[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5950879B2 - compressor - Google Patents

compressor

Info

Publication number
JPS5950879B2
JPS5950879B2 JP3839178A JP3839178A JPS5950879B2 JP S5950879 B2 JPS5950879 B2 JP S5950879B2 JP 3839178 A JP3839178 A JP 3839178A JP 3839178 A JP3839178 A JP 3839178A JP S5950879 B2 JPS5950879 B2 JP S5950879B2
Authority
JP
Japan
Prior art keywords
rotor
suction
long diameter
diameter portion
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3839178A
Other languages
Japanese (ja)
Other versions
JPS54132809A (en
Inventor
尚三 中山
光弘 服部
裕光 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP3839178A priority Critical patent/JPS5950879B2/en
Priority to DE792909157A priority patent/DE2909157C2/en
Publication of JPS54132809A publication Critical patent/JPS54132809A/en
Priority to US06/247,953 priority patent/US4345886A/en
Publication of JPS5950879B2 publication Critical patent/JPS5950879B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Description

【発明の詳細な説明】 本発明は特に車輌用空気調節装置の冷媒を圧縮するのに
適する回転式圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary compressor particularly suitable for compressing refrigerant in a vehicle air conditioning system.

従来の圧縮機は第5図に示すように吸入口44と吐出口
48をハウジング45の固定位置に設けていたので、ロ
ータ46が回転して一方の長径部46aがベーン47B
を越える吸入動作完了時点(同図実線位置)から同ロー
タ46の長径部46aが前記吸入口44を閉じるまでの
間において作動室P内に吸入された冷媒が前記吸入口4
4から一部逆流し、体積効率を低下させるという欠陥が
あった。
In the conventional compressor, as shown in FIG. 5, the suction port 44 and the discharge port 48 are provided at fixed positions in the housing 45, so when the rotor 46 rotates, one long diameter portion 46a is connected to the vane 47B.
The refrigerant sucked into the working chamber P from the time when the suction operation is completed (solid line position in the figure) until the long diameter portion 46a of the rotor 46 closes the suction port 44
There was a defect in that part of the water flowed back from No. 4, reducing the volumetric efficiency.

又、従来の圧縮機として米国特許第3314368号明
細書に開示されたものが提案されている。
Furthermore, a conventional compressor disclosed in US Pat. No. 3,314,368 has been proposed.

これはハウジング内に形成した円筒状のシリンダ室には
ベーンを設け、同シリンダ室に内装されかつ同室の内周
面と気密的に対応する長径部を有するロータ内には被圧
縮流体の吸入室を設け、同ロータ外周には同ロータが回
転して被圧縮流体の吸入容積が最大となった作動室に関
して、ロータ回転方向先行側のベーン位置と数個の直径
部との間に位置するように吸入口を設けた圧縮機である
が、ベーンが長径部の数と同じであるため、作動室が最
大吸入容積となった後、吸入口がベーンを通過するまで
は逆流するため、体積効率の低下をまねくという欠陥が
あった。
A vane is installed in a cylindrical cylinder chamber formed in the housing, and a suction chamber for the compressed fluid is located in the rotor, which is housed in the cylinder chamber and has a long diameter portion that airtightly corresponds to the inner peripheral surface of the chamber. is provided on the outer periphery of the rotor so as to be located between the vane position on the leading side in the rotational direction of the rotor and several diameter parts with respect to the working chamber where the rotor rotates and the suction volume of the compressed fluid is maximized. This is a compressor with a suction port at the top, but since the number of vanes is the same as the length of the long diameter section, after the working chamber reaches its maximum suction volume, the flow will flow backwards until the suction port passes through the vane, resulting in low volumetric efficiency. There was a defect that led to a decline in

又、上記圧縮機にはロータの長径部がシリンダ室の内周
面に対し局部的に接触する構造であったため、長径部と
シリンダ室内周面とのシール性に問題があり、圧縮室か
ら吸入室へ圧縮流体が逆流し、この点からも体積効率を
低下させるという欠陥があった。
In addition, since the above compressor had a structure in which the long diameter part of the rotor was in local contact with the inner circumferential surface of the cylinder chamber, there was a problem with the sealing between the long diameter part and the inner circumferential surface of the cylinder chamber. There was a drawback in that the compressed fluid flows back into the chamber, which also reduces volumetric efficiency.

