[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5952626B2 - Rotor DC excitation type pulse motor - Google Patents

Rotor DC excitation type pulse motor

Info

Publication number
JPS5952626B2
JPS5952626B2 JP11020077A JP11020077A JPS5952626B2 JP S5952626 B2 JPS5952626 B2 JP S5952626B2 JP 11020077 A JP11020077 A JP 11020077A JP 11020077 A JP11020077 A JP 11020077A JP S5952626 B2 JPS5952626 B2 JP S5952626B2
Authority
JP
Japan
Prior art keywords
rotor
pole
poles
salient
salient pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11020077A
Other languages
Japanese (ja)
Other versions
JPS5443513A (en
Inventor
康宏 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11020077A priority Critical patent/JPS5952626B2/en
Publication of JPS5443513A publication Critical patent/JPS5443513A/en
Publication of JPS5952626B2 publication Critical patent/JPS5952626B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Linear Motors (AREA)

Description

【発明の詳細な説明】 本発明は回転子直流励磁型パルスモータに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotor DC-excited pulse motor.

このタイプのパルスモータには例えば回転子永久磁石パ
ルスモータが含まれ、この永久磁石型(以後PM型と略
す)は効率の良さが特徴として上げられる。
This type of pulse motor includes, for example, a rotor permanent magnet pulse motor, and this permanent magnet type (hereinafter abbreviated as PM type) is characterized by high efficiency.

回転子を直流励磁する方法は永久磁石を用いる以外に励
磁巻線による方法もあるが効率の点から云って永久磁石
型が有利であり小型パルスモータにはこの永久磁石型が
多用されている。
In addition to using permanent magnets, there are other ways to excite the rotor using excitation windings, but the permanent magnet type is advantageous in terms of efficiency, and is often used in small pulse motors.

この永久磁石型パルスモータには固定子を基本的には単
なる一枚の鉄板より構成したものと、積層した鉄板より
構成したものとの2種類があり前者はいわゆるインダク
タ型と呼ぼるもので安価なパルスモータとして利用され
、後者は前者に比し高価なパルスモータであり効率にお
いて後者が勝る。
There are two types of permanent magnet pulse motors: those whose stators are basically made up of a single iron plate and those whose stators are made up of laminated iron plates.The former is the so-called inductor type and is inexpensive. The latter is more expensive than the former, and the latter is superior in efficiency.

ここでとり上げるパルスモータは後者に関してである。The pulse motor discussed here relates to the latter.

この後者のタイプのPM型パルスモータは回転子磁石の
利用効率から云ってステップ角の大きなものでなければ
有利ではな〈従来量産されているものとしては1ステッ
プ90度および45度のものがほとんどで゛あった。
This latter type of PM pulse motor is not advantageous in terms of rotor magnet usage efficiency unless it has a large step angle (most conventional mass-produced motors have one step angle of 90 degrees and 45 degrees). It was.

しかし用途によってはより小さなステップ角も要求され
(例えばより小さなステップ角とするためにギア等で減
速するにしても機構上この減速比をあまり大きくとれな
いという場合等)、45度未満のステップ角を有しかつ
回転子磁石の利用効率が良く、かつ回転子ハンチングの
少いパルスモータの実現が望まれていた。
However, depending on the application, a smaller step angle is required (for example, if the speed reduction ratio is not very large due to the mechanism, even if a gear is used to reduce the step angle to achieve a smaller step angle), a step angle of less than 45 degrees is required. It has been desired to realize a pulse motor that has a high rotor magnet utilization efficiency, and less rotor hunting.

従来のステップ角30度のパルスモータを例にとり図面
に基づいて以下に説明する。
A conventional pulse motor with a step angle of 30 degrees will be explained below based on the drawings.

第1図は4相30度1ステップのパルスモータの従来例
である。
FIG. 1 shows a conventional example of a four-phase, 30-degree, one-step pulse motor.

