[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5950926B2 - Powder specific surface area diameter measuring device - Google Patents

Powder specific surface area diameter measuring device

Info

Publication number
JPS5950926B2
JPS5950926B2 JP8849179A JP8849179A JPS5950926B2 JP S5950926 B2 JPS5950926 B2 JP S5950926B2 JP 8849179 A JP8849179 A JP 8849179A JP 8849179 A JP8849179 A JP 8849179A JP S5950926 B2 JPS5950926 B2 JP S5950926B2
Authority
JP
Japan
Prior art keywords
sample
differential pressure
powder
air
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8849179A
Other languages
Japanese (ja)
Other versions
JPS5611343A (en
Inventor
省三 矢野
昇平 石田
哲夫 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8849179A priority Critical patent/JPS5950926B2/en
Publication of JPS5611343A publication Critical patent/JPS5611343A/en
Publication of JPS5950926B2 publication Critical patent/JPS5950926B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)

Description

【発明の詳細な説明】 この発明は、試料粉体充てん層に気体、たとえば空気を
透過させ、その透過度によつて試料粉体の比表面積径、
すなわち平均粒子径を測定する粉体比表面積径測定装置
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention allows gas, for example, air to pass through a sample powder-filled layer, and depending on the permeability, the specific surface area diameter of the sample powder can be determined.
That is, the present invention relates to an improvement of a powder specific surface area diameter measuring device for measuring an average particle diameter.

試料粉体が球状の均一粒子からなつているとみなされる
とき、その粉体の比表面積5wと、一定時間をの間にそ
の粉体充てん層を透過する流体、たとえば空気の流量Q
ならびにその際の充てん層両端の圧力差△Pとの間には
つぎのコゼニー ・カーマン(Ko2eny−Carn
lan)の式が一般に成立j゜゜ ・・■÷ル・。
When the sample powder is considered to be composed of spherical uniform particles, the specific surface area of the powder is 5w, and the flow rate of a fluid, such as air, passing through the powder-filled layer during a certain period of time is Q.
At that time, the following Ko2eny-Carman (Ko2eny-Carman) is present between the pressure difference △P between both ends of the packed layer.
lan) generally holds true.

、’、00、。・・・・・・・・・に)ただしη・L−
Q K−・・・・・・・・・(O)、 △P−A−を ε=1−−・・・・・・・・・f→ ρ・A−L ここにε :試料充てん層の空隙率、ρ:試料粉体の密
度、η:空気の粘性係数、L:試料層の厚さ、A:試料
層の断面図、W:試料の重量である。
,',00,. ......) However, η・L−
Q K−・・・・・・・・・(O), △P−A−ε=1−−・・・・・・・・・f→ ρ・A−L Here ε: Sample filling layer , ρ: density of sample powder, η: viscosity coefficient of air, L: thickness of sample layer, A: cross-sectional view of sample layer, W: weight of sample.

したがつて試料粉体の比表面積Swを(イ)式にもとづ
いて求めるには、予め計量された重量Wの試料粉体を試
料セルに投入し、充てん用ピストンにて適度に圧縮充て
んし、この充てん層に大気圧より高い一定圧力の空気を
送りこんで、それを透過させ、透過時の抵抗によつて生
する圧力降下、すなわち試料層両端間の差圧△Pと一定
時間、たとえば1秒間の透過空気量Qとを測定する。
Therefore, to determine the specific surface area Sw of the sample powder based on formula (a), a sample powder with a weight W weighed in advance is put into a sample cell, and is appropriately compressed and filled with a filling piston. Air at a constant pressure higher than atmospheric pressure is sent into this packed layer, and the air is allowed to permeate, and the pressure drop caused by the resistance during permeation, that is, the differential pressure △P between both ends of the sample layer, is calculated for a certain period of time, for example, 1 second. The amount of permeated air Q is measured.

試料粉体が成分の明らかな単一試料からなつておるとす
れば、密度ρは既知であり、試料層の断面積Aは試料充
てんセルの固有値として既知であり、試料層の厚さLは
、充てん用ピストンの充てん終了時のストローク位置か
らその値が知られるから、(ハ)式によつて試料充てん
層の空隙率εが算出される。K値についても空気の粘性
係数ηは既知であり、L,Aは前記したとおり既知であ
り、Q/tすなわち、たとえば1秒間の透過空気量と、
試料層両端の差圧△Pとは測定値としてえられているか
,ら(口)式によつて算出される。したがつて、ρ,K
,εについてそれぞれの値が既知値ないしは算出値とし
て決定されると(イ)式どおりの演算を行うことによつ
て試料粉体の比表面積Swが求められる。また試料粉体
の比表面積径、すなわち平均粒子径をDmとすると、で
あるから、比表面積Swが求められれば試料粉体の密度
ρは既知故試料粉体の粒子径Dmは容易に算出できる。
Assuming that the sample powder consists of a single sample with clear components, the density ρ is known, the cross-sectional area A of the sample layer is known as the characteristic value of the sample-filled cell, and the thickness L of the sample layer is Since the value of , is known from the stroke position of the filling piston at the end of filling, the porosity ε of the sample filling layer is calculated by equation (c). Regarding the K value, the viscosity coefficient η of air is known, L and A are known as described above, and Q/t, for example, the amount of permeated air per second,
The differential pressure ΔP between both ends of the sample layer can be obtained as a measured value or calculated using the equation. Therefore, ρ,K
, ε are determined as known values or calculated values, the specific surface area Sw of the sample powder is determined by performing calculations according to equation (A). Further, if the specific surface area diameter of the sample powder, that is, the average particle diameter is Dm, then if the specific surface area Sw is determined, the density ρ of the sample powder is known, so the particle diameter Dm of the sample powder can be easily calculated. .