本発明は上記欠陥を解消するために成されたものであっ
て、その目的は圧縮行程時に被圧縮流体の一部が吸入室
へ逆流するのを阻止し、かつロータ長径部におけるシー
ル性を良好にして体積効率を向上することができる圧縮
機を提供することにある。
The present invention has been made to eliminate the above-mentioned defects, and its purpose is to prevent part of the fluid to be compressed from flowing back into the suction chamber during the compression stroke, and to improve sealing performance at the long diameter portion of the rotor. An object of the present invention is to provide a compressor that can improve volumetric efficiency.

本発明は上記目的を達成するため、内部に円筒状のシリ
ンダ室を形成したハウジングにはベーン及び吐出口を、
同シリンダ室に内装されかつ同室の内周面と気密的に対
応する長径部を有するロータ内には被圧縮流体の吸入室
をそれぞれ設け、前記ロータの長径部をシリンダ室内周
面の曲率とほぼ同じ曲率の円弧面に形成し、前記吐出口
及びベーンは、前記長径部の数に1を加えた個数以上と
し、かつ前記ロータの回転方向から吐出口、ベーンの順
に隣接配置するとともに、前記ロータには、同ロータが
回転して前記長径部のベーン通過後における該ベーンと
長径部の前記円弧面の後端との間に位置するロータ部分
に吸入口を設けるという構成を採用している。
In order to achieve the above-mentioned object, the present invention includes vanes and a discharge port in a housing having a cylindrical cylinder chamber inside.
A suction chamber for the fluid to be compressed is provided in each rotor, which is installed in the same cylinder chamber and has a long diameter portion that airtightly corresponds to the inner circumferential surface of the same chamber, and the long diameter portion of the rotor is arranged so that the long diameter portion of the rotor is approximately equal to the curvature of the inner circumferential surface of the cylinder chamber. The discharge ports and vanes are formed in an arcuate surface having the same curvature, the number of the discharge ports and the vanes is greater than or equal to the number of the long diameter portions plus 1, and the discharge ports and the vanes are arranged adjacent to each other in this order from the rotational direction of the rotor, and The rotor rotates and, after passing the vane of the long diameter portion, a suction port is provided in a portion of the rotor located between the vane of the long diameter portion and the rear end of the arcuate surface of the long diameter portion.

以下、本発明を具体化した一実施例を第1〜3図につい
て説明すると、図面中1は肉厚短円筒状のハウジングで
あって、その中空部には真円筒状のシリンダ室Cが形成
されている。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS. 1 to 3. In the drawings, 1 is a thick-walled short cylindrical housing, and a true cylindrical cylinder chamber C is formed in the hollow part of the housing. has been done.

2,3は前記ハウジング1の左右両端面に対し、0リン
グ4を介して該実施例においては6個のボルト5 (1
個のみ図示する)により締付固定した吸入側及び吐出側
のサブハウジングであって、第2図に示すように吸入側
のサブハウジング2外周に透設した透孔6には冷媒を供
給する管路(図示せず)が接続され、吐出側のサブハウ
ジング3外周に設けた透孔7には冷媒を吐出する管路(
図示せず)が接続されている。
2 and 3 are six bolts 5 (1
The sub-housings on the suction side and the discharge side are tightened and fixed by screws (only one part is shown in the figure), and as shown in FIG. A pipe (not shown) is connected to the through hole 7 provided on the outer periphery of the sub-housing 3 on the discharge side.
(not shown) are connected.

8.9は前記ハウジング1とサブハウジング2.3との
それぞれの間に介装されかつ円筒状シリンダ室Cの両側
壁面を形成する吸入側及び吐出側の側板であって、吸入
側の側板8とサブハウジング2とにより副吸入室S′を
形成し、吐出側の側板9とサブハウジング3とにより副
吐出室D′を形成している。
Reference numeral 8.9 denotes side plates on the suction side and discharge side that are interposed between the housing 1 and the subhousing 2.3 and form both side wall surfaces of the cylindrical cylinder chamber C, and the side plate 8 on the suction side. and the sub-housing 2 form a sub-suction chamber S', and the discharge-side side plate 9 and the sub-housing 3 form a sub-discharge chamber D'.