ここに示す様に固定子3は90度毎に主突極(以下、突
極と略す)la、2a、lb、2bを有し励磁巻線は第
1相5−9を突極1a、lbに1a、lbがそれぞれ相
異る磁極に励磁される様に設定され、第2相6−9は突
極2a、2bに第1相と同様に設定され、第3相7−9
は突極1a。
As shown here, the stator 3 has main salient poles (hereinafter abbreviated as salient poles) la, 2a, lb, 2b at every 90 degrees, and the excitation winding has the first phase 5-9 as salient poles 1a, lb. 1a and lb are set to be excited by different magnetic poles respectively, the second phase 6-9 is set to the salient poles 2a and 2b in the same way as the first phase, and the third phase 7-9 is set to be excited by different magnetic poles.
is the salient pole 1a.

1bに第1相と全く逆の磁極が励磁される様に設定され
、第4相8−9は突極2a、2bに第3相と同様に設定
される。
1b is set so that a magnetic pole completely opposite to the first phase is excited, and the fourth phase 8-9 is set to the salient poles 2a and 2b in the same way as the third phase.

回転子4は60度毎にNS・・・・・・と6極に着磁さ
れている。
The rotor 4 is magnetized into six poles, NS...at every 60 degrees.

この第1図のパルスモータは1相励磁方式で使用した場
合、突極1a、lbと2a2bとの空間配置角90度と
回転子磁極の着磁角60度との差である30度を1ステ
ツプとする回転を行う。
When the pulse motor shown in Fig. 1 is used in a one-phase excitation system, the difference between the spatial arrangement angle of 90 degrees between salient poles 1a, lb and 2a2b and the magnetization angle of 60 degrees of the rotor magnetic poles is 30 degrees. Perform a rotation as a step.

このときの回転子の磁極利用率は2/6である。The magnetic pole utilization factor of the rotor at this time is 2/6.

一方このパルスモータを2相励磁で使用した場合を考え
る。
On the other hand, consider a case where this pulse motor is used with two-phase excitation.

今冬相励磁巻線の設定が、第1相5−9を励磁したとき
突極1aがN極、突極1bがS極、第2相6−9を励磁
したとき突極2aがN極、突極2bがS極、第3相7−
9を励磁したとき突極1aがS極、突極1bがN極、第
4相8−9を励磁したとき突極2aがS極、突極2bが
N極にそれぞれ励磁される様になされているとする。
The setting of the phase excitation winding this winter is that when the first phase 5-9 is excited, the salient pole 1a is the north pole, the salient pole 1b is the south pole, and when the second phase 6-9 is excited, the salient pole 2a is the north pole. Salient pole 2b is S pole, third phase 7-
When the fourth phase 8-9 is excited, the salient pole 1a is the S pole, and the salient pole 1b is the N pole, and when the fourth phase 8-9 is excited, the salient pole 2a is the S pole, and the salient pole 2b is the N pole. Suppose that

このパルスモータの第1相5−9と第2相6−9とが励
磁されたとき各突極1a、 lb、 2a、2bは
それぞれN、 S、 N、 S極に励磁される。
When the first phase 5-9 and second phase 6-9 of this pulse motor are excited, the salient poles 1a, lb, 2a, and 2b are excited to N, S, N, and S poles, respectively.

このとき回転子は第2図に示す様に、突極1aと2aと
の中間にN極、突極1aと2aとにそれぞれS極、突極
1bと2bとの中間にS極、突極1bと2bとにそれぞ
れN極が相対する様に静止する。
At this time, as shown in Fig. 2, the rotor has an N pole between salient poles 1a and 2a, an S pole between salient poles 1a and 2a, an S pole between salient poles 1b and 2b, and a salient pole between salient poles 1a and 2a. It stands still so that the N poles are opposite to 1b and 2b, respectively.

