[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5954631A - Preparation of lens having refractive index distribution in axial direction - Google Patents

Preparation of lens having refractive index distribution in axial direction

Info

Publication number
JPS5954631A
JPS5954631A JP16373382A JP16373382A JPS5954631A JP S5954631 A JPS5954631 A JP S5954631A JP 16373382 A JP16373382 A JP 16373382A JP 16373382 A JP16373382 A JP 16373382A JP S5954631 A JPS5954631 A JP S5954631A
Authority
JP
Japan
Prior art keywords
refractive index
glass
lens
soot layer
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16373382A
Other languages
Japanese (ja)
Inventor
Toshiro Ikuma
伊熊 敏郎
Akitaka Momokita
百北 昭宝
Minoru Toyama
遠山 実
Tetsuya Yamazaki
哲也 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP16373382A priority Critical patent/JPS5954631A/en
Publication of JPS5954631A publication Critical patent/JPS5954631A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To prepare a lens having extremely low aberration on the axis, by attaching fine particles of glass on the surface of a starting substrate with changing a dopant concentration in the normal direction, growing it, making it transparent, processing end faces into a spherical surface with aligning an axial line with the direction of refractive index distribution. CONSTITUTION:A glass-forming raw material gas such as SiCl4, etc. supported on a carrier gas such as Ar, etc. is fed from the feed pipe 11 to the torch 10 made of quartz glass, a combustible gas such as H2, etc. is fed from the feed pipe 12 to it, the glass- forming fine particles 13 are formed by a flame hydrolysis reaction, and the soot layer 15 is grown on the substrate 14. In the growth, the soot layer 15 having a composition distribution in the thickness direction is formed by changing continuously a feed concentration of the soot 13. The soot layer 15 is heated at high temperature in an inert gas, and processed into the transparent plate 16 having a refractive index distribution in the thickness direction. The glass plate is ground and polished in such a way that the face 16A with low refractive index of the glass plate 16 is a plane, the face 16B having high refractive index has a given radius R of carvature, and the center of the curvature is positioned on the normal of the glass 16, to give the lens 17 having refractive index changing successively in the optical axis.

Description

【発明の詳細な説明】 本発明は光1q11方向に屈折率が連続的に変化し、光
1111+に垂IUな面内では屈折率が二様であるよう
な球面レンズの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a spherical lens in which the refractive index changes continuously in the light 1q11 direction, and the refractive index is bimodal within a plane IU perpendicular to the light 1111+. .

一般に光学レンズ等に使用されセいる屈折率が一様な球
面レンズは収差が比□較的大きく、例えば中心:Cのレ
ンズ厚みが7’mm 、曲率半径7.2mm’ 。
Spherical lenses with a uniform refractive index, which are generally used in optical lenses, have relatively large aberrations, for example, the lens thickness at center C is 7'mm and the radius of curvature is 7.2mm'.

屈折率/、・夕の平凸レンズの軸上収差は光線計nKよ
ればオ/図のグラフに示すように最大約7.7mmの大
きな値を示す。
According to the optical ray meter nK, the axial aberration of the plano-convex lens has a maximum value of about 7.7 mm, as shown in the graph of the refractive index/.

この軸上収差はレンズの厚味1曲率半径、屈折率等を選
択することにより改善することは可能であるが、レンズ
厚味及び曲率半径番かなり小さくしなければ軸上収差が
数百ミクロンのレンズが得られないこと及びこれ以」二
収差の小さいレンズを(Mるのはほとんど不可能に近い
といってもさしつかえない。
This axial aberration can be improved by selecting the lens thickness, radius of curvature, refractive index, etc., but unless the lens thickness and radius of curvature are made considerably smaller, the axial aberration will be several hundred microns. It is safe to say that it is almost impossible to obtain a lens with small aberrations.

また球面レンズの上記欠点を解決するために非球面加工
により低収差レンズを作成する方法も提案されているが
、球面レンズに比べて加工が難しいという欠点がある。
Furthermore, in order to solve the above-mentioned drawbacks of spherical lenses, a method has been proposed in which a low-aberration lens is created by processing an aspheric surface, but this method has the disadvantage that processing is more difficult than that of a spherical lens.