10は前記一対の側板8,9の中心部に対しベアリング
11.12を介して回転可能に支持された回転軸であっ
て、その吸入側端部を前記サブハウジング2の中心部を
貫通させて外部へ導出し、同サブハウジング2と回点軸
10との間にはシール部材13を介装している。
Reference numeral 10 denotes a rotating shaft which is rotatably supported at the center of the pair of side plates 8 and 9 via bearings 11 and 12, and whose suction side end passes through the center of the sub-housing 2. A sealing member 13 is inserted between the sub-housing 2 and the rotating shaft 10 to lead out.

14は前記シリンダ室C内の回転軸10上に固着した楕
円筒状をなすロータであって、回転軸10の回転軸線O
(シリンダ室Cの中心と一致させである)からの半径R
が最大となる一対の長径部15,16の外周面15a、
16aを第3図に示すように前記シリンダ室Cの内周面
Ca (その全体を示すときはCaといい、後記ベーン
24A〜24Cにより3分割された内周面を示すときは
ハウジング1の内周面1a、lb、ICということにす
る)に対し可及的に接近させて同ロータ14外周面14
aとシリンダ室Cの内周面Caとの間に2つの連続的に
回転方向へ移動する作動室(この室は後記3枚のベーン
24A〜24Cによって作動室P0〜P3に区画される
)を形成するとともに、同ロータ14の両側端面14b
をそれぞれ両側板8,9の内側面8a、gaに対し可及
的に接近させ、さらにロータ14の端面14bの全周に
はシール溝17を凹設してシールリング18を嵌合し側
板8,9の内側面8a、9aに接触させている。
Reference numeral 14 denotes an elliptical cylindrical rotor fixed on the rotating shaft 10 in the cylinder chamber C, and the rotational axis O of the rotating shaft 10 is
Radius R from (aligned with the center of cylinder chamber C)
outer peripheral surfaces 15a of the pair of long diameter portions 15, 16 where
As shown in FIG. 3, 16a is the inner circumferential surface Ca of the cylinder chamber C. The outer circumferential surface 14 of the rotor 14 is placed as close as possible to the circumferential surfaces 1a, lb, and IC).
A and the inner circumferential surface Ca of the cylinder chamber C, there are two working chambers that move continuously in the rotational direction (this chamber is divided into working chambers P0 to P3 by three vanes 24A to 24C, which will be described later). At the same time, both end surfaces 14b of the rotor 14 are formed.
are brought as close as possible to the inner surfaces 8a and ga of the side plates 8 and 9, respectively, and furthermore, a seal groove 17 is formed in the entire circumference of the end surface 14b of the rotor 14, and a seal ring 18 is fitted into the side plate 8. , 9 are in contact with the inner surfaces 8a, 9a of the inner surfaces 8a, 9a.

なお、前記ロータ14の長径部T5,16外周面15a
、16aは第3図に示すようにシリンダ室Cの内周面C
aの曲率とほぼ同じ円弧状に形成され、その長さは約1
0〜20mmとしく各外周面15a、16aの回転軸線
Oに対する形成角αを本実施例では約10〜20度とし
ている)シリンダ室Cの内周面Caとのシール性を向上
するようにしている。
In addition, the long diameter portion T5 of the rotor 14, 16 outer peripheral surface 15a
, 16a is the inner peripheral surface C of the cylinder chamber C as shown in FIG.
It is formed into an arc shape that is approximately the same as the curvature of a, and its length is approximately 1
(0 to 20 mm, and the forming angle α of each outer circumferential surface 15a, 16a with respect to the rotational axis O is approximately 10 to 20 degrees in this embodiment) to improve the sealing performance with the inner circumferential surface Ca of the cylinder chamber C. There is.

Sは前記ロータ14の楕円状内周面14Cと前記両側板
8,9とにより形成される吸入室であって、吸入側側板
8の中央寄りに透設した本実施例においては計8個の導
入口19(第2図に2箇所のみ図示する)によって前記
サブハウジング2内の副吸入室S′と連通されている。
S is a suction chamber formed by the elliptical inner circumferential surface 14C of the rotor 14 and the side plates 8 and 9, and in this embodiment, a total of eight chambers are formed transparently near the center of the side plate 8 on the suction side. It communicates with the sub-suction chamber S' in the sub-housing 2 through an inlet 19 (only two locations are shown in FIG. 2).