次のステップ角で第2相6−9と第3相7−9を励磁す
れば、突極1a、 lb、 2a、 2bはそれ
ぞれS、 N、 N、 S極に励磁され回転子4は反
時計方向に30度回転して第3図に示すように突極2a
と1bとの中間にN極、突極2aと1bとにそれぞれS
極、突極2bと1aとの中間にS極、突極1aと2bと
にそれぞれN極が相対する様に静止する。
When the second phase 6-9 and third phase 7-9 are excited at the next step angle, the salient poles 1a, lb, 2a, and 2b are excited to S, N, N, and S poles, respectively, and the rotor 4 is reversed. Turn the salient pole 2a clockwise by 30 degrees as shown in Figure 3.
and 1b, and an S pole between salient poles 2a and 1b, respectively.
The poles stand still so that the south pole faces the salient poles 2b and 1a, and the north pole faces the salient poles 1a and 2b, respectively.

この様にして順次励磁相を切換えてゆけば回転子は1相
励磁のときと同様に30度を1ステツプとする回転を行
う。
By sequentially switching the excitation phases in this manner, the rotor rotates with 30 degrees as one step, as in the case of one-phase excitation.

このとき回転子磁極の利用率は4/6であり必ず回転子
磁極中2極が固定子突極と相対せず突極の中間に静止す
る。
At this time, the utilization factor of the rotor magnetic poles is 4/6, and two of the rotor magnetic poles are always not opposed to the stator salient poles but are stationary between the salient poles.

このことが効率の向上の防げとなっている。また回転子
の安定点として第1相5−9と第2相6−9が励磁され
た場合、第2図に示すものの他に第4図に示す様に突極
1aと2aとの中間に回転子磁極のS極、突極1aと2
aとにそれぞれN極、突極1bと2bとの中間にN極、
突極1bと2bとにそれぞれS極が相対した位置で静止
するものが考えられる。
This prevents improvements in efficiency. In addition, when the first phase 5-9 and the second phase 6-9 are excited as a stable point of the rotor, in addition to what is shown in FIG. 2, as shown in FIG. S pole of rotor magnetic pole, salient poles 1a and 2
an N pole between salient poles 1b and 2b, and an N pole between salient poles 1b and 2b.
It is conceivable that the S poles stand still at positions facing the salient poles 1b and 2b, respectively.

この1つの励磁状態に対し2つの回転子安定状態がある
ということ・固定子突極の中間で静止して磁気的に不安
定な位置で静止する回転子磁極の1/3あるということ
によって、回転子のバンチングの大きなモータとなって
いる。
The fact that there are two stable rotor states for this one excitation state, and the fact that 1/3 of the rotor magnetic poles are stationary in the middle of the stator salient poles and are stationary in magnetically unstable positions, This motor has a large rotor bunching.

本発明は上記従来の欠点を解消するものであり、以下に
本発明の一実施例として前記30度1ステツプのパルス
モータについて構成を説明する。
The present invention solves the above-mentioned conventional drawbacks, and the configuration of the 30 degree one-step pulse motor will be described below as an embodiment of the present invention.

第5図に基づいて説明すると、固定子3には90度毎に
配置された前記主突極1a、 2a、 lb、
2bの他に主突極1a、2aの中間すなわちla。
To explain based on FIG. 5, the stator 3 has the main salient poles 1a, 2a, lb, arranged at 90 degree intervals.
In addition to 2b, the main salient poles 1a and 2a are intermediate, ie, la.

2aよりそれぞれ45度はなれた所に空間的に設置され
た副突極10aと、主突極2a、lb及び1b、2b、
及び2b、laとの中間に同様に設置された副突極10
b、IOC,10dを有し、固定子励磁巻線は第1図に
示したパルスモータと同様に第1相を主突極1aと1b
に、第2相を主突極1bと2bに、第3相を主突極1a
と1bに、第4相を主突極2aと2bにそれぞれ第1図
に示すパルスモータと同一励磁状態による様に設定する
Sub-salient poles 10a are spatially installed at 45 degrees apart from 2a, main salient poles 2a, lb and 1b, 2b,
and auxiliary salient pole 10 similarly installed between 2b and la.
b, IOC, 10d, and the stator excitation winding has main salient poles 1a and 1b for the first phase, similar to the pulse motor shown in Fig. 1.
, the second phase is connected to the main salient poles 1b and 2b, and the third phase is connected to the main salient pole 1a.
and 1b, and the fourth phase is set to the main salient poles 2a and 2b so that they are in the same excitation state as the pulse motor shown in FIG. 1, respectively.

