[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5950196B2 - How to determine whether a coke oven has caught fire - Google Patents

How to determine whether a coke oven has caught fire

Info

Publication number
JPS5950196B2
JPS5950196B2 JP5445578A JP5445578A JPS5950196B2 JP S5950196 B2 JPS5950196 B2 JP S5950196B2 JP 5445578 A JP5445578 A JP 5445578A JP 5445578 A JP5445578 A JP 5445578A JP S5950196 B2 JPS5950196 B2 JP S5950196B2
Authority
JP
Japan
Prior art keywords
temperature
time
fire
coal
generated gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5445578A
Other languages
Japanese (ja)
Other versions
JPS54146802A (en
Inventor
洋一 永沼
「あきら」 江崎
彌平次 服部
嘉宏 小串
洋治 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5445578A priority Critical patent/JPS5950196B2/en
Publication of JPS54146802A publication Critical patent/JPS54146802A/en
Publication of JPS5950196B2 publication Critical patent/JPS5950196B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】 本発明は、コークス炉における石炭乾留の完了即ち欠落
を高い精度で判定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining with high accuracy the completion or omission of coal carbonization in a coke oven.

コークス炉における石炭乾留プロセスは、通常1炉団当
り100余の同一形状、同一性状の窯に順次石炭を装入
し、欠落(乾留完了)した後一定の置時間を経て装入窯
順に窯出しを行なう。
In the coal carbonization process in a coke oven, coal is normally charged sequentially into more than 100 kilns of the same shape and properties per furnace group, and after a certain period of standing time, the coal is removed from the kilns in the order of the charged kilns. Do the following.

各窯には両側に30余の独立した燃焼炉(フリュー)が
設けられ、高炉ガス及びコークス炉ガスを利用した供給
燃料により約30分毎にガス流路を切り替え乍ら常時加
熱されている。
Each kiln is equipped with more than 30 independent combustion furnaces (flues) on both sides, and is constantly heated with fuel supplied using blast furnace gas and coke oven gas while changing the gas flow path approximately every 30 minutes.

こNに於て通常一定の時間間隔でシーケンシャルに窯出
しが行なわれるため、ある窯が予定時刻より早く欠落し
た場合は供給燃料の浪費となり、予定時刻より遅く欠落
した場合には置時間が短かすぎてコークス品質の低下を
もたらす。
In this case, kilns are normally unloaded sequentially at fixed time intervals, so if a certain kiln is unloaded earlier than the scheduled time, the supplied fuel will be wasted, and if the unloaded kiln is unloaded later than the scheduled time, the loading time will be shortened. Too high a temperature leads to deterioration in coke quality.

このため、コークス炉の操業に於て従来がら火落時間を
一定にする努力がなされてきた。
For this reason, efforts have been made to maintain a constant fire-off time in the operation of coke ovens.

最も一般的に行なわれてきた火路判定法として、第1図
に示す上昇管1のトップカバー2を開放して炉内発生ガ
スの色調と量の測定によって判断する方法がある。
The most commonly used method for determining the fire path is to open the top cover 2 of the riser 1 shown in FIG. 1 and measure the color tone and amount of gas generated in the furnace.

この場合は火見と称する熟練者を必要とすると共に、夜
間や雨天にあける作業を含め100余の乾留室を有する
コークス炉に於ては困難な作業であり、且つまた上昇管
トップカバーの開放に伴い大気汚染の原因ともなる欠点
がある。
In this case, a skilled person called Himi is required, and the work is difficult in a coke oven with more than 100 carbonization chambers, including opening at night or in the rain, and it is also difficult to open the riser pipe top cover. This has the disadvantage of causing air pollution.

かNる問題に対処するため、上昇管の発生ガス温度から
欠落を判定する若干の提案がなされている。
In order to deal with this problem, some proposals have been made to determine whether the gas is missing from the temperature of the gas generated in the riser.