21は前記ロータ14の外周部に対し、後述のごとく、
第1図に示した状態においてシリンダ内周面1bに対応
する作動室P2がその吸入容積が最大となったとき、該
作動室P2に関してロータ回転方向先行側のベーン24
Cの位置と、数個の長径部15の外周面15aとの間に
位置するように透設した該実施例では4つの第一吸入口
であって、前記ロータ14内の吸入室Sと前記作動室P
2とを連通し吸入室Sから作動室P2へ冷媒を供給可能
である。
21 is attached to the outer circumferential portion of the rotor 14, as will be described later.
In the state shown in FIG. 1, when the suction volume of the working chamber P2 corresponding to the cylinder inner peripheral surface 1b reaches its maximum, the vane 24 on the leading side in the rotor rotational direction with respect to the working chamber P2
In this embodiment, four first suction ports are transparently provided between the position C and the outer circumferential surface 15a of several long diameter portions 15, and the first suction ports are located between the suction chamber S in the rotor 14 and the Working chamber P
2, so that refrigerant can be supplied from the suction chamber S to the working chamber P2.

22は前記第一吸入口21と同様に前記ロータ14の外
周部に対し長径部16の外周面16a直後に位置するよ
うに透設した該実施例では4つの第二吸入口であって、
ロータ14の吸入室Sと前記作動室P1とを連通し、吸
入室Sから作動室P1へ冷媒を供給可能である。
Numeral 22 designates four second suction ports in this embodiment, which are transparently provided in the same manner as the first suction ports 21 so as to be located immediately behind the outer peripheral surface 16a of the long diameter portion 16 with respect to the outer peripheral portion of the rotor 14,
The suction chamber S of the rotor 14 and the working chamber P1 are communicated with each other, and refrigerant can be supplied from the suction chamber S to the working chamber P1.

23A〜23Cは前記シリンダ室Cの内周面Caに対し
、前記ロータ14の回転軸線Oと平行になるようにかつ
120度ごとに凹設した3つのベーン溝、24A〜24
Cは同ベーン溝23A〜23Cに対しそれぞれ半径方向
の往復動可能に密嵌した3つのベーンであって、各ベー
ン24A〜24Cの先端円弧面を前記ロータ14の外周
面14aに摺接可能である。
23A to 23C are three vane grooves 24A to 24 recessed in the inner circumferential surface Ca of the cylinder chamber C so as to be parallel to the rotational axis O of the rotor 14 and every 120 degrees;
C denotes three vanes that are tightly fitted into the vane grooves 23A to 23C so as to be able to reciprocate in the radial direction, and the arcuate end surfaces of the vanes 24A to 24C can be slidably contacted with the outer circumferential surface 14a of the rotor 14. be.

なお、前記3つのベーン24A〜24Cは吐出圧を利用
するかもしくはバネの力によって適宜押圧力によってロ
ータ周面に当接するように付勢されている。
The three vanes 24A to 24C are urged to come into contact with the circumferential surface of the rotor by appropriate pressing force using discharge pressure or by the force of a spring.

前記第一吸入口21はロータ14が回転して作動室への
冷媒の吸入容積が最大となった状態、例えば第1図に示
すようにロータ14の短径部が頂部のベーン24Aに位
置したとき下部のベーン24B、24C間の作動室P2
は最大吸入容積となるが、該作動室P2に関して、ロー
タ回転方向先行側のベーン24Cの位置と数個のロータ
14の長径部15 (第3図参照)との間に位置するよ
うにしている。
The first suction port 21 is located when the rotor 14 rotates and the suction volume of refrigerant into the working chamber is maximized, for example, as shown in FIG. 1, the short diameter portion of the rotor 14 is located at the top vane 24A Working chamber P2 between lower vanes 24B and 24C
is the maximum suction volume, and with respect to the working chamber P2, it is located between the position of the vane 24C on the leading side in the rotor rotational direction and the long diameter portion 15 of several rotors 14 (see Fig. 3). .

この関係は第二吸入口22についても同様で゛ある。This relationship holds true for the second suction port 22 as well.

D1〜D3は前記ハウジング1の外周面に対し外方へ開
口するようにかつ前記ベーン24A〜24Cの直後すな
わち第1図において反時計回り側に凹設した3つの吐出
室であって、各吐出室D1〜D3の開口端は蓋25によ
って密閉されている。
D1 to D3 are three discharge chambers that open outward with respect to the outer peripheral surface of the housing 1 and are recessed immediately after the vanes 24A to 24C, that is, in the counterclockwise direction in FIG. The open ends of the chambers D1 to D3 are sealed with lids 25.

