector for expression of polypeptides |
JPS6091980A (en) * | 1983-07-06 | 1985-05-23 | ジェネックス・コーポレイション | Production of microorganism for developing protease |
EP0149241A2 (en) * | 1983-12-28 | 1985-07-24 | Agency Of Industrial Science And Technology | DNA base sequence containing regions involved in the production and secretion of a protein, recombinant DNA including the whole or a part of the DNA base sequence, and method of producing proteins by use of the recombinant DNA |
US5015574A (en) * | 1985-11-25 | 1991-05-14 | Agency Of Industrial Science And Technology | DNA sequence involved in gene expression and protein secretion, expression-secretion vector including the DNA sequence and the method of producing proteins by using the expression-secretion vector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3853328T3 (en) | Subtilisin analogs. | |
JP2599946B2 (en) | Subtilisin analog | |
JPS6232888A (en) | Preparation of alkaline protease, hybrid vector and form converting bacteria | |
JPS5959190A (en) | Preparation of protease | |
US5612192A (en) | DNA base sequence containing regions involved in the production and secretion of a protein, recombinant DNA including the whole or a part of the DNA base sequence, and method of producing proteins by use of the recombinant DNA | |
CA1285233C (en) | Method for the production of neutral protease | |
US4419450A (en) | Plasmid cloning vector for Bacillus subtilis | |
JPH04190793A (en) | Cellulase gene-containing recombinant plasmid and production of cellulase by recombinant bacterium | |
JPH0257186A (en) | Hybrid plasmid for in bacillus subtilisin carlsberg production | |
JPS594115B2 (en) | New nucleolytic enzyme and its production method | |
JPH02167084A (en) | Production of pvui restricted endonuclease | |
JP2592289B2 (en) | DNA fragment containing alkaline cellulase gene, vector incorporating the DNA fragment, and microorganism containing the same | |
JP2590462B2 (en) | Method for producing thermostable protease | |
US4865982A (en) | Cloned streptomycete gene | |
JPS61205484A (en) | Novel plasmid | |
JPS62275684A (en) | Recombinant vector and bacterial cell containing same | |
JPS62151185A (en) | Recominant dna molecule | |
JPH03112484A (en) | Novel restriction enzyme and its production | |
JPS623796A (en) | Production of interleukin 2 | |
JPH0787790B2 (en) | METHOD FOR PRODUCING NOVEL GENE DNA AND ALKALINE PROTEASE | |
JPH03172178A (en) | Type ii restriction endonuclease sgrai | |
JPH01101886A (en) | Production of novel recombinant dna and alkaline protease | |
JPS6156080A (en) | Novel dna, and preparation of protein using same | |
JPS59159778A (en) | Preparation of heat-resistant leucine dehydrogenase | |
JPH03277289A (en) | Hybrid promoter-operator |