例えば特公昭46−6497号の如く、火路温度をYと
し発生ガスの最高温度をYlとし発生ガスの最高温度を
Xlとするとき、¥1−α1X1+β1(α1+β1は
定数)なる関係から発生ガスの最高温度を検出した時点
で欠落温度を予め算出しておき、以後発生ガス温度を逐
次測定してその温度が予め算出した欠落温度と一致した
時を火路とする方法が提案されている。
For example, as in Japanese Patent Publication No. 46-6497, when the flame passage temperature is Y, the maximum temperature of the generated gas is Yl, and the maximum temperature of the generated gas is A method has been proposed in which the missing temperature is calculated in advance when the maximum temperature is detected, and the temperature of the generated gas is successively measured thereafter, and the time when the temperature matches the pre-calculated missing temperature is used as a fire path.

しかし乍ら、この方法を適用した場合実際には炉況によ
って最高温度を過ぎてから発生ガス温度が炭中温度分布
により急に降下するときもあれば緩やかに降下すること
もあるため、欠落判定に誤差を生じやすい。
However, when this method is applied, in reality, depending on the furnace conditions, the temperature of the generated gas may drop suddenly or gradually after the maximum temperature due to the temperature distribution in the coal, so it is not possible to judge whether the gas is missing or not. It is easy to cause errors.

第2図は実験によって求めた発生ガスの最高温度と欠落
温度の関係を示すが、この図の回帰式が前述の式¥1−
α1X1+β1に相当する。
Figure 2 shows the relationship between the maximum temperature of the generated gas and the missing temperature determined by experiment, and the regression equation for this figure is the above-mentioned equation
Corresponds to α1X1+β1.

通常乾留中の発生ガス温度は第3図のような経時パター
ンを示すが、最高温度Aから欠落温度Bに降下する際1
℃下がるのに約1〜2分という温度勾配を考慮すると、
第2図の欠落温度のバラツキ±20℃は火落時間のバラ
ツキ±20〜±40分に相当し判定精度が良くない。
Normally, the temperature of the generated gas during carbonization shows a pattern over time as shown in Figure 3, but when it drops from the maximum temperature A to the missing temperature B,
Considering the temperature gradient, which takes about 1 to 2 minutes for the temperature to drop by ℃,
The variation in the dropout temperature of ±20° C. in FIG. 2 corresponds to the variation in the fire-off time of ±20 to ±40 minutes, and the determination accuracy is not good.

また特開昭49−103902号の如く、発生ガス温度
を¥2とし経過時間をX2とするとき、¥2−α2X2
+β2(α2.β2は定数)により目標火落時間におけ
る発生ガス温度を算出しておき、該算出温度と実際の発
生ガス温度との差が許容値以下となった時を火路と判定
する方法もあるが、この方法による本発明者等の実験に
よれば、欠落時の発生ガス温度と火落時間の相関係数は
0.59程度と低く、判定精度は不充分であった。
Also, as in JP-A-49-103902, when the generated gas temperature is ¥2 and the elapsed time is X2, ¥2 - α2X2
+β2 (α2.β2 is a constant) is used to calculate the generated gas temperature at the target fire-down time, and the time when the difference between the calculated temperature and the actual generated gas temperature is less than the allowable value is determined to be a fire path. However, according to experiments conducted by the present inventors using this method, the correlation coefficient between the temperature of the generated gas at the time of failure and the fire-off time was as low as about 0.59, and the determination accuracy was insufficient.

従って、これら公知の火路判定法では精度において限界
がある。
Therefore, these known path determination methods have a limited accuracy.

またこれらの火路判定法を用いて火落時間の一定制御を
行なう場合、火路プロセスの無駄時間が8〜10時間と
非常に長く、効果的な制御を行なうには難点がある。
Further, when controlling the fire fall time to a constant value using these path determination methods, the dead time of the path process is as long as 8 to 10 hours, making it difficult to perform effective control.

本発明はこれらの問題を解決するためになされたもので
あり、火見や上昇管トップカバー開放を要せず早期に火
路を予測し、更に乾留末期には精度よく火路を判定する
方法を提供することを目的とする。
The present invention has been made to solve these problems, and is a method for predicting the fire path at an early stage without requiring fire sighting or opening the riser top cover, and further accurately determining the fire path at the end of carbonization. The purpose is to provide

以下本発明を図面に基づいて詳細に説明する。The present invention will be explained in detail below based on the drawings.