」二記のような問題を解決するレンズとして、片面を球
面とし他面を平面としだ平凸レンズ内に、レンズ表面か
ら光軸方向にZの距離の点VCおUるfi1口′)7率
r+(Z)か球面の中心の屈折率をη0として。
As a lens that solves the problem described in item 2, one side is spherical and the other side is flat, and inside a plano-convex lens, there is a point VC at a distance of Z in the optical axis direction from the lens surface. Let r+(Z) be the refractive index at the center of the spherical surface as η0.

n (Z)−ηof、(Z)  ・・・・・・・ゾ/)
・   ・□で表わされるように連続的に弯化し、且つ
光軸にjlj i(L 71曲内では1i11析率が一
様であるような屈折□、率分布を設りたレンズが提案さ
れ°Cいる。
n (Z)-ηof, (Z) ・・・・・・zo/)
・ ・A lens has been proposed that is continuously curved as shown by □ and has a refraction □ and index distribution such that the optical axis has a uniform 1i11 refraction rate within the 71 pieces. There is C.

例えばオコ図に示すように一方のレンズ面/が球面で他
方のレンズ面2がフラットな平凸レンズ内1111 に、球面レンズ面/の中心点Oにお(、する屈折率NO
を最大とし7てフラットレンズ曲−に向&−1”(厚み
方向に屈折率が連続的に減少し、目つ光軸3に垂It1
な任意のn1r iT+i 4’内ではIFil折率が
一様であるようなl11111’i率分布を′j・えて
おくo     ′このような屈折率分布□をもったレ
ンズの球面し・ンズ面/に苅し”(光軸に平行な光線S
が入射すると、この入射点を通り光軸に対し垂直41面
lとレンズ面/中心との距離Zが大きくなるほど人ra
t点における屈折率が順次低くなっているので、屈折率
が、一様なレンズ((比べてレンズタ1周寄りに人I・
1する光線はど屈折角が相対的に級やかになる。
For example, as shown in the diagram, in a plano-convex lens 1111 where one lens surface / is spherical and the other lens surface 2 is flat, the refractive index NO
The maximum value is 7, and the refractive index decreases continuously in the thickness direction toward the flat lens curve.
Let us consider l11111'i index distribution such that the IFil refractive index is uniform within any n1r iT+i 4'. nikarashi” (ray S parallel to the optical axis
is incident, the larger the distance Z between the lens surface/center and the 41 plane l perpendicular to the optical axis passing through this point of incidence, the greater the human ra.
Since the refractive index at point t gradually decreases, the refractive index of the lens ((compared to
The angle of refraction of a ray of light that is 1 is relatively steep.

これにより図中破線で示すように光軸から離れた位置に
入射する光線が近11111光線に比べてレンズ面6ら
近□い位置に焦点を結ぶ球面レンズ個有の軸上収差が補
正さ□れ、極めて低収差のレンズを得ることができる。
As a result, as shown by the broken line in the figure, the axial aberration unique to the spherical lens, in which the rays incident at a position far from the optical axis are focused at a position closer to the lens surface 6 than the near 11111 rays, is corrected. As a result, a lens with extremely low aberrations can be obtained.

このような軸方向屈折率分布型レンズの[41ガラス板
の製造方法としてアルカリ含有ガラスのアルカリイオン
交換法により厚味方向に屈折率分布を設りる方法が提案
されているが、イ珂ン交換という一種の拡散現象を利用
しているため屈折率分布のコントロールが任意に行なえ
ないこと及び屈折率差△nを大@□くとりずぎるとイA
ン交換後の1すイΔガラス板の膨張係数の差も同時に大
きくなり割れ易い等め問題を星じる。
[41] As a method for manufacturing a glass plate for such an axially distributed index lens, a method has been proposed in which a refractive index distribution is created in the thickness direction by an alkali ion exchange method of alkali-containing glass. Since it utilizes a type of diffusion phenomenon called exchange, the refractive index distribution cannot be controlled arbitrarily, and if the refractive index difference △n is reduced to a large value,
At the same time, the difference in the expansion coefficients of the 1S Δ glass plate after the glass plate is replaced also increases, leading to problems such as easy breakage.

本発明は」二記問題を解決する新規な軸方向屈折率分布
型1ンズの製造方法を提供することを目的としている。
It is an object of the present invention to provide a novel method for manufacturing an axially graded refractive index lens that solves the second problem.

本発明に従った方法では、ガラス形成原料ガスをガラス
微粒子合成トーチに供給して火炎加水分解反応により5
i02を主成分とし屈折率を調整するドーパン1を含有
したガラス微粒子を生成さセ、このガラス微粒子を出発
基板の平面」;に顔面の法線方向に1)if記ドーパン
トの濃度を、変えろ゛がらイ」層成長さU/、:後、こ
れを高温加熱して透明化させることにより厚味方向に屈
4Ji率が連続的に変化する板状のレンズ1利ガラスを
作成し、次りてこの1祠カラス板を必要に応じて小板に
グ割切断した後、屈折率分布方向を4q11線として少
なくとも一方の端面を球面に加J:する。
In the method according to the present invention, a glass-forming raw material gas is supplied to a glass particle synthesis torch, and 5
1) If glass particles containing i02 as a main component and dopane 1 for adjusting the refractive index are produced, the concentration of the dopant is changed in the direction normal to the face of the starting substrate. After the glass layer is grown, this is heated at high temperature to make it transparent to create a plate-shaped lens whose refractive index changes continuously in the thickness direction, and then After this one-width glass plate is cut into small plates as necessary, at least one end surface is made into a spherical surface with the refractive index distribution direction set to the 4q11 line.