回転子4は第1図に示すものと同様に6極着磁する。The rotor 4 is magnetized with six poles in the same manner as shown in FIG.

上記構成のパルスモータにおいて、2相励磁で使用した
場合、第6図に示す様に第1相および第2相を励磁した
ときを考えると、主突極1a、1b、2a、2bはそれ
ぞれN、 S、 N、 S極に励磁される。
When the pulse motor with the above configuration is used with two-phase excitation, the main salient poles 1a, 1b, 2a, and 2b are each N , S, N, Excited to S pole.

このとき副突極10aは主突極1a。2aからの磁束に
よりS極に励磁され、副突極10Cは同様に主突極1b
、2bからの磁束によりN極に励磁される。
At this time, the sub salient pole 10a is the main salient pole 1a. The sub salient pole 10C is excited to the S pole by the magnetic flux from the main salient pole 1b.
, 2b is excited to the north pole.

また副突極10b、10dはそれぞれ両側に位置する主
突極2aとlb、laと2bとがそれぞれN極とS極に
励磁されるため中性となる。
Further, the sub salient poles 10b and 10d are neutral because the main salient poles 2a and lb, and la and 2b located on both sides thereof are excited to the N pole and the S pole, respectively.

従ってこのときの回転子の静止位置は主突極1a、2a
、lb、2bに対しそれぞれ回転子磁極S、 S、
N、 N極、副突極10a、10Cに対しそれぞれ回転
子磁極N、 S極が相対した位置で静止する。
Therefore, the resting position of the rotor at this time is the main salient poles 1a and 2a.
, lb, 2b, respectively, the rotor magnetic poles S, S,
The rotor magnetic poles N and S come to rest at positions opposite to the N, N and sub salient poles 10a and 10C, respectively.

ここで第7図に示す様に固定子巻線の第1相。Here, as shown in FIG. 7, the first phase of the stator winding.

第2相の励磁より第2相、第3相の励磁に切換ると固定
子突極は主突極1a、lb、2a、2bがそれぞれS、
N、 N、 S極に励磁される。
When the excitation of the second phase is switched to the excitation of the second phase and the third phase, the main salient poles 1a, lb, 2a, and 2b of the stator salient poles are S, respectively.
Excited to N, N, and S poles.

また副突極は第1相、第2相励磁のときと同様に10a
、lQcが中・]牛、10b、10dがそれぞ゛れS、
N極に励磁される。
Also, the sub salient pole is 10a as in the first and second phase excitation.
, lQc is medium,] cow, 10b, 10d are each ゛S,
Excited to N pole.

従って回転子の安定位置は第1相、第2相の安定位置か
ら反時計方向に30度回転した、主突極1a、2a、l
b、2bおよび副突極10b、10dに対しそれぞれ回
転子磁極N、 S、 S、 N、 N、 S極が
相対した位置となる。
Therefore, the stable position of the rotor is the main salient poles 1a, 2a, l, which are rotated 30 degrees counterclockwise from the stable positions of the first and second phases.
The rotor magnetic poles N, S, S, N, N, and S poles are located opposite to b, 2b and sub salient poles 10b, 10d, respectively.

このとき回転子磁極の利用率は6/6であり従来の30
度ステップのパルスモータに比し向上する。
At this time, the utilization rate of the rotor magnetic poles is 6/6, compared to the conventional 30
This is improved compared to a step-by-step pulse motor.