第1図はコークス炉の概略図を示し、1は上昇管であっ
てその上部にトップカバー2を有し、乾留室3内の発生
ガスを集合管4に導いている。
FIG. 1 shows a schematic diagram of a coke oven. Reference numeral 1 denotes a riser pipe, which has a top cover 2 on top thereof, and guides gas generated in a carbonization chamber 3 to a collecting pipe 4.

5は上昇管1内を上昇する発生ガスの温度を検出するた
めの温度計である。
5 is a thermometer for detecting the temperature of the generated gas rising inside the riser pipe 1.

か5る炉に於て石炭装入から火路までの発生ガス温度を
温度計で経時的に測定すると第3図のようなパターンを
示す。
When the temperature of the generated gas from the coal charging to the fire passage in a furnace is measured over time with a thermometer, a pattern as shown in Figure 3 is shown.

そして本発明者等は、発生ガス温度が石炭装入から最高
温度に達するまでの時間と火落時間のあいだに第4図に
示すような関係があり、発生ガス温度が最高点に達した
時点に於てかなりの精度で火路を予測できることを見出
した。
The present inventors have discovered that there is a relationship as shown in Figure 4 between the time from coal charging until the temperature of the generated gas reaches its maximum temperature and the fire-off time, and that the time when the temperature of the generated gas reaches its maximum point is We found that the fire path could be predicted with considerable accuracy.

即ち、発生ガス温度が石炭装入から最高点に達するまで
の経過時間をxlとし、予測火落時間をの関係式により
火路時刻を約3時間前に予測し得る。
That is, assuming that the elapsed time from coal charging until the temperature of the generated gas reaches its maximum point is xl, the fire path time can be predicted about 3 hours in advance by the relational expression of the predicted fire-fall time.

さてこのようにして発生ガスの温度が最高点に達した後
は、前出の第3図に示すように、発生ガスの温度は単調
に降下してくる。
After the temperature of the generated gas reaches the maximum point in this manner, the temperature of the generated gas monotonically decreases as shown in FIG. 3 above.

これは乾留末期現象である発生ガス量の減少のために、
発生ガスが窯内から持ち出す熱量よりも炉壁を通じて大
気中に放散される熱量の方が大きくなって漸次発生ガス
の温度が降下するためである。
This is due to the decrease in the amount of gas generated, which is a phenomenon at the end of carbonization.
This is because the amount of heat dissipated into the atmosphere through the furnace wall is greater than the amount of heat taken out of the furnace by the generated gas, and the temperature of the generated gas gradually decreases.

この時期において、窯内各部で乾留が均一に進行すると
発生ガス量の減少割合は大きく、発生ガス温度の降下勾
配は大きくなり、そして乾留終了(火路)は前記最高温
度到達時点から早い時期に現われる。
At this stage, if carbonization proceeds uniformly in all parts of the kiln, the rate of decrease in the amount of generated gas will be large, the gradient of decrease in the temperature of the generated gas will become large, and the end of carbonization (flame path) will occur at an early stage from the time when the maximum temperature is reached. appear.

一方窯内各部で不均一に乾留が進むと発生ガス量の減少
割合は小さく、発生ガス温度の降下勾配は緩やかとなり
、そして乾留終了(火路)は最高温度到達時点から遅い
時期に現われる。
On the other hand, if carbonization proceeds unevenly in various parts of the kiln, the rate of decrease in the amount of generated gas will be small, the gradient of decline in the temperature of the generated gas will be gradual, and the end of carbonization (flame path) will appear later after the maximum temperature is reached.

最高温度到達時点以降の降下温度勾配と、実際の火落時
間Thと予測火落時間Thとの差即ち予測誤差Th−T
hの関係について本発明者等が実際のデータに基いて調
査した結果は、第5図に示すような関係になった。
The temperature drop gradient after the maximum temperature is reached, and the difference between the actual fire-fall time Th and the predicted fire-fall time Th, that is, the prediction error Th-T
The inventors investigated the relationship between h based on actual data and found the relationship as shown in FIG.