26A〜26Cはハウジング1に対し吐出室D1〜D3
と作動室P1〜P3とをそれぞれ連通するように、かつ
前記各ベーン溝23A〜23Bの直後に位置するように
透設した3つの吐出口であって、作動室P1〜P3内で
圧縮された冷媒を吐出室D1〜D3へ供給可能である。
26A to 26C are discharge chambers D1 to D3 for the housing 1.
and the working chambers P1 to P3, respectively, and are transparently provided so as to be located immediately after each of the vane grooves 23A to 23B, and the discharge ports are arranged to communicate with the working chambers P1 to P3, respectively, and are located immediately after the respective vane grooves 23A to 23B. Refrigerant can be supplied to the discharge chambers D1 to D3.

27A〜27Cは前記各吐出室D1〜D3の底面に対し
各吐出口26A〜26Cを開閉路するようにボルト28
着した薄板よりなる逆止弁であって、各逆止弁27A〜
27Cの背側にボルト28着したストッパ29により各
逆止弁28A〜28Cの回動範囲を規制するようになっ
ている。
27A to 27C are bolts 28 so as to open and close the respective discharge ports 26A to 26C with respect to the bottom surfaces of the respective discharge chambers D1 to D3.
A check valve made of a thin plate attached to each check valve 27A~
The rotation range of each of the check valves 28A to 28C is restricted by a stopper 29 attached to the back side of the check valve 27C with a bolt 28.

30はハウジング1に対し前記各ベーン溝23A〜23
Cと各吐出室D1〜D3とをそれぞれ連通ずるように透
設した通路であって、吐出室D1〜D3内に圧入された
冷媒をベーン溝23A〜23Cに導き同ベーン溝23A
〜23C内のベーン24A〜24C内端面に圧力をかけ
各ベーン24A〜24Cを前記ロータ14の外周面14
aに圧接し得るようにしている。
Reference numeral 30 indicates each vane groove 23A to 23 for the housing 1.
C and each of the discharge chambers D1 to D3 are transparent passages that are arranged so as to communicate with each other, and guide the refrigerant pressurized into the discharge chambers D1 to D3 to the vane grooves 23A to 23C.
Pressure is applied to the inner end surfaces of the vanes 24A to 24C in the vanes 24A to 23C, and the vanes 24A to 24C are pressed against the outer peripheral surface 14 of the rotor 14.
It is designed so that it can be brought into pressure contact with a.

31はハウジング1及び側板9に対し前記吐出室D1〜
D3と前記吐出側のサブハウジング3内に設けた副吐出
室D′とをそれぞれ連通するように透設した通路であっ
て、各吐出室D工〜D3に圧入された冷媒を副吐出室D
′に移送し得るようにしている。
31 is the discharge chamber D1 to the housing 1 and the side plate 9.
A transparent passageway is provided so as to communicate between D3 and the sub-discharge chamber D' provided in the sub-housing 3 on the discharge side.
’.

32は第2図に示すように前記吐出側のサブハウジング
3の前記ベアリング12と対応する内側面に浅く凹設し
た小室、33はサブハウジング3と側板9に対し前記小
室32と前記作動室P工とを連通ずるように透設した細
い通路であって、そのシリンダ室C側開口端33aを第
1図に示すように上部のベーン24Aの直前(同図時計
回り側)に位置させるとともに、ロータ14の外周面1
4aの短径部よりも若干外側に位置させている。
As shown in FIG. 2, 32 is a small chamber shallowly recessed in the inner surface of the sub-housing 3 on the discharge side corresponding to the bearing 12, and 33 is a small chamber 32 and the working chamber P with respect to the sub-housing 3 and the side plate 9. It is a thin passage provided transparently to communicate with the air conditioner, and its opening end 33a on the cylinder chamber C side is located just before the upper vane 24A (clockwise side in the figure) as shown in FIG. Outer peripheral surface 1 of rotor 14
It is located slightly outside the short diameter portion of 4a.

次に前記のように構成した圧縮機についてその作用を説
明する。
Next, the operation of the compressor constructed as described above will be explained.