したがつて、空気透過法によつた粉体比表面積径測定装
置を用いて試料粉体の比表面積Swや比表面積径すなわ
ち平均粒子径Dmを求める測定に対しては、とくに前記
した△PならびにQ/tの両値が精度よく、かつ迅速に
測定できることが望ましい。第1図および第2図は、△
P=5g/Cnl2,2OOg/CIn・にそれぞれ設
定した場合における空隙率εを変化させて,試料粉体の
平均粒子径Dmの大小に対応して前記Q/tが変動する
状態を示したグラフである。
Therefore, when measuring the specific surface area Sw and specific surface area diameter, that is, the average particle diameter Dm, of a sample powder using a powder specific surface area diameter measuring device based on the air permeation method, it is especially important to use the above-mentioned ΔP and It is desirable that both values of Q/t can be measured accurately and quickly. Figures 1 and 2 are △
A graph showing how Q/t changes in response to the average particle diameter Dm of the sample powder by changing the porosity ε when P = 5g/Cnl2, 2OOg/CIn. It is.

この両図から平均粒子径Dmが1μ以下のときは粉体充
てん層の空気透過時の抵抗が大きいので充てん層両端の
圧力差△Pを大きくとつて空気を透過させており、平均
粒子径Dmが1μよりかなり大きいときは圧力差△Pは
小さくとるのが好適であることおよび充てんの程度が粗
、すなわち空隙率εが大きいときは毎秒当りの透過空気
量Q/tは大きくなることから、Q/tの測定は精度を
おとすことなく広範囲にわたつて行わなければならない
ことがわかる。試料粉体の粒子径が1μm程度の微粒子
の場合には、試料充てん層両端間の差圧がかなり大きく
なるので、Q/tを小さくして測定することが好ましく
、これとは逆に試料粉体が粗粒子の場合には前記差圧が
小さくなるので、測定に必要な差圧を得るために大量の
Q/tを送り込んで測定することが好ましいことから、
Q/tは広範囲にをたつて精度よく測定しうるよう従来
からQ/tの大きさによつて測定レンジをたとえばO〜
0.05cc/S,O〜1.0cc/S,O〜20.0
cc/sの3段階に切換えることがなされている。また
試料粉体の粒子径の大きさ如何によつて試料充てん層両
端間に生ずる差圧に大きな差異が生ずる。したがつて前
記したQ/Tならびに△Pの両値の測定を精度よく、か
つ速やかに行うために従来の装置においてはつぎの手段
がとられている。すなわち、圧力差△Pを測定する差圧
計の出力電気信号を差圧設定用サーボアンプにインプツ
トするようにするとともにサーボアンプの出力信号によ
つて動作するサーボモータによつて空気ポンプを駆動さ
せ、透過空気の圧力を変化させ、圧力差△Pを制御する
ようにした自動制御回路を設け、さらにサーボアンプを
たとえば5.50および200g/Cm2の3種の設定
差圧のいずれかを設定しうるようにした差圧設定回路に
接続して流量計が前記した各レンジのフルスケールに近
いところでQ/tが計測されるよう流量計の指示値をみ
ながら前記した差圧設定回路の切換設定を手動にて操作
する手段がえられている。このような手段を講すること
によつて、流量測定を精度よく、かつかなり短時間に行
うことができるようになつた。しかしこのような手段が
付加された従来の装置、たとえば特公昭50−1695
7号公1報にかかる粒度測定装置−このサーボ増幅器1
9に入力される基準電圧21は前記した3種の設定差圧
のいずれかを段階的に手動にて設定するものである。一
においても、測定の自動化はいま一歩の段階にとどまつ
ており、測定時間の短縮に対しても十分とはいえない現
状である。この発明は前記した現状に鑑みて、測定され
た空隙率に対して流量計測に適正な圧力差を連続的に演
算設定するようにした差圧演算設定回路を設けることに
よつて、従来の装置における前記した.手動による段階
的差圧設定切換動作を省略して測定を自動化し、測定時
間の大幅な短縮を可能とした粉体比表面積径測定装置を
提供することを目的とするものである。
From these figures, when the average particle diameter Dm is 1μ or less, the resistance when air permeates through the powder-filled layer is large, so the pressure difference △P between both ends of the packed layer is increased to allow air to pass through, and the average particle diameter Dm When is considerably larger than 1μ, it is preferable to keep the pressure difference ΔP small, and when the degree of filling is rough, that is, when the porosity ε is large, the amount of permeated air Q/t per second becomes large. It can be seen that the measurement of Q/t must be carried out over a wide range without compromising accuracy. If the sample powder is a fine particle with a particle size of about 1 μm, the differential pressure between both ends of the sample packed layer will be quite large, so it is preferable to make the measurement with a small Q/t. If the body is coarse particles, the differential pressure will be small, so it is preferable to send a large amount of Q/t to measure in order to obtain the differential pressure necessary for measurement.
In order to measure Q/t accurately over a wide range, the measurement range has traditionally been set according to the size of Q/t, for example from O to
0.05cc/S, O~1.0cc/S, O~20.0
Switching is performed in three stages of cc/s. Further, depending on the particle size of the sample powder, a large difference occurs in the differential pressure generated between both ends of the sample-filled layer. Therefore, in order to accurately and quickly measure both the above-mentioned values of Q/T and ΔP, the following measures are taken in the conventional apparatus. That is, the output electrical signal of the differential pressure gauge that measures the pressure difference ΔP is input to the differential pressure setting servo amplifier, and the air pump is driven by a servo motor operated by the output signal of the servo amplifier. An automatic control circuit is provided to change the pressure of permeated air and control the pressure difference ΔP, and the servo amplifier can be set to one of three set differential pressures, for example, 5.50 and 200 g/Cm2. Connect the differential pressure setting circuit as described above, and set the switching setting of the differential pressure setting circuit described above while watching the indicated value of the flowmeter so that Q/t is measured close to the full scale of each range described above. A means of manual operation is provided. By taking such measures, it has become possible to measure the flow rate with high precision and in a fairly short time. However, conventional devices equipped with such means, such as Japanese Patent Publication No. 50-1695,
Particle size measuring device according to Publication No. 7-1 - This servo amplifier 1
The reference voltage 21 inputted to 9 is used to manually set one of the three types of set differential pressures described above in a stepwise manner. However, the automation of measurement is still at the first step, and the current situation is that it is not sufficient to shorten the measurement time. In view of the above-mentioned current situation, the present invention has been developed by providing a differential pressure calculation setting circuit that continuously calculates and sets a pressure difference appropriate for flow rate measurement with respect to the measured porosity. As mentioned above. The object of the present invention is to provide a powder specific surface area diameter measuring device that automates measurement by omitting manual stepwise differential pressure setting switching operation and enables a significant reduction in measurement time.