第5図の関係図から明らかなように、降下温度勾配が大
きい場合は予測よりも実際の火路が早くなり、降下温度
勾配が小さい場合は予測よりも実際の火路が遅くなる。
As is clear from the relationship diagram in FIG. 5, when the temperature drop gradient is large, the actual course is faster than predicted, and when the temperature drop gradient is small, the actual course is slower than predicted.

従って火落時間の推定精度をあげるためには、まず第1
に前記予測火落時間を降下温度勾配によって修正すれば
よいことがわかる。
Therefore, in order to increase the accuracy of estimating the fire fall time, the first step is to
It can be seen that the predicted firedown time can be modified by the falling temperature gradient.

再び第5図の関係図に着目すると、降下温度勾配が同じ
であっても予測誤差のバラツキがある。
If we pay attention to the relationship diagram in FIG. 5 again, even if the temperature drop gradient is the same, there are variations in the prediction errors.

この原因について本発明者等が実際のデータについて重
回帰分析を含む各種統計的手法で解析したところ、この
バラツキの主因は装入炭量の変動と炭中水分の変動にあ
ることがわかった。
When the present inventors analyzed actual data using various statistical methods including multiple regression analysis, it was found that the main causes of this variation were fluctuations in the amount of coal charged and fluctuations in the moisture content in the coal.

つまり装入炭量、炭中水分が夫々多いと火路が遅くなり
、少ないと火路が早くなることがわかった。
In other words, it was found that when the amount of coal charged and the moisture content in the coal were high, the fire path slowed down, and when it was low, the fire path became fast.

もっとも炭中水分の影響の度合いは装入炭量の影響の度
合いに比べると小さいものである。
However, the degree of influence of moisture in the coal is smaller than the degree of influence of the amount of charged coal.

これらのことから、火落時間の推定精度をさらにあげる
ためには、前記予測火落時間の降下温度勾配による修正
に加えて、装入炭量、炭中水分による修正を加えればよ
いことがわかる。
From these facts, it can be seen that in order to further improve the estimation accuracy of the burnout time, in addition to modifying the predicted burnout time based on the falling temperature gradient, it is necessary to make corrections based on the amount of coal charged and the moisture content in the coal. .

以上のことから本発明は、火落時間の推定精度を高める
目的で、発生ガスの温度が最高になった時の石炭装入時
からの経過時間と乾留末期の発生ガスの降下温度勾配と
装入炭量と炭中水分を用いた判定式により、最終的に精
度よく火路時刻を判定するものである。
Based on the above, the present invention aims to improve the accuracy of estimating the fire-off time by comparing the elapsed time from the time of coal charging when the temperature of the generated gas reaches its maximum and the temperature gradient of the generated gas at the end of carbonization. By using a determination formula using the amount of coal input and the moisture content in the coal, the time of the course can be determined with high accuracy.

具体的には、コークス炉毎に、予じめ過去の多数の実績
データを用いて、最終判定火落時間を♀とし、発生ガス
温度が最高となった時の石炭装入時からの経過時間をX
l、発生ガスの降下温度勾配をX2、装入炭水分をx3
、装入炭量をX4として重回帰分析により次式 の各定数a1.a2.a3.a4.b1を求める。
Specifically, for each coke oven, using a large amount of past performance data in advance, the final judgment fire-off time is set as ♀, and the elapsed time from the time of coal charging when the generated gas temperature reaches the highest. X
l, the falling temperature gradient of the generated gas is x2, the moisture content of the charged coal is x3
, the amount of charged coal is set as X4, and each constant a1. a2. a3. a4. Find b1.

そして求めた各定数を用いた最終判定火落時間算出式を
コークス炉毎に作成しておき、実際の操業において、石
炭乾留中の発生ガス温度を遂次測定して最高温度になっ
た時点を検出し、該最高温度検出時点において前記(1
)式により予測火落時間を求めて操炉上必要な措置を取
り、引続き該時点以降も発生ガス温度を測定し、降下温
度勾配がほぼ一定となった時点でX1〜X4の各変数を
前記(2)式の算出式に代入して演算することによって
、火落時間を高い精度で判定することができる。
Then, a formula for calculating the final judgment fire-off time using each of the determined constants is created for each coke oven, and in actual operation, the temperature of the generated gas during coal carbonization is successively measured and the point at which the maximum temperature is reached is determined. and at the time of detecting the maximum temperature, the above (1
), calculate the predicted flameout time, take necessary measures for reactor operation, continue to measure the generated gas temperature after that point, and when the temperature drop gradient becomes almost constant, change each variable of X1 to X4 as described above. By substituting and calculating the equation (2), it is possible to determine the fire fall time with high accuracy.