」−記の方θくにJ:れば厚味方向の屈折率分布か自由
に選ベレンズ厚味の自由lβも広い。
'' - If the direction θ is J: then the refractive index distribution in the thickness direction can be freely selected, and the lens thickness can be freely adjusted lβ.

またTj−02をドーパントの一つとして他の酸化物と
同117にガラス中VC添加することによりガラス中に
発生ずる応力を小さくすることができる。
Furthermore, by adding VC to the glass using Tj-02 as one of the dopants along with other oxides, the stress generated in the glass can be reduced.

本発明方法によれは軸上収差を極限まで小さくした球面
レンズを容易に作成することか「4能である。
The method of the present invention makes it possible to easily create a spherical lens with minimal axial aberrations.

以1・本発明を図面に基づいて説明する。1. The present invention will be explained based on the drawings.

まずオq図(イ)(〆こlドずように石り2ガラス製あ
るいは金属製の多重管からなるガラス微粒子合成l・−
チ10 KSiCla、GeG14.Ti(J+ 、P
O(J3等のガラス形成原料ガスをAr+02等のキャ
リアガスにの妊て供給管/lを通して供給する。またH
2+02 等の加燃性ガス及び助燃性ガスを他方の供給
管/2を通して合成トーチ10に供給して火炎加水分解
反応によりガラス形成微粒子(以下スー 1・という)
/3を形成し、トーチ10の前方に設りられたグラファ
イト、石英ガラス等板状の基板/l土にスート層15を
伺着成長さゼる。
First of all, figure 1 (a) shows the synthesis of glass microparticles made of multiple tubes made of glass or metal.
Chi10 KSiCla, GeG14. Ti(J+, P
A glass-forming raw material gas such as O
A combustible gas and a combustion assisting gas such as 2+02 are supplied to the synthesis torch 10 through the other supply pipe/2 to form glass-forming fine particles (hereinafter referred to as 1) by a flame hydrolysis reaction.
A soot layer 15 is grown on a plate-shaped substrate such as graphite or quartz glass provided in front of the torch 10.

このときガラス形成原料ガスの供給濃度を連続的に変え
る・ことKより厚味方向に組成分布を持つスート層/夕
が得られる。このとき目標とする面積またガラス形成原
料ガスとして上記のような金がハロゲン化物以外に、有
機金属化合物あるいG」金属塩の水溶液を霧化さゼて供
給するようにしてもよい□次いでこの堆積スート層/夕
をne + Ar qηの不活性ガス中で高温加熱する
ことにより厚み方向に屈41?率分布をも−、た透明な
ガラス下板/乙がイ(Iられる。     ′ 4Iお、この後ガラス中のOH基を低減するためにCe
p 、’ 5OC42等の雰囲気中でレンに1す材とな
るガラス士・板/にをtj’G 濡加熱してもよい。
At this time, by continuously changing the supply concentration of the glass-forming raw material gas, a soot layer/layer having a composition distribution in the thickness direction can be obtained. At this time, in addition to the above-mentioned gold halide, an atomized aqueous solution of an organometallic compound or a metal salt may be supplied as the target area and glass forming raw material gas. By heating the deposited soot layer/layer at high temperature in an inert gas of ne + Ar qη, it is bent in the thickness direction. A transparent glass lower plate/B was prepared to improve the rate distribution.
The glazier/plate serving as the glass material may be wet-heated in an atmosphere of 5OC42 or the like.

次いてこの1v拐ガラス板/乙を所定の大きさの小板に
分割切断するかまたはそのままで、ガラス板7乙の低屈
折”r< rrii / J’A f!ニー゛F ir
i′iK fJf 磨仕上1:I’ 1−71とともに
、高屈折率面lIB側を所定の曲率半径R−CL1.つ
その曲率中心をガラス板/乙の法線−1−に位ii’j
 サlテC11t削、6)[磨する。
Next, this 1V thin glass plate/B is divided into small plates of a predetermined size or cut as is, and the low refraction of the glass plate 7B is calculated.
i'iK fJf Polishing 1: Along with I' 1-71, the high refractive index surface IIB side is polished to a predetermined radius of curvature R-CL1. Place the center of curvature on the normal line -1- of the glass plate/B.ii'j
Sharpen C11t, 6) [Polish.