この発明にかかる粉体比表面積径測定装置は、試料粉体
4が収容される試料セ,ル1と、この試料セル1に収容
された試料粉体4を圧縮充てんするピストン5およびピ
ストンロツド7からなる加圧手段6と、この加圧手段6
によつて圧縮充てんされた試料充てん層に前記した試料
セル1の底部から空気を供給する手段9と、前記試料充
てん層を透過した空気流量を測定する流量計12と、こ
の透過空気の前記試料充てん層両端間に生ずる圧力差△
Pを測定する差圧計13と、前記ピストン5と同期して
動くようにされ、その変位量から前記試料充てん層の厚
さLを測定する厚さ測定器8とを備え、単位時間当りの
試料充てん層の透過空気流量Q/T、試料充てん層透過
前後における空気圧力の差圧△Pおよび試料充てん層の
厚さLのそれぞれ測定値から試料粉体4の比表面積径を
求める粉体比表面積径測定装置において、試料充てん層
の厚さ値Lから空隙率εを、ε=1−」!−の式に基づ
いて演算算出するととρ・ ALもに、空隙率εと適正
差圧△P。
The powder specific surface area diameter measuring device according to the present invention consists of a sample cell 1 in which a sample powder 4 is accommodated, a piston 5 and a piston rod 7 for compressing and filling the sample powder 4 accommodated in the sample cell 1. The pressurizing means 6 and this pressurizing means 6
means 9 for supplying air from the bottom of the sample cell 1 to the sample-filled layer compressed and filled by the sample-filling layer; a flowmeter 12 for measuring the flow rate of air that has passed through the sample-filled layer; Pressure difference generated between both ends of the packed layer △
It is equipped with a differential pressure gauge 13 that measures P, and a thickness measuring device 8 that moves in synchronization with the piston 5 and measures the thickness L of the sample filling layer from the amount of displacement thereof, Powder specific surface area to determine the specific surface area diameter of the sample powder 4 from the measured values of the permeation air flow rate Q/T of the packed layer, the differential pressure △P of air pressure before and after passing through the sample packed layer, and the thickness L of the sample packed layer. In the diameter measuring device, the porosity ε is determined from the thickness value L of the sample-filled layer, ε=1−''! - When calculated based on the formula, ρ・AL, porosity ε and appropriate differential pressure △P are obtained.

との関係が予めインプツトされ、前記算出空隙率εから
適正差圧△P。を演算設定する差圧演算設定回路21と
、前記差圧計13の測定差圧値△Pを前記設定差圧値△
P。に一致せしめるように、前記試料セル1への空気供
給手段9からの供給空気圧力を自動制御する手段とを設
けて構成され、測定された空隙率εに対して流量Q/T
の計測に当つて好適な差圧を連続的に演算設定すること
によつて手動による段階的差圧設定切換動作を自動かつ
連続的ならしめるものである。以下、この発明にかかる
粉体比表面積径測定装置について図面を参照しながら説
明する。
The relationship between the two is inputted in advance, and the appropriate differential pressure ΔP is determined from the calculated porosity ε. A differential pressure calculation setting circuit 21 calculates and sets the differential pressure value △P measured by the differential pressure gauge 13 to the set differential pressure value △.
P. and a means for automatically controlling the air pressure supplied from the air supply means 9 to the sample cell 1 so as to match the flow rate Q/T with respect to the measured porosity ε.
By continuously calculating and setting a suitable differential pressure for measurement, manual stepwise differential pressure setting switching operation can be made automatic and continuous. EMBODIMENT OF THE INVENTION Hereinafter, the powder specific surface area diameter measuring device according to the present invention will be explained with reference to the drawings.

第3図は実施例装置の構成を示す模式説明図である。FIG. 3 is a schematic explanatory diagram showing the configuration of the embodiment device.

図において、1はたとえばステンレススチール製の試料
充てんセルで、セルホルダ2に対して着脱自在に装着し
うるようにされており、3,3’はふるい板で、厚さ2
mm程度の金属板に多数の細孔をあけたものであり、3
の上面および3’の下面にそれぞれろ紙を介して試料粉
体4と接するようにされている。5は圧縮充てん用プレ
ス6のピストン、7はピストンロツドである。
In the figure, 1 is a sample filling cell made of stainless steel, for example, which can be detachably attached to a cell holder 2, and 3 and 3' are sieve plates with a thickness of 2.
It is a metal plate with a number of pores of about 3 mm in diameter.
The upper surface and the lower surface 3' are in contact with the sample powder 4 through filter paper, respectively. 5 is a piston of a compression and filling press 6, and 7 is a piston rod.