また回転子磁極の静止位置には必ず相対する固定子磁極
がくるため回転子のバンチングも減少する。
Further, since the opposing stator magnetic pole is always at the rest position of the rotor magnetic pole, bunching of the rotor is also reduced.

以上のように本発明の回転子励磁型パルスモータは、励
磁巻線を施した主突極と、この主突極と主突極との間に
設けられた励磁巻線を施さない副突極とより構成され、
前記主突極と副突極とは等間隔に配置された固定子を有
し、一方、固定子に対向し、円周面上に等間隔に着磁さ
れ、この磁極数が固定子の主突極と副突極との総和と異
る数である如く設定された永久磁石を構成要素とする回
転子を有し、この回転子の全磁極は励磁巻線を全相通電
する如く励磁したとき、固定子の主突極もしくは副突極
と対向する如く構成したものであり、従来のものに比し
、回転子磁石の利用効率が良く、エネルギー効率の向上
が図れると共に、回転子のバンチングの少ないパルスモ
ータが得られる。
As described above, the rotor-excited pulse motor of the present invention has a main salient pole with an excitation winding, and a sub-salient pole without an excitation winding provided between the main salient pole and the main salient pole. It consists of
The main salient poles and the sub salient poles have a stator arranged at equal intervals, and on the other hand, they face the stator and are magnetized at equal intervals on the circumferential surface, and the number of magnetic poles is the main pole of the stator. It has a rotor composed of permanent magnets whose number is set to be different from the total number of salient poles and sub-salient poles, and all magnetic poles of this rotor are excited so that the excitation winding is energized in all phases. The rotor magnet is configured to face the main salient pole or the sub salient pole of the stator, and compared to the conventional method, the rotor magnet is used more efficiently, improving energy efficiency, and reducing rotor bunching. A pulse motor with less energy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の回転子直流励磁型パルスモータの構成図
、第2図、第3図、第4図は第1図に示すパルスモータ
の動作を説明するための図、第5図は本発明の回転子直
流励磁型パルスモータの一実施例構成図、第6図、第7
図は第5図に示すパルスモータの動作を説明するための
図である。 la、 lb、 2a、 2b・・・・・・主突
極、3・・曲固定子、4・・・・・・回転子、10a、
10b、IOC。 10d・・・・・・副突極。
Figure 1 is a configuration diagram of a conventional rotor DC excitation type pulse motor, Figures 2, 3, and 4 are diagrams for explaining the operation of the pulse motor shown in Figure 1, and Figure 5 is a diagram for explaining the operation of the pulse motor shown in Figure 1. 6 and 7 are configuration diagrams of an embodiment of the rotor DC excitation type pulse motor of the invention.
This figure is a diagram for explaining the operation of the pulse motor shown in FIG. 5. la, lb, 2a, 2b...Main salient pole, 3...Curved stator, 4...Rotor, 10a,
10b, IOC. 10d... Sub salient pole.

Claims (1)

【特許請求の範囲】[Claims] 1 励磁巻線を施した主突極と、この主突極と主突極と
の間に設けられた励磁巻線を施さない副突極とより構成
され、前記主突極と前記副突極とは等間隔に配置された
固定子を有し、一方、前記固定子に対向し、円周面上に
等間隔に着磁され、この磁極数が前記固定子の主突極と
副突極との総和と異る数である如く設定された永久磁石
を構成要素とする回転子を有し、この回転子の全磁極は
、前記励磁巻線を金相通電する如く励磁したとき、前記
固定子の主突極もしくは副突極と対向する如く構成した
回転子直流励磁型パルスモータ。
1 Consisting of a main salient pole provided with an excitation winding, and a sub salient pole provided between the main salient pole and the main salient pole and not provided with an excitation winding, the main salient pole and the sub salient pole has a stator arranged at equal intervals, and on the other hand, facing the stator, magnets are magnetized at equal intervals on the circumferential surface, and this number of magnetic poles is the main salient pole and sub salient pole of the stator. The rotor has a rotor whose constituent elements are permanent magnets set such that the number is different from the sum of A rotor DC-excited pulse motor configured to face the main salient pole or sub salient pole of the child.
JP11020077A 1977-09-12 1977-09-12 Rotor DC excitation type pulse motor Expired JPS5952626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11020077A JPS5952626B2 (en) 1977-09-12 1977-09-12 Rotor DC excitation type pulse motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11020077A JPS5952626B2 (en) 1977-09-12 1977-09-12 Rotor DC excitation type pulse motor