発生ガスの最高温度は通常欠落の約3時間前に出現する
ので、本発明によれば実際の火路より約3時間前にこれ
を予測することができ、また最高温度到達時から数10
分以内には降下温度勾配かほぼ一定となるので、実際の
火路の2時間程度以前により精度の高い火路時刻の推定
ができる。
The maximum temperature of the generated gas usually appears about 3 hours before the failure, so according to the present invention, it is possible to predict this about 3 hours before the actual fire path, and it is possible to predict this temperature several tens of hours before the maximum temperature is reached.
Since the temperature drop gradient becomes almost constant within minutes, it is possible to estimate the time of the fire route with higher accuracy than about two hours before the actual time of the fire route.

本発明による推定火落時間と火見による実測火落時間の
関係を第6図に示すが、これによると推定火落時間と実
測火落時間の差は最大でも±25分の範囲であり、従来
法に比し誤差かはゾ半減していることがわかる。
The relationship between the estimated fire fall time according to the present invention and the actual fire fall time measured by the fire watch is shown in FIG. It can be seen that the error is reduced by half compared to the conventional method.

この結果置時間の短縮、供給燃料の節約及びコークス品
質の安定等種々の効果をもたらすことができる。
As a result, various effects can be brought about, such as shortening the placement time, saving fuel supply, and stabilizing the quality of coke.

本発明は、以上の如く石炭乾留中に発生するガスの最高
温度が出現したときの経過時間によって火路時刻を予測
した後、降下温度勾配並びに装入炭水分、装入炭量によ
り予測火落時間を修正することによって精度よく火路時
刻を判定するものである。
As described above, the present invention predicts the fire path time based on the elapsed time when the maximum temperature of the gas generated during coal carbonization appears, and then predicts the fire drop based on the temperature drop gradient, the charged coal moisture content, and the charged coal amount. By correcting the time, the course time can be determined with high accuracy.

従って火見の熟練者を必要とせず、上昇管トップカバー
の開放も要しないので大気汚染もない。
Therefore, there is no need for an experienced fire watcher and no need to open the top cover of the riser, so there is no air pollution.

しかも従来法に比し高い精度で火路時刻の判定ができる
と共に、早期の火落時間制御による効果的な火落時間制
御、総合炭化時間短縮による生産性向上、作業能率の向
上、コークス品質の安定等、多大な効果をもたらすもの
である。
Moreover, it is possible to judge the flame path time with higher accuracy than the conventional method, and it also enables effective fire-off time control by early control of fire-off time, improves productivity by shortening overall carbonization time, improves work efficiency, and improves coke quality. It brings about great effects such as stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコークス炉の概略図、第2図は発生ガスの最高
温度と火路温度の関係を示す図、第3図は石炭乾留時に
おける発生ガス温度の経時パターンを示す図、第4図は
発生ガスの最高温度までの経過時間と実測火落時間との
関係図、第5図は降下温度勾配と予測誤差との関係図、
第6図は本発明による推定火落時間と実測火落時間の関
係を示す図である。 第1図において、1:上昇管、2:上昇管トップカバー
、3:乾留室、4:集合管、5:温度計、6:燃焼室、
7:蓄熱室、8:煙道、9:原料装入口、である。
Figure 1 is a schematic diagram of a coke oven, Figure 2 is a diagram showing the relationship between the maximum temperature of generated gas and passage temperature, Figure 3 is a diagram showing the temporal pattern of generated gas temperature during coal carbonization, and Figure 4 Figure 5 is a diagram showing the relationship between the elapsed time to the maximum temperature of the generated gas and the measured fire-fall time, and Figure 5 is a diagram showing the relationship between the decreasing temperature gradient and prediction error.
FIG. 6 is a diagram showing the relationship between estimated fire fall time and measured fire fall time according to the present invention. In Figure 1, 1: riser pipe, 2: riser pipe top cover, 3: carbonization chamber, 4: collecting pipe, 5: thermometer, 6: combustion chamber,
7: heat storage chamber, 8: flue, 9: raw material charging port.