8は厚さ測定器で、粉体試料4の充てん層の厚さのLを
、ピストンロツド7に連結された検出端の上下方向の移
動量によつて自動的に測定し、その測定値を電気信号と
して出力するようにされており、粉体試料4が皆無のと
きピストン5が降下してふるい板3,3’が2板のろ紙
を介して押圧される場合に、その測定値が0になるよう
に予め調整がなされる。
Reference numeral 8 denotes a thickness measuring device that automatically measures the thickness L of the packed layer of the powder sample 4 by the amount of vertical movement of the detection end connected to the piston rod 7, and converts the measured value electrically. It is designed to be output as a signal, and when the piston 5 descends and the sieve plates 3 and 3' are pressed through the two plates of filter paper when there is no powder sample 4, the measured value becomes 0. Adjustments are made in advance so that

9は空気ポンプで、配管10およびセルホルダ2のポケ
ツト部を介して、試料セル1の底部にあけられた導入穴
と接続され、図示されていないが、弁を介して吸入され
る空気を大気圧以上の圧力に圧縮して試料セル1に送り
こむ用をなす。
Reference numeral 9 denotes an air pump, which is connected to an introduction hole made at the bottom of the sample cell 1 through a pipe 10 and a pocket of the cell holder 2, and which pumps air sucked in through a valve (not shown) to atmospheric pressure. The purpose is to compress it to the above pressure and send it to the sample cell 1.

11は粉体試料4の充てん層を透過した空気を流量計1
2に導く管路で、ピストンロツド7の一部とピストン5
のそれぞれ中央部を貫通して設けられた導通路と可撓的
に接続されている。
11 is a flow meter 1 that measures the air that has passed through the packed layer of powder sample 4.
2, a part of the piston rod 7 and the piston 5
are flexibly connected to conductive paths provided through the central portions of each.

流量計12は毎秒当りの透過空気量Q/tをその多寡に
応じてたとえば0.05cc/S,O〜1.0cc/S
,O〜20.0cc/sの3段階に自動的にレンジ切換
えが行われて測定値を電気信号として出力するようにさ
れている。13は差圧計で粉体試料4の充てん層の上下
両端間の圧力差△Pを測定するもので、配管10および
管路11のそれぞれ分岐管14,15と接続されており
、その測定値を電気信号として出力するようにされてい
る。
The flow meter 12 measures the amount of permeated air Q/t per second depending on the amount, for example, 0.05cc/S, O to 1.0cc/S.
, O to 20.0 cc/s, the range is automatically switched in three steps, and the measured value is output as an electrical signal. 13 is a differential pressure gauge that measures the pressure difference ΔP between the upper and lower ends of the packed layer of the powder sample 4, and is connected to branch pipes 14 and 15 of the pipe 10 and pipe 11, respectively, and the measured value is It is designed to be output as an electrical signal.

16はサーボアンプ、17はその出力信号によつて制御
されるサーボモータである。
16 is a servo amplifier, and 17 is a servo motor controlled by its output signal.

サーボモータ17の出力軸は一定位置にて回転自在に支
承されるねじ棒18と歯車列を介して連結されており、
ねじ棒18は空気ポンプ9のピストンロツド19と螺合
係合されている。19′はピストンロツド19の回り止
めである。
The output shaft of the servo motor 17 is connected via a gear train to a threaded rod 18 which is rotatably supported at a fixed position.
The threaded rod 18 is threadedly engaged with a piston rod 19 of the air pump 9. 19' is a rotation stopper for the piston rod 19.

したがつてねじ棒18がたとえば右ねじとすればサーボ
モータ17の出力軸がそれに正対して反時計方向に回転
駆動する場合には、ピストンロツド19は左方へ移動さ
せられ、ピストン20が押込まれ、配管10へ吐出され
る空気の圧力が上昇するようにされるわけである。21
は差圧演算設定回路で、厚さ測定器8と、それからの試
料粉体4の充てん層の厚さLの測定値を示す電気信号が
入力されるよう接続されている。
Therefore, if the threaded rod 18 has a right-hand thread, for example, and the output shaft of the servo motor 17 is rotated counterclockwise in direct opposition to it, the piston rod 19 is moved to the left, and the piston 20 is pushed in. , the pressure of the air discharged to the pipe 10 is increased. 21
1 is a differential pressure calculation setting circuit, which is connected to the thickness measuring device 8 so that an electric signal indicating the measured value of the thickness L of the packed layer of the sample powder 4 is input thereto.