このようK L、て低屈折率向/7Aが11面で高hI
(折率面/7Bが球面−(あり光軸方向に屈折率が連続
的に変化するレンズ/7を製造することができる。
In this way, KL has low refractive index/7A with 11 planes and high hI.
(The refractive index surface /7B is a spherical surface.) It is possible to manufacture a lens /7 whose refractive index changes continuously in the optical axis direction.

−例と1−て球面レンズ面/’7]3の中心での屈折率
N(1=/、、を乙、最大屈折率点からレンズd)厚み
方向へZの距離におりる屈ノJ?率n (z)を n 
(Z) −y2n</−−OZ)と表わしたとき定数a
4 o、’=tuomn+−]。
-Example 1-The refractive index N at the center of the spherical lens surface /'7]3 (1=/, , B, from the maximum refractive index point to the lens d) The refractive index J that falls at a distance Z in the thickness direction ? rate n (z) to n
When expressed as (Z) -y2n</--OZ), the constant a
4 o,'=tuomn+-].

中央でのレンズ厚み/’m、mとし、レンズ面の曲率1
′径Rを3 、!夕+nm ’、3.2’jj mm 
、3.Jl+ mmと じたときにおける軸上収差は第
3図のグラフのようになる。    ・ このグラフかられかるように軸上収差の最大値をプラス
マイナス7μmの極めて小さい範囲内におさえることが
できる。         □本発明を実施するに当り
屈折率調整用ドーパントとしては種々のものが使用でき
るがTio2が特に好ましい。すなわち5io2を基準
としてG602 lP2O5r A1.g03 、 P
bO等の屈折率調整用ドーパントを添加した場合、レン
ズ母材ガラスの膨張係数は5i02のみのガラスに比べ
て大きくなる。
The lens thickness at the center is /'m, m, and the curvature of the lens surface is 1
'The diameter R is 3,! Evening+nm ', 3.2'jj mm
, 3. The axial aberration when Jl + mm is as shown in the graph in Figure 3. - As can be seen from this graph, the maximum value of the axial aberration can be kept within an extremely small range of plus or minus 7 μm. □In carrying out the present invention, various dopants for adjusting the refractive index can be used, but Tio2 is particularly preferred. That is, G602 lP2O5r A1.5io2 is used as a reference. g03, P
When a refractive index adjusting dopant such as bO is added, the expansion coefficient of the lens base material glass becomes larger than that of glass made of only 5i02.

したがって、レンズの屈折率差を大きく付けるために多
量のドーパントを添加した場合、母イ9ガラスに生じる
応力によりガラスが・割れ易くなる。
Therefore, when a large amount of dopant is added to increase the difference in refractive index of the lens, the stress generated in the matrix glass makes the glass more likely to break.

特にガラスの切断あるいは球面加」二等の機械的な処理
を施すときにガラスに欠りを生じるn(能性が高く・な
る。 、      ・ これに対して5i02ガラスの屈折率調整用ドーパント
としてTiO2を他の酸化物とともに添加することによ
り、TiO2は他の酸化物に比べてガラスの膨張係数を
小さくするという特異な性質を有しているので、屈折率
差が大きくしかも厚味方向の膨張係数差が小さくて加工
しや子Gへレンズ母材ガラスを得ることができる。
In particular, when mechanical processing such as cutting or spherical processing is applied to the glass, the glass becomes chipped. By adding TiO2 with other oxides, TiO2 has the unique property of lowering the expansion coefficient of the glass compared to other oxides, resulting in a large refractive index difference and a lower expansion coefficient in the thickness direction. The difference is small and the lens base material glass can be processed and processed.

−・方、B2O3はce62 I P2O5、’Ae2
03. PbO等□の酸化物と同様に5102ソIf’
ラスに□添加すると膨張係数は大きくなる傾向を/l<
すが、□屈折率は小さくするとい′う性質を有している
ことが知、霜、れている。
-・B2O3 is ce62 I P2O5, 'Ae2
03. Similar to □ oxides such as PbO, 5102 SoIf'
When □ is added to lath, the expansion coefficient tends to increase /l<
However, it is well known that it has the property of decreasing the refractive index.