Publications (2)

Publication Number Publication Date
JPS5443513A JPS5443513A (en) 1979-04-06
JPS5952626B2 true JPS5952626B2 (en) 1984-12-20

Family

ID=14529578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11020077A Expired JPS5952626B2 (en) 1977-09-12 1977-09-12 Rotor DC excitation type pulse motor

Country Status (1)

Country Link
JP (1) JPS5952626B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216543A (en) * 1984-04-11 1985-10-30 Nissin Electric Co Ltd Wafer mounting mechanism to disk
JPS6113542A (en) * 1984-06-28 1986-01-21 Nippon Telegr & Teleph Corp <Ntt> Ion implantation mask device and method of implantation using this device
JPH0463121U (en) * 1990-10-03 1992-05-29
US9694524B2 (en) 2011-10-04 2017-07-04 Eta Sa Manufacture Horlogere Suisse Method for making and decorating a transparent timepiece component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874975A (en) * 1984-11-13 1989-10-17 Digital Equipment Corporation Brushless DC motor
JP5247122B2 (en) * 2007-11-09 2013-07-24 辻 新輔 Magnetic rotating device and power conversion system using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216543A (en) * 1984-04-11 1985-10-30 Nissin Electric Co Ltd Wafer mounting mechanism to disk
JPS6113542A (en) * 1984-06-28 1986-01-21 Nippon Telegr & Teleph Corp <Ntt> Ion implantation mask device and method of implantation using this device
JPH0463121U (en) * 1990-10-03 1992-05-29
US9694524B2 (en) 2011-10-04 2017-07-04 Eta Sa Manufacture Horlogere Suisse Method for making and decorating a transparent timepiece component

Also Published As

Publication number Publication date
JPS5443513A (en) 1979-04-06

Similar Documents

Publication Publication Date Title
US4719378A (en) Brushless motor having permanent magnet rotor and salient pole stator
JP3212310B2 (en) Multi-phase switching type reluctance motor
JPS6271465A (en) Brushless motor
JPH0755036B2 (en) Electric drive including variable reluctance motor
US4029977A (en) Rotary stepper motor and method of operation
EP2158668A2 (en) Switched reluctance machines with minimum stator core
JPS62201048A (en) Two-phase brushless motor
JP3220537B2 (en) Linear pulse motor
US4950960A (en) Electronically commutated motor having an increased flat top width in its back EMF waveform, a rotatable assembly therefor, and methods of their operation
JP3117164B2 (en) Permanent magnet rotating electric machine, control method and control device thereof, and electric vehicle using the same
JPS5952626B2 (en) Rotor DC excitation type pulse motor
JP3410520B2 (en) Three-phase claw-pole permanent magnet type rotary electric machine with annular coil system
JPH09247911A (en) Switched reluctance motor
JP2519435B2 (en) Magnetization method of electric motor
JPH033456B2 (en)
JPS5833961A (en) Brushless motor
JP2599082B2 (en) 4-phase stepping motor
Low et al. Design and analysis of 4-phase (in-hub) mini-switched reluctance motor for spindle motor in hard disk drive
JPS6333380B2 (en)
JP3778216B2 (en) Hybrid type stepping motor
JPH078123B2 (en) 3-phase DC motor
JPH0923687A (en) Magnet motor and activating system thereof
JP3045935B2 (en) Permanent magnet type stepping motor
JP2993380B2 (en) 4-phase brushless motor
JP3816607B2 (en) Stepping motor