そして、その演算回路に試料層4の段面積A、粉体試料
4の重量Wおよび密度ρを予めインプツトしておけば、
厚さ測定器8からの充てん層の厚さLを示す信号が入力
されると、(ハ)式どおりの演算が行われるよう予め組
み込まれているプログラムによつて、試料充てん層4の
空隙率εが算出されるようにされている。またこの算出
された空隙率εに対して流量計測に当つて適正な圧力差
の値△POが設定されるよう、たとえば第4図に示す空
隙率εから適正差圧△POを設定するプログラムが差圧
演算設定回路21に予め組込まれている。そして、この
回路21に厚さ測定器8から充てん層の厚さLを示す信
号が入力されると、試料充てん層の空隙率εが算出され
、さらに算出されたこの空隙率εに対して予め組込まれ
たプログラムによつて流量計測に当つての適正な圧力差
△POの値が設定され、その設定値に相当する信号がサ
ーボアンプ16にインプツトされるようにされている。
なお第4図に示す空隙率εの値に対して差圧の流量計測
は当つての適正値△POをきめるグラフは第1、第2両
図に示された線図を5〜200g/CIll2の間にお
いてたとえば10g/CIn2とびの差圧△Pに対して
それぞれ用意し、これらの図表から空隙率εの0.3〜
0.8の各値に対して、毎秒当りの透過空気量Q/t(
Cc/s)が流量計]2の各レンジにおいて、それぞれ
フルスケールに近い値を示すよう△Pの値を選択するこ
とによつて作成すればよい。
If the step area A of the sample layer 4, the weight W and the density ρ of the powder sample 4 are input into the calculation circuit in advance, then
When a signal indicating the thickness L of the filled layer from the thickness measuring device 8 is input, the porosity of the sample filled layer 4 is calculated by a pre-installed program to perform calculations according to formula (c). ε is calculated. In addition, in order to set an appropriate pressure difference value △PO for the calculated porosity ε when measuring the flow rate, for example, a program is created to set the appropriate pressure difference △PO from the porosity ε shown in Fig. 4. It is incorporated in the differential pressure calculation setting circuit 21 in advance. When a signal indicating the thickness L of the filling layer is input from the thickness measuring device 8 to this circuit 21, the porosity ε of the sample filling layer is calculated, and the calculated porosity ε is calculated in advance. An appropriate pressure difference ΔPO value for flow rate measurement is set by the built-in program, and a signal corresponding to the set value is input to the servo amplifier 16.
The graph for determining the appropriate value △PO for measuring the flow rate of differential pressure for the value of porosity ε shown in Figure 4 is based on the graph shown in both Figures 1 and 2 at 5 to 200 g/CIll2. For example, prepare for the differential pressure △P of 10 g/CIn2 increments between
For each value of 0.8, the amount of permeated air per second Q/t (
Cc/s) may be created by selecting the value of ΔP so as to indicate a value close to the full scale in each range of flowmeter 2.

また充てん層の厚さLから空隙率εを求める演算過程を
簡単にすれには、充てんする粉体試料4の重量をその密
度ρの値と一致させること、たとえば純鉄の試料粉体4
に対しては試料としてその密度ρをあられす数値に等し
い7.86gを計量して試料セル1にいれること、さら
に試料セル1の充てん部の面積をたとえば2cIn2に
設計しておけば便利である。このようにしておけばとな
るからである。
In addition, in order to simplify the calculation process for calculating the porosity ε from the thickness L of the filled layer, it is necessary to match the weight of the powder sample 4 to be filled with the value of its density ρ, for example, the sample powder 4 of pure iron.
For this purpose, it is convenient to weigh 7.86 g, which is equal to the density ρ of the sample, into sample cell 1, and to design the area of the filled part of sample cell 1 to be, for example, 2cIn2. . This is because if you do it this way.

サーボアンプ16には、また差圧計13からの差圧△P
Oを示す電気信号がインプツトされるよiうにされてい
る。
The servo amplifier 16 also receives the differential pressure △P from the differential pressure gauge 13.
An electrical signal indicating O is inputted.

22は演算器で、厚さ測定器8からの試料層の厚さLを
示す電気信号、流量計12からの試料層を透過する毎秒
当りの透過空気量Q/tを示す電気信号および差圧計1
3からの試料層の上下両端間の圧力差△Pを示す電気信
号がそ.れぞれインプツトされるようこれらの測定計器
とそれぞれ接続されており、これらのインプツトされる
電気信号と、別に予めインプツトされる空気の粘性η、
試料層の断面積Aおよびその都度インプツトされる粉体
試料4の密度ρならびにその重(量W(このρ,Wの両
値については前記したとおリ計量された粉体試料4がい
れられる場合にはインプツトしなくてもよい。
22 is a computing unit that includes an electrical signal from the thickness measuring device 8 indicating the thickness L of the sample layer, an electrical signal indicating the amount of permeated air Q/t per second passing through the sample layer from the flow meter 12, and a differential pressure gauge. 1
The electrical signal indicating the pressure difference △P between the upper and lower ends of the sample layer from 3. These measuring instruments are connected to each other so as to be inputted, and in addition to these inputted electric signals, air viscosity η, which is inputted separately,
The cross-sectional area A of the sample layer, the density ρ of the powder sample 4 input each time, and its weight (amount W) does not need to be input.

)にそれぞれ相当する電気信号とが、(イ)、(口)、
(ハ)各式にしたがつて演算処理されるよう予め組みこ
まれたプログラムによダつて演算がなされ、試料粉体4
の比表面積SWが算出され、それがさらに図示されてい
ないが、表示器または記録計にそれぞれ表示または記録
されるようにされている。また比表面積径すなわち平均
粒子径Dmについては、(ニ)式にしたがつて演算処理
するよう予めプログラムが組込まれており、このプログ
ラムによつて演算がなされ、比表面積SWと同様に平均
粒子径Dmが表示または記録されるようにされている。
つぎにこの装置における動作について説明する。
), respectively, are electrical signals corresponding to (a), (mouth),
(c) Calculations are performed according to a pre-installed program that performs calculations according to each formula, and the sample powder 4
The specific surface area SW is calculated, and although not shown, it is displayed or recorded on a display or a recorder, respectively. Also, regarding the specific surface area diameter, that is, the average particle diameter Dm, a program is installed in advance to perform calculation processing according to equation (d), and the calculation is performed by this program, and the average particle diameter Dm is displayed or recorded.
Next, the operation of this device will be explained.