したが。て本発明を実施するに当り、、B2O3ドープ
5i02組成を孕転して、厚味方向、K 13203濃
度を減少さセるとともにGeO2+ P2O5、Alz
03 、PbO等の膨張係数及び屈折率を大きく、する
、酸化物の濃度を1ワみ方向に増加させ下、いくことに
より、膨張係数を小さくしかも屈折率差を大きくイ1け
る方法をとることもできる。
However. In carrying out the present invention, the B2O3 doped 5i02 composition is changed to reduce the K13203 concentration in the thickness direction, and GeO2+ P2O5, Alz
03. By increasing the expansion coefficient and refractive index of PbO, etc., and increasing the concentration of oxide in the warp direction, the expansion coefficient can be decreased and the refractive index difference can be increased by 1. You can also do it.

JCJ、 J:本発明を高11.1’l折率面が球面で
低屈折率面が平面であるような軸方向屈折率分布型レン
ズの製造について説明したが、例えば他のレンズの収差
補正用レンズ等として用いられる低屈折率面も球面とし
たレンズあるいは低屈折率面を球面とじて高屈折率面を
平面としたレンズも本発明方法によって製造可能で□あ
る。
JCJ, J: The present invention has been described with respect to manufacturing an axial gradient index lens in which the high 11.1'l refractive index surface is a spherical surface and the low refractive index surface is a flat surface. It is also possible to manufacture lenses with a spherical low refractive index surface, which are used as lenses for commercial purposes, or lenses with a low refractive index surface spherical and a high refractive index surface flat, by the method of the present invention.

〔実施例1)パ 石英製トーチにH2ガス: tooocc/分、02ガ
ス:ざ0OOCC7分を供給してつくった火炎中に5i
C14ガス:′300CC/分を供給し、火炎加水分解
反応により5i02スートを!;OX、S′Omtnの
大きさの石英ガラス基板上に付着させた。
[Example 1] H2 gas: toocc/min, 02 gas: 000cc/min were supplied to a torch made of quartz, and 5i was placed in the flame created.
C14 gas: Supply '300 CC/min and produce 5i02 soot through flame hydrolysis reaction! ; OX, S'Omtn size was deposited on a quartz glass substrate.

直ちに′GeC12及びPOIJ3 原料を連続的に増
加さセ□、最終的KSiC14;23’0.00:/分
+ GeO14,::乙5CC/分、’ P OC13
”30 CC/分となる様、に原料濃度を変化させた。
Immediately 'GeC12 and POIJ3 raw materials are increased continuously, final KSiC14;23'0.00:/min+GeO14::Otsu5CC/min,'P OC13
``The raw material concentration was changed to 30 CC/min.

そ・の後、上記の堆積スート層を約/11.00′Cで
加熱することにより石英基板上に屈折率が厚み方向に連
続的に変化している厚味約7.jmInの透明ガラス板
が得られた。
Thereafter, the deposited soot layer is heated at about /11.00'C to form a layer on the quartz substrate with a thickness of about 7.5mm, in which the refractive index changes continuously in the thickness direction. A transparent glass plate of jmIn was obtained.

この透明方ラス板の厚味方向の屈折率分布は表面から深
□さZKおける屈折率n (Z)が、’n (Z) =
/、sy’v/−o: o4/311.2z;  高屈
折率面の屈折率/、□si、低屈折率面低屈折字面’、
1  、王記両面間の屈折率差△n−o、ot であっ
た。   □次いで上記ガラス板を高屈折率面が凸とな
るように球面加「し曲率半径ざ、9乙Qmm、レンズ厚
味751nm+レンズロ径9.9jmmO軸方向屈折率
分布型レンズを作成した。
The refractive index distribution in the thickness direction of this transparent glass plate is such that the refractive index n (Z) at a depth ZK from the surface is 'n (Z) =
/, sy'v/-o: o4/311.2z; refractive index of high refractive index surface/, □si, low refractive index surface low refractive face',
1, the refractive index difference between the two surfaces of Oji was Δn−o,ot. □Next, the above glass plate was spherically processed so that the high refractive index surface was convex to produce an axially distributed refractive index lens with a radius of curvature of 9㎜Qmm, a lens thickness of 751 nm + a lens diameter of 9.9㎜.

J−記のレンズのrli+I+上収差を測定したところ
波長O乙3μn+の光源に対してレンズ径のざ0%以内
において土μrll以下であった。
When the rli+I+ upper aberration of the lens J- was measured, it was found to be less than .mu.rll within 0% of the lens diameter with respect to a light source with a wavelength of 0.times.3 .mu.n+.

〔実施例!〕〔Example! ]

実施例/と同様の方法で、H2ニゲsoo’aa/分。 In the same manner as in Example/, H2 nitrogen soo'aa/min.

02 : tooo aci分の火炎中K 5iC14
: 、2JoDOAkを供給して10O100X100
の大きさの石英ガラス基板上にスートのイ″1着を開始
した。
02: too aci worth of flame K 5iC14
: , 10O100X100 by supplying 2JoDOAk
The first suit was placed on a quartz glass substrate with a size of .