さて、第1図はロータ14が同図時計回り方向に回転さ
れ一方の短径部が頂部に位置するベーン24Aと対応し
、3つのベーン24A〜24Cと、各ベーン24A〜2
4C間の3つのシリンダ室内周面1a〜1Cと、ロータ
14の外周面14aとにより形成される3つの作動室P
1〜P3のうち内周面1bと対応する作動室P2が最大
吸入容積となり、一方、内周面1a、lcと対応する2
つの作動室P1.P3がロータ14の長径部16゜15
によりそれぞれ2つの室Ps、 Pdに区分された冷媒
の吸入圧縮動作の一時点を示すものである。
Now, in FIG. 1, the rotor 14 is rotated clockwise in the figure, and corresponds to the vane 24A with one short diameter portion located at the top, and three vanes 24A to 24C, and each vane 24A to 24C.
Three working chambers P formed by the three cylinder indoor circumferential surfaces 1a to 1C between 4C and the outer circumferential surface 14a of the rotor 14.
Among 1 to P3, the working chamber P2 corresponding to the inner circumferential surface 1b has the maximum suction volume, while the working chamber 2 corresponding to the inner circumferential surfaces 1a and lc has the maximum suction volume.
two working chambers P1. P3 is the long diameter part 16°15 of the rotor 14
This shows a point in time during the suction and compression operation of the refrigerant, which is divided into two chambers Ps and Pd, respectively.

この状態においては、ロータ14の長径部15.16に
関して同ロータ14の回転方向後方に形成される室Ps
はロータ14の回転によって体積が膨張して負圧となり
、ロータ14内の吸入室Sにある冷媒は第一、第二吸入
口21.22を介して前記室Ps内に吸入され、同時に
他方の室Pdはロータ14の回転によって体積が減少し
て高圧となり同室Pd内に吸入されていた冷媒は圧縮さ
れながら吐出口26A、26Bから押し出され吐出室D
1.D2へと移送される。
In this state, a chamber Ps is formed at the rear in the rotational direction of the rotor 14 with respect to the long diameter portion 15.16 of the rotor 14.
is expanded in volume by the rotation of the rotor 14 and becomes negative pressure, and the refrigerant in the suction chamber S in the rotor 14 is sucked into the chamber Ps through the first and second suction ports 21 and 22, and at the same time The volume of the chamber Pd decreases due to the rotation of the rotor 14, and the pressure becomes high. The refrigerant sucked into the chamber Pd is compressed and pushed out from the discharge ports 26A and 26B, and becomes the discharge chamber D.
1. Transferred to D2.

そしてロータ14が回転して長径部16がベーン24B
を通過し第二吸入口22が同ベーン24Bを越えた直後
の状態では作動室P1への冷媒の吸入動作は停止され同
作動室P1は最大吸入容積の1つの室となり、作動室P
2は長径部16によって2つの室に区分されて吸入及び
圧縮が行なわれ、さらに長径部15がベーン24Aを通
過し第一吸入口21が同ベーン24Aを越えた直後の状
態では作動室P3への冷媒の吸入動作は停止され同作動
室P3は最大吸入容積の1つの室となり作動室P1は長
径部15によって再び2つの室に区分され吸入及び圧縮
動作が行なわれる。
Then, the rotor 14 rotates and the long diameter portion 16 becomes the vane 24B.
Immediately after the second suction port 22 passes over the vane 24B, the suction operation of the refrigerant into the working chamber P1 is stopped, and the working chamber P1 becomes one chamber with the maximum suction volume, and the working chamber P
2 is divided into two chambers by the long diameter portion 16 for suction and compression, and furthermore, immediately after the long diameter portion 15 passes the vane 24A and the first suction port 21 crosses the same vane 24A, it flows into the working chamber P3. The suction operation of the refrigerant is stopped, and the working chamber P3 becomes one chamber with the maximum suction volume.The working chamber P1 is again divided into two chambers by the long diameter portion 15, and suction and compression operations are performed.

ここで、ロータ14の長径部15 (外周面15a)後
端Eがベーン24Cに当接した状態(図示しないが作動
室P2の圧縮動作が終了し、作動室P3の圧縮動作が開
始される)から、第1,3図に示すように長径部15の
後端Eがベーン24Cから一定距離だけ離間して作動室
P2が最大吸入容積となるまでの作用について説明する
Here, the rear end E of the long diameter portion 15 (outer peripheral surface 15a) of the rotor 14 is in contact with the vane 24C (although not shown, the compression operation of the working chamber P2 is completed, and the compression operation of the working chamber P3 is started). 1 and 3, the operation until the rear end E of the long diameter portion 15 is separated from the vane 24C by a certain distance and the working chamber P2 reaches its maximum suction volume will be described.