試料セル1に粉体試料4をその密度ρの数置に等しい重
量分だけ計量していれ、それをプレス6によつて圧縮充
てんする。一般にこの充てんに当つては、ピストン5の
加圧力が一定になるように行われる。充てん動作が終了
すると、充てん層の厚さLが厚さ測定器8によつて自動
的に測定され、その測定値を示す電気信号が差圧演算設
定回路21と、演算器22とに入力される。差圧演算設
定回路21に入力された電気信号は前記したとおり予め
組みこまれているプログラムによつて演算処理され、試
料粉体4の空隙率εが算出される。さらに前記したとお
り、この回路21に予め組みこまれている空隙率εに対
して差圧△Pの流量計測に当つての適正値を設定するプ
ログラムによつて適正圧力差△POが換算設定され、こ
の信号がサーボアツプ16に入力される。さらにこの信
号によるサーボアンプ16からの出力信号により、サー
ボモータ17が回転する。そして減速歯車列を介してト
ルクが増大され、一定位置にて回転自在に支承されるね
じ棒18が回転駆動され、ピストンロツド19、すなわ
ちピストン20が水i平方向に駆動される。ピストン2
0によつて圧縮された空気は、空気ポンプ9から配管1
0をへて、試料セル1にその底部の導入穴から送りこま
れる。試料セル1に送りこまれた大気圧より高い圧力の
空気は、ふるい板3とろ紙を通過して、試l料層4を透
過し、再びろ紙とふるい板3’を通過してプレス6のピ
ストン5およびピストンロツド7の貫通路をへ、さらに
管路IL分岐管15をとおり、差圧計13に達する。一
方配管10から分岐して分岐管14に流入する空気も差
圧計13.に達する。したがつて差圧計13によつて、
充てん層の上下両端間の圧力降下分に相当する差圧△P
が測定され、その測定値を示す電気信号がサーボアンプ
16にフイードバツクされる。そしてこのフイードバツ
クされた信号は差圧演算設定回路21からさきにサーボ
アンプ16にインプツトされた適正差圧△P。の設定値
信号と比較され、この両者が同一になるまでサーボモー
タ17によつて空気ポンプ9が駆動されて試料セル1に
空気が送りこまれ、試料層4の上下両端間の差圧△Pが
設定された適正差圧△P。に一致するようにされ、この
差圧△P。の値が差圧計19から電気信号として演算器
22にインプツトされる。そして同時に流量計12から
この差圧△P。における毎秒当りの透過空気量Q/tが
電気信号として同じく演算器22にインプツトされる。
この場合、流量計12によつて計量されるQ/tはその
多寡に応じて自動的にレンジが切換えられ、そのフルス
ケールに近い値を示すように最適差圧△P。が設定され
ていることから、流量計12における計測は精度よく、
かつ短時間に行なわれる。演算器22には前記したとお
り、厚さ測定器8、流量計12、および差圧計13から
それぞれ計測された試料層の厚さL、毎秒当りの透過空
気量Q/t、試料層4の上下両端間の圧力差△P(△P
Oに等しい)が電気信号としてインプツトされ、これら
の電気信号と、別に予めインプツトされている空気の粘
性η、試料層の断面積Aにそれぞれ相当する電気信号と
が、予め組込まれているプログラムによつて(イ)、(
口)、(−一)各式どおりの演算がなされ、試料粉体4
の比表面積SWが算出され、さらにその値は表示器また
は記録計にそれぞれ表示または記録される。また比表面
積径すなわち平均粒子Dmは、予め組込まれているプロ
グラムによつて亘式どおりの演算がなされ、さらにその
値は表示器または記録計にこの実施例装置においては、
厚さ測定器8はピストンロツド7と一体的に動くロツド
を介してその変位を測定しているが、ピストン5に直接
測定ロツドを取付けるようにしたものでもよい。以上の
説明によつて明らかなようにこの発明にかかる粉体比表
面積径測定装置においては、従来の装置におけるごとく
、測定時に流量計の指示値をみながら設定差圧をたとえ
ば段階的に切換え、流量計測に適正な差圧を設定すると
いう測定に時間を要する手動操作が、測定された空隙率
εに対して粒量計測に当つて適正な差圧を連続的に演算
設定するようにされた差圧演算設定回路を設けることに
よつて完全に省略することができるようにされているこ
とから、流量計測の精度を良好に維持しながら、その計
測時間を大幅に短縮することができ、このことによつて
粉体試料の比表面積径すなわち平均粒子径の測定が自動
的に、精度よく、かつより一層短時間に行われるように
なつたものである。
A powder sample 4 is weighed into the sample cell 1 in an amount equal to the number of points of its density ρ, and is compressed and filled by a press 6. Generally, this filling is performed so that the pressing force of the piston 5 is constant. When the filling operation is completed, the thickness L of the filling layer is automatically measured by the thickness measuring device 8, and an electric signal indicating the measured value is input to the differential pressure calculation setting circuit 21 and the calculator 22. Ru. The electrical signal input to the differential pressure calculation setting circuit 21 is processed by a pre-loaded program as described above, and the porosity ε of the sample powder 4 is calculated. Furthermore, as described above, the appropriate pressure difference △PO is converted and set by a program that sets an appropriate value for flow rate measurement of the differential pressure △P with respect to the porosity ε, which is pre-installed in this circuit 21. , this signal is input to the servo amplifier 16. Further, an output signal from the servo amplifier 16 based on this signal causes the servo motor 17 to rotate. Then, the torque is increased through the reduction gear train, and the threaded rod 18 rotatably supported at a fixed position is driven to rotate, and the piston rod 19, that is, the piston 20, is driven in the horizontal direction. piston 2
The air compressed by
0, and is fed into the sample cell 1 through the introduction hole at its bottom. The air at a pressure higher than atmospheric pressure sent into the sample cell 1 passes through the sieve plate 3 and filter paper, permeates the sample layer 4, passes through the filter paper and sieve plate 3' again, and reaches the piston of the press 6. 5 and the piston rod 7, and further passes through the pipe line IL branch pipe 15 to reach the differential pressure gauge 13. On the other hand, the air that branches from the pipe 10 and flows into the branch pipe 14 also flows into the differential pressure gauge 13. reach. Therefore, by the differential pressure gauge 13,
Differential pressure △P corresponding to the pressure drop between the upper and lower ends of the packed layer