その後、徐々にGeO/i’4 + Tl014のg付
着を増大させ、最終的に5i(J4 : xos GO
/分、 G6cd4 : 4.tCc/弛Tj−C14
: 113CC/分になる様に調整した。 。
After that, the g attachment of GeO/i'4 + Tl014 was gradually increased, and finally 5i(J4: xos GO
/min, G6cd4: 4. tCc/relaxed Tj-C14
: Adjusted to 113 CC/min. .

その後、」―記のスー1層を約/1100″Cで加熱す
ることにより石英基板上に厚味約3.mn+の透明ガラ
ス板が得られた。
Thereafter, a transparent glass plate with a thickness of about 3.0 mm+ was obtained on the quartz substrate by heating the first layer of the layer "-" at about /1100"C.

この透明ガラス板の厚味方向の屈折率分布は、n (z
)、=、、/ 3g(/ −0,0/21p z>、 
l  、q屈折率面側の屈折率/、j4 + 低屈折率
面側のTLi′!折率八++。
The refractive index distribution in the thickness direction of this transparent glass plate is n (z
), =,, / 3g (/ -0,0/21p z>,
l, q refractive index on the refractive index surface side/, j4 + TLi′ on the low refractive index surface side! Fraction rate 8++.

へn−0,/であった。It was n-0,/.

次C・で高屈折率面を曲率半径/6.3mm に球面加
工するとともに低屈折率面を平面に研磨性」二げし一厚
味j; mm 、口径−3゜左1nm軸方向屈折率分布
型レンズを得た。
Process the high refractive index surface into a spherical surface with a radius of curvature of 6.3 mm and polish the low refractive index surface into a flat surface with A distributed lens was obtained.

こうして得られたレンズの軸上収差は波長O9乙3μm
の光線に対しレンズ径のざ0%の範囲内で±gμm以下
であった。
The axial aberration of the lens obtained in this way is 3 μm at wavelength O9
Within the range of 0% of the lens diameter, the difference was ±gμm or less for the light beam.

〔実施例3〕 H2:乙200CC/分、02:ざ000 CC/分の
割合で供給して火炎を生成した石英トーチに5iC14
’JtlOCC/分、BBr3 : 10OCC/分を
供給して直径/ Q Om mmのグラファイト析出に
薄いスート層を付着させた。その後、徐々にBBr3の
供給1iを減少するとともにGe CA 41 T 1
0 (14の添加を開始してその添加量を順次増大さ−
u1最終的な原料供給litが5i014 + /90
CC,/分、 Ge01.: 2occ/分、 T1a
04 :jtO(A7分、 13Br3 : 000/
分となるように変化させながらスート層をイ」着成長さ
せた。
[Example 3] 5iC14 was supplied to a quartz torch to generate a flame by supplying it at a rate of 200 CC/min for H2: Otsu and 000 CC/min for 02: 000 CC/min.
'JtlOCC/min, BBr3: 10OCC/min was supplied to deposit a thin soot layer on the graphite deposit of diameter/Q Om mm. After that, while gradually decreasing the supply 1i of BBr3, Ge CA 41 T 1
0 (Start adding 14 and gradually increase the amount added.)
u1 final raw material supply lit is 5i014 + /90
CC,/min, Ge01. : 2occ/min, T1a
04:jtO(A7min, 13Br3: 000/
The soot layer was allowed to grow gradually while changing the amount of the soot layer.

このスート層を約/300’Cで加熱することにより透
明ガラス化させた厚味約j;mtnのガラス平板を得た
This soot layer was heated at about /300'C to obtain a transparent vitrified glass flat plate having a thickness of about J;mtn.

この透明ガラス平板の厚味方向の1n(折率分布は、n
 <z> =1.szy/−o、 o3/5tz−、高
屈折率面の屈折率/、オざ、低屈折率面の屈折率/、4
/、lt、△n−0,/3であった。
1n (refractive index distribution in the thickness direction of this transparent glass flat plate is n
<z> =1. szy/-o, o3/5tz-, refractive index of high refractive index surface/, oza, refractive index of low refractive index surface/, 4
/, lt, Δn-0, /3.

次いで、上記ガラス板の高屈折率側を曲率半径/3.)
!73 mtnの球面に、また他面を平面に研磨仕上げ
し、厚味j;mmで1」径が、20.ざm itφの(
llr方、同居折率分布型レンズを得た。
Next, the high refractive index side of the glass plate has a radius of curvature/3. )
! Polished to a spherical surface of 73 mtn, and the other surface is polished to a flat surface, with a thickness of 1" in mm and a diameter of 20. zam itφ (
llr direction, a coexisting refractive index distribution type lens was obtained.