Claims (1)

【特許請求の範囲】[Claims] 1 コークス炉において乾留中に発生するガスの温度を
測定し、該発生ガス温度が最高になった時における石炭
装入時からの経過時間より下記(1)の関係式で火路時
刻を予測し、更にその後の降下温度勾配及び装入炭水分
、装入炭量により下記(2)の関係式で火路時刻を判定
することを特徴とするコークス炉の火路判定方法。
1. Measure the temperature of the gas generated during carbonization in a coke oven, and use the relational expression (1) below to predict the passage time from the elapsed time from the time of coal charging when the temperature of the generated gas reaches its maximum. A method for determining a path in a coke oven, further comprising determining the path time using the following relational expression (2) based on the subsequent decreasing temperature gradient, the moisture content of the charged coal, and the amount of the charged coal.
JP5445578A 1978-05-10 1978-05-10 How to determine whether a coke oven has caught fire Expired JPS5950196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5445578A JPS5950196B2 (en) 1978-05-10 1978-05-10 How to determine whether a coke oven has caught fire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5445578A JPS5950196B2 (en) 1978-05-10 1978-05-10 How to determine whether a coke oven has caught fire

Publications (2)

Publication Number Publication Date
JPS54146802A JPS54146802A (en) 1979-11-16
JPS5950196B2 true JPS5950196B2 (en) 1984-12-06

Family

ID=12971147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5445578A Expired JPS5950196B2 (en) 1978-05-10 1978-05-10 How to determine whether a coke oven has caught fire

Country Status (1)

Country Link
JP (1) JPS5950196B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672076A (en) * 1979-11-20 1981-06-16 Nippon Steel Corp Control of coke oven dry distillation process
JPS59140287A (en) * 1983-01-31 1984-08-11 Nippon Steel Corp Prediction of net coking time of coke oven
JPS61115993A (en) * 1984-11-09 1986-06-03 Nippon Steel Corp Estimation of termination of coking period for coke oven
JP5838993B2 (en) * 2013-04-23 2016-01-06 Jfeスチール株式会社 Coke oven fire detection method

Also Published As

Publication number Publication date
JPS54146802A (en) 1979-11-16

Similar Documents

Publication Publication Date Title
US4045292A (en) Method for controlling combustion in coke oven battery
US6436335B1 (en) Method for controlling a carbon baking furnace
JPS5950196B2 (en) How to determine whether a coke oven has caught fire
JP4203275B2 (en) Combustion control method, combustion control apparatus, combustion control program and computer-readable recording medium for continuous steel heating furnace
JP2008001816A (en) Combustion-controlling method in coke oven
JPH0248196B2 (en) KOOKUSURONOHIOTOSHIJIKANSEIGYOHOHO
JPH09302351A (en) Method for controlling heat input to every coke lot in coke oven
JP2564443B2 (en) Coke oven furnace temperature control method
JPH0145511B2 (en)
JPS6365230A (en) Burning control method for hot air furnace
JP5556249B2 (en) How to detect a fire in a coke oven
JPS62177090A (en) Control of combustion in coke oven
JP2001316674A (en) Method of controlling coke oven to reduce inter-furnace variation in time required to complete carbonization and mean wall temperature in carbonization chamber at extrusion
JPH01304180A (en) Method for combustion control of coke oven
JPS61141787A (en) Control of oven temperature in coke oven
JPS63317588A (en) Prediction of fire extinguishment in coke oven
JPH061981A (en) Method for predicting volume of produced gas in coke oven
JPH07126652A (en) Method for controlling temperature of coke discharged from coke oven
JP2759342B2 (en) Coke oven firing time variation reduction method
JPH0286697A (en) Operation of coke oven
JPS62177094A (en) Control of combustion in coke oven
JPH09302350A (en) Method for controlling heat input to coke oven
JPH03157483A (en) Process for controlling combustion of coke oven
JPH0485392A (en) Heat input control in coke oven
JPH07166165A (en) Method for controlling inner pressure of coke oven