is measured, and an electrical signal indicating the measured value is fed back to the servo amplifier 16. This feedback signal is the appropriate differential pressure ΔP that was previously input from the differential pressure calculation setting circuit 21 to the servo amplifier 16. The air pump 9 is driven by the servo motor 17 to feed air into the sample cell 1 until the two become the same, and the differential pressure △P between the upper and lower ends of the sample layer 4 is Set appropriate differential pressure △P. This differential pressure △P. The value is input from the differential pressure gauge 19 to the calculator 22 as an electrical signal. At the same time, this differential pressure △P is detected from the flow meter 12. The amount of permeated air Q/t per second is also input to the calculator 22 as an electrical signal.
In this case, the range of Q/t measured by the flowmeter 12 is automatically switched depending on the amount, and the optimum differential pressure ΔP is set so as to show a value close to the full scale. is set, the measurement at the flow meter 12 is accurate,
and is done in a short period of time. As described above, the calculator 22 includes the thickness L of the sample layer measured from the thickness measuring device 8, the flow meter 12, and the differential pressure gauge 13, the amount of permeated air per second Q/t, and the upper and lower sides of the sample layer 4. Pressure difference between both ends △P (△P
0) are input as electrical signals, and these electrical signals and electrical signals corresponding to the air viscosity η and the cross-sectional area A of the sample layer, which are input separately, are input into a pre-installed program. Yotsute (a), (
), (-1) Calculations are performed according to each formula, and sample powder 4
The specific surface area SW is calculated, and the value is displayed or recorded on a display or recorder, respectively. In addition, the specific surface area diameter, that is, the average particle Dm, is calculated according to Wataru's formula by a program installed in advance, and the value is displayed on the display or recorder in this embodiment device.
Although the thickness measuring device 8 measures its displacement via a rod that moves integrally with the piston rod 7, the measuring rod may be attached directly to the piston 5. As is clear from the above description, in the powder specific surface area diameter measuring device according to the present invention, as in the conventional device, the set differential pressure is changed in steps, for example, while checking the indicated value of the flowmeter during measurement. The time-consuming manual operation of setting an appropriate differential pressure for flow rate measurement has been changed to a continuous calculation and setting of an appropriate differential pressure for grain size measurement based on the measured porosity ε. Since it can be completely omitted by providing a differential pressure calculation setting circuit, it is possible to significantly shorten the measurement time while maintaining good flow measurement accuracy. As a result, the specific surface area diameter, that is, the average particle diameter, of a powder sample can now be measured automatically, accurately, and in a shorter time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は圧力差△Pを5g/Cm2,2O
Og/Cm2にそれぞれ設定した場合における、空隙’
率εを変化させて、試料粉体の平均粒子径Dmの大小に
対応して、毎秒当りの透過空気量Q/tが変動する状態
を示したグラフ、第3図は、この発明にかかる実施例装
置の構成を示す模式説明図、第4図は流量計測に最適な
差圧△P。 を空隙率εか門ら設定するグラフである。1 ・・・・
・・試料セル、4・・・・・・粉体試料(試料充てん層
)、6・・・・・・プレス、8・・・・・・厚さ測定器
、9・・・・・・空気ポンプ、12・・・・・・流量計
、13・・・・・・差圧計、21・・・・・・差圧演算
設定回路、22・・・・・・演算器、、クε・・・・・
・空隙率、A・・・・・・試料層の断面積、L・・・・
・・試料層の厚さ、W・・・・・・試料の重量、ρ・・
・・・・試料粉体の密度。
Figures 1 and 2 show the pressure difference △P as 5g/Cm2,2O.
Air gap' when set to Og/Cm2
FIG. 3 is a graph showing how the amount of permeated air per second Q/t changes in accordance with the size of the average particle diameter Dm of the sample powder as the rate ε is changed. A schematic explanatory diagram showing the configuration of an example device, FIG. 4 shows differential pressure ΔP optimal for flow rate measurement. This is a graph in which the porosity is set from the porosity ε. 1...
... Sample cell, 4... Powder sample (sample filling layer), 6... Press, 8... Thickness measuring device, 9... Air Pump, 12...Flowmeter, 13...Differential pressure gauge, 21...Differential pressure calculation setting circuit, 22...Calculator, ε... ...
・Porosity, A... Cross-sectional area of sample layer, L...
...Thickness of sample layer, W... Weight of sample, ρ...
...Density of sample powder.