こうして得られたレンズの軸上収差は波長q=1.3t
tmの光線に対しレンズ径のざ0%の範囲内で士、j7
im7nであった。
The axial aberration of the lens thus obtained is wavelength q = 1.3t
within the range of 0% of the lens diameter for the ray of tm, j7
It was im7n.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は従来の球面レンズにおける軸上収差の例を示す
グラフ、オノ図は本発明方法で製造される軸方向屈折率
分布型レンズの一例を示す断面図。 第3図は本発明方法で製造されるレンズの軸上1■差の
数値例を示すグラフ、牙1図(イ)ないしくホ)は本発
明の一実施例を段階的に示す断面図である。 l・・・・・・・・高屈折率面  コ・・・・・・・・
低屈折率面゛3・・・・・・・・光軸  l・・・・・
・・・屈折率一様面S・・・・・・・光線 10・・・
・・・ガラス微粒子合成トーチ//・・・・・・・・ガ
ラス原料供給管/2・・・・・・・・、燃料供給管 /
3・・・・・・ガラス形成微粒子(スート) /ll・・・・・・・・基板  /j・・・・・・堆積
スート層/乙・・・・・・・・屈折率分布ガラス板/7
・・・・・・・・軸方向屈折率分布型レンズ第1図  
・ 第2図 第p図。 軸二収先S忰) 省f ili’庁長官 殿 −2発明の名称 軸方向屈折率分布型レンズの製造方法 3 補i1:をするに 事(’lとの関係 %l!’l’出願人住 所 大阪府
大阪市東゛区道修町グ丁目ざ番地名 称 (/Ioo)
  E1本板硝子株式会社代表各   刺  賀  信
  141弘代理人 住r5’t   東京都港区新橋S丁目l1番3号め1
橋住友ビル [−1本板硝子株式会社 特許部内 明細−を中 発明の詳細な説明欄 1) 明細書オフ頁第3行KI−こσ−〉後」とJ6る
σ)を[−このとき」と補正する。 2) 明細書牙7頁オq行なし1し刺・S?テVこ[−
ガラス51乙板/6」とあるのを「堆積スート層15J
と補J1:。 する0 3) 明細書オ//頁オg行に1−±/j III J
とあるσ〕を1±/” 7z m ”’Jと補正する0
l ン
FIG. 7 is a graph showing an example of axial aberration in a conventional spherical lens, and the ono diagram is a cross-sectional view showing an example of an axial gradient index lens manufactured by the method of the present invention. Fig. 3 is a graph showing a numerical example of the axial difference of 1 mm for lenses manufactured by the method of the present invention, and Figs. be. l・・・・・・High refractive index surface C・・・・・・・・・
Low refractive index surface ゛3...Optical axis l...
...Uniform refractive index surface S...Light ray 10...
...Glass particle synthesis torch//...Glass raw material supply pipe/2...Fuel supply pipe/
3... Glass-forming fine particles (soot) /ll... Substrate /j... Deposited soot layer/B... Gradient index glass plate /7
・・・・・・Axial gradient index lens Figure 1
・Figure 2, Figure p. Director-General of the Ministry of Finance, Director-General of the Ministry of Finance - 2 Name of the Invention Method for Manufacturing an Axial Graded Index Lens 3 Supplementary Information (Relationship with 'l' %l! 'l' Application Address: Doshomachi Gu-chomeza, Higashi-ku, Osaka-shi, Osaka Prefecture Name (/Ioo)
E1 Hon Sheet Glass Co., Ltd. Representative Nobu Sagara 141 Hiro Agent Residence r5't Shinbashi S-chome 1-3-1, Minato-ku, Tokyo
Hashi Sumitomo Building [-1 Honsha Glass Co., Ltd. Patent Department Specification - Detailed Description of the Invention Column 1) Off Page 3rd Line of the Specification KI-This σ-〉'' and J6ruσ) [-At this Time'' and correct it. 2) Specification page 7, no OQ line, 1 Sashimi/S? TeVko[-
"Glass 51 Otsu plate/6" is replaced with "Deposited soot layer 15J"
and Supplementary J1:. 0 3) Specification O//page Og line 1-±/j III J
0 to correct a certain σ] to 1±/"7z m "'J
ln

Claims (1)