Claims (1)

【特許請求の範囲】 1 試料粉体が収容される試料セルと、この試料セルに
収容された試料粉体を圧縮充てんするピストンおよびピ
ストンロッドからなる加圧手段と、この加圧手段によつ
て圧縮充てんされた試料充てん層に前記試料セルの底部
から空気を供給する手段と、前記試料充てん層を透過し
た空気流量を測定する流量計と、この透過空気の前記試
料充てん層両端間に生ずる圧力差を測定する差圧計と、
前記ピストンと同期して動くようにされ、その変位置か
ら前記試料充てん層の厚さを測定する厚さ測定器とを備
え、前記単位時間当りの試料充てん層の透過空気流量、
試料充てん層透過前後における空気圧力の差圧および試
料充てん層の厚さのそれぞれ計測値から試料粉体の比表
面積径を求める紛体比表面積径測定装置において、試料
充てん層の厚さ値から、空隙率εをε=1−W/ρ・A
Lの式に基づいて演算算出するとともに、空隙率と適正
差圧との関係が予めインプットされ、前記算出空隙率ε
から適正差圧を演算設定する差圧演算設定回路と、前記
差圧計の測定差圧値を前記設定差圧値に一致せしめるよ
うに、前記試料セルへの空気供給手段からの供給空気圧
力を自動制御する手段とを設けたことを特徴とする紛体
比表面積径測定装置。 W・・・試料の重量、ρ・・・試料粉体の密度、A・・
・試料充てん層の断面積、L・・・試料充てん層の厚さ
[Claims] 1. A sample cell in which sample powder is accommodated, a pressurizing means consisting of a piston and a piston rod for compressing and filling the sample powder accommodated in this sample cell, and A means for supplying air from the bottom of the sample cell to the compressed sample-filled layer, a flow meter for measuring the flow rate of air passing through the sample-filled layer, and a pressure generated between both ends of the sample-filled layer of the permeated air. A differential pressure gauge that measures the difference;
a thickness measuring device that is configured to move in synchronization with the piston and measures the thickness of the sample-filled layer from its displacement position;
In a powder specific surface area diameter measuring device that calculates the specific surface area diameter of the sample powder from the measured values of the air pressure difference before and after passing through the sample packed layer and the thickness of the sample packed layer, the pore size is calculated from the thickness value of the sample packed layer. Let the rate ε be ε=1−W/ρ・A
Calculation is performed based on the formula of L, and the relationship between the porosity and the appropriate differential pressure is input in advance, and the calculated porosity ε
a differential pressure calculation setting circuit that calculates and sets an appropriate differential pressure from the differential pressure; and a differential pressure calculation setting circuit that automatically adjusts the air pressure supplied from the air supply means to the sample cell so that the differential pressure value measured by the differential pressure gauge matches the set differential pressure value. 1. A powder specific surface area diameter measuring device, characterized in that it is provided with a controlling means. W... Weight of sample, ρ... Density of sample powder, A...
- Cross-sectional area of the sample filling layer, L...thickness of the sample filling layer.
JP8849179A 1979-07-10 1979-07-10 Powder specific surface area diameter measuring device Expired JPS5950926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8849179A JPS5950926B2 (en) 1979-07-10 1979-07-10 Powder specific surface area diameter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8849179A JPS5950926B2 (en) 1979-07-10 1979-07-10 Powder specific surface area diameter measuring device

Publications (2)

Publication Number Publication Date
JPS5611343A JPS5611343A (en) 1981-02-04
JPS5950926B2 true JPS5950926B2 (en) 1984-12-11

Family

ID=13944272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8849179A Expired JPS5950926B2 (en) 1979-07-10 1979-07-10 Powder specific surface area diameter measuring device

Country Status (1)

Country Link
JP (1) JPS5950926B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978333U (en) * 1982-11-17 1984-05-26 株式会社クボタ Footboards for transport vehicles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627270A (en) * 1986-01-06 1986-12-09 Marathon Oil Company System for measuring the pore volume and permeability of very tight core plugs and method therefor
JPS62228138A (en) * 1986-03-28 1987-10-07 Shimadzu Corp Apparatus for measuring specific surface area diameter of powdery material
WO2006016660A1 (en) * 2004-08-12 2006-02-16 Herzog Japan Co., Ltd. Molding device for sample for measuring specific surface area of powder
CN104677766A (en) * 2014-09-30 2015-06-03 北京城市排水集团有限责任公司 Method for detecting volcanic biological filter material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978333U (en) * 1982-11-17 1984-05-26 株式会社クボタ Footboards for transport vehicles

Also Published As

Publication number Publication date
JPS5611343A (en) 1981-02-04

Similar Documents

Publication Publication Date Title
US5005403A (en) Process and apparatus for the determination of the concentration of a substance dissolved in a solvent by means of an osmometer
EP0623210B1 (en) A testing apparatus for pressure gauges
Rigden The specific surface of powders. A modification of the theory of the air‐permeability method
WO1988000694A1 (en) Automated gas-liquid relative permeameter
JPS5950926B2 (en) Powder specific surface area diameter measuring device
US3349625A (en) Adsorption measuring apparatus and method
CN102590016B (en) Measurement method of soil moisture characteristic curve measurement device
GB2099157A (en) A process for determining the resistance to draw and/or the gas permeability of a test piece and a device for carrying out such a process
CN110057669A (en) A kind of pipe tobacco pliability detection method and pipe tobacco pliability detector
EP1020713A1 (en) Method and system for determining biphase flow rate
US5058442A (en) Apparatus for measuring liquid vapor adsorption and desorption characteristics of a sample
JPH0230658B2 (en) FUNTAIHI HYOMENSEKIKEISOKUTEISOCHI
US2392636A (en) Method and apparatus for determining total surface in granular beds
JP4827190B2 (en) Sample forming device for measuring specific surface area of powder
US4154098A (en) Volume measuring method and apparatus
GB2082778A (en) Volume Measuring Apparatus
US3416376A (en) Surface area measurement of variable length sample of finely divided solids
JP2000088843A (en) Fresh concrete air meter and air quantity measuring method
CN115077642A (en) Testing device for detecting flow pressure drop of proportional solenoid valve
CN1015744B (en) Apparatus for monitoring gas flow in gas analyzer
US20240410806A1 (en) Method and Apparatus for Determining the Equivalent Diameter of Powder Particles
GB2025069A (en) Permeametry Cell
JPS62228138A (en) Apparatus for measuring specific surface area diameter of powdery material
JP2849817B2 (en) Surface area measuring device for permeation method of packing layer using packing layer filtration resistance measuring device
GB2095411A (en) Paper porosity