【特許請求の範囲】[Claims] ガラス形成原料ガスをトーチに供給、して火炎加水分解
反応により5i02を主成分とし屈折率を調整するドー
パントを含有したガラス微粒子を生成さ−けいこのガラ
ス微粒子を出発基板の平面上に顔面の法線方向に前記ド
ーパントの濃度を変えながら41着成長させた後、これ
を高温加熱して透明化さけることにJ:り厚味、方向に
屈折率が連続的に変化する板状のレンズ素材ガラスを作
成しく次いでこの素+2ガラス板を・必要に応じて小板
:に分割切断した後、)ハ1折率分41方向を+IQl
r線として少なくとも−・方の端面を球面に加工するこ
とを特徴とする囮1方向111(折率分布型レンズの製
造方法。
A glass-forming raw material gas is supplied to a torch, and glass particles containing 5i02 as a main component and a dopant for adjusting the refractive index are produced by a flame hydrolysis reaction. After growing the dopant while changing the concentration of the dopant in the linear direction, it is heated at a high temperature to make it transparent. Next, after cutting this base +2 glass plate into small plates if necessary,)
Decoy 1 direction 111 (method for manufacturing a gradient index lens) characterized in that at least the end face on the −· side is processed into a spherical surface for the r-ray.
JP16373382A 1982-09-20 1982-09-20 Preparation of lens having refractive index distribution in axial direction Pending JPS5954631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16373382A JPS5954631A (en) 1982-09-20 1982-09-20 Preparation of lens having refractive index distribution in axial direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16373382A JPS5954631A (en) 1982-09-20 1982-09-20 Preparation of lens having refractive index distribution in axial direction

Publications (1)

Publication Number Publication Date
JPS5954631A true JPS5954631A (en) 1984-03-29

Family

ID=15779631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16373382A Pending JPS5954631A (en) 1982-09-20 1982-09-20 Preparation of lens having refractive index distribution in axial direction

Country Status (1)

Country Link
JP (1) JPS5954631A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237401A (en) * 1984-05-10 1985-11-26 Nippon Sheet Glass Co Ltd Distributed index medium and its production
JPH02176601A (en) * 1988-09-28 1990-07-09 Mitsubishi Electric Corp Projection lens and its manufacture
WO2006025152A1 (en) * 2004-08-31 2006-03-09 Sumitomo Electric Industries, Ltd. Dlc film and method for forming the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237401A (en) * 1984-05-10 1985-11-26 Nippon Sheet Glass Co Ltd Distributed index medium and its production
JPH02176601A (en) * 1988-09-28 1990-07-09 Mitsubishi Electric Corp Projection lens and its manufacture
WO2006025152A1 (en) * 2004-08-31 2006-03-09 Sumitomo Electric Industries, Ltd. Dlc film and method for forming the same
JP2006071787A (en) * 2004-08-31 2006-03-16 Sumitomo Electric Ind Ltd Dlc membrane and its forming method
US7466491B2 (en) 2004-08-31 2008-12-16 Sumitomo Electric Industries, Ltd. DLC film and method for forming the same

Similar Documents

Publication Publication Date Title
KR101076491B1 (en) Titania-doped quartz glass and making method, euv lithographic member and photomask substrate
JP3064857B2 (en) Optical member for optical lithography and method for producing synthetic quartz glass
JP4304409B2 (en) Method for producing quartz glass member
US4363647A (en) Method of making fused silica-containing material
TWI292064B (en) Method for manufacturing multifocal ophthalmic lenses
KR20010088279A (en) Projection optical system, method for producing the same, and projection exposure apparatus using the same
CN102934030A (en) Substrates for mirrors for EUV lithography and their production
JPH0743891A (en) Synthetic quartz mask substrate for excimer laser lithography
JP2019215448A (en) Substrate with antiglare films, image display device, and digital signage
JPS5954631A (en) Preparation of lens having refractive index distribution in axial direction
US20120026473A1 (en) Highly reflective, hardened silica titania article and method of making
US20030144125A1 (en) Optical waveguide element and method for preparation thereof
US4298366A (en) Graded start rods for the production of optical waveguides
JP2602871B2 (en) Low expansion transparent crystallized glass
US6064516A (en) Achromatic lens system for ultraviolet radiation with germanium dioxide glass
JPS61261224A (en) Production of lens having axial refractive index distribution
JP5693574B2 (en) Meniscus lens made of synthetic quartz glass and manufacturing method thereof
JPS60237401A (en) Distributed index medium and its production
JP3100291B2 (en) Dispersion shifted optical fiber and method of manufacturing the same
EP2559669A2 (en) Titania-doped quartz glass and making method
JP3114979B2 (en) Synthetic quartz glass member and method of manufacturing the same
WO2023171519A1 (en) Glass
JP2588710B2 (en) Method for manufacturing quartz-based optical waveguide film
CN117534324A (en) Laser radar window glass and preparation method thereof
JPH01152431A (en) Production of nonlinear light guide