今、ロータの長径部後端Eがベーン24Cから若干離れ
ると作動室P3は前述したように2つの室Ps、 Pd
に区分され、室Psにはロータ回転方向先行側の第一吸
入口21aから冷媒が吸入され、一方作動室P2にはロ
ータ回転方向後側の第一吸入口21bから冷媒が吸入さ
れる。
Now, when the rear end E of the long diameter part of the rotor is slightly separated from the vane 24C, the working chamber P3 is divided into two chambers Ps and Pd as described above.
Refrigerant is sucked into the chamber Ps from the first suction port 21a on the leading side in the rotor rotation direction, while refrigerant is sucked into the working chamber P2 from the first suction port 21b on the rear side in the rotor rotation direction.

そして、本実施例では第3図に示すように先行する第一
吸入口21aを長径部15の後端Eから若干後方に設け
ているが、この位置を長径部後端E直後に設けると、同
長径部後端Eがベーン24Cを通過した直後から吸入作
用が開始されるために高い吸入効率が得られる。
In this embodiment, as shown in FIG. 3, the preceding first suction port 21a is provided slightly rearward from the rear end E of the long diameter portion 15, but if this position is provided immediately after the rear end E of the long diameter portion, Since the suction action starts immediately after the rear end E of the long diameter portion passes the vane 24C, high suction efficiency can be obtained.

又、ロータが回転して後側の第一吸入口21bがベーン
24Cを通過すると作動室P2への冷媒の吸入動作は停
止され、作動室P3の室Psへの冷媒の吸入動作は第一
吸入口21bによっても行なわれるようになる。
Further, when the rotor rotates and the first suction port 21b on the rear side passes the vane 24C, the suction operation of the refrigerant into the working chamber P2 is stopped, and the suction operation of the refrigerant into the chamber Ps of the working chamber P3 is stopped at the first suction port 21b on the rear side. This is also done through the mouth 21b.

そして、本実施例では第1,3図に示すように作動室P
2が最大吸入容積となったとき、後続の第一吸入口21
bかベーン24Cから若干前進した位置にあるようにし
たが、同じ状態で第一吸入口21bがベーン24Cの直
前に設けられていると、作動室P2内で吸入動作が続い
ている間中第一吸入口21からの吸入動作が継続して行
なわれることになり、高い吸入効率が得られる。
In this embodiment, as shown in FIGS. 1 and 3, the working chamber P
2 reaches the maximum suction volume, the subsequent first suction port 21
However, if the first suction port 21b is provided just in front of the vane 24C in the same state, the first suction port 21b will be at a position slightly advanced from the vane 24C while the suction operation continues in the working chamber P2. The suction operation from one suction port 21 is continuously performed, and high suction efficiency can be obtained.

さて、本発明実施例においてはハウジング側には3つの
ベーン24A〜24C及び吐出口26A〜26Cを設け
、ロータ14内には吸入室Sを設け、同じくロータ14
の外周には第一、第二吸入口21,22を設け、ロータ
が回転して冷媒の吸入容積が最大となった作動室に関し
てロータ回転方向先行側のベーンの位置と数個の長径部
との間に前記第一、第二吸入口21.22を設けたので
、同吸入口21.22から吸入室S内に冷媒が逆流する
のを防止して体積効率を高めることができる。
Now, in the embodiment of the present invention, three vanes 24A to 24C and discharge ports 26A to 26C are provided on the housing side, and a suction chamber S is provided in the rotor 14.
First and second suction ports 21 and 22 are provided on the outer periphery of the rotor, and the position of the vane on the leading side in the rotational direction of the rotor and several long diameter portions are Since the first and second suction ports 21.22 are provided between the suction ports 21 and 22, it is possible to prevent the refrigerant from flowing back into the suction chamber S from the suction ports 21.22, thereby increasing the volumetric efficiency.

換言すれば、作動室が最大吸入容積となって後続の長径
部により圧縮動作が開始されるときには、すてにベーン
によって作動室と吸入口が遮断されているために冷媒の
逆流を阻止し体積効率を高めるニルができるのである。
In other words, when the working chamber reaches its maximum suction volume and the compression operation is started by the following long diameter section, the working chamber and the suction port are already blocked off by the vanes, which prevents the refrigerant from flowing backwards and reduces the volume. It is possible to create something that increases efficiency.

ところで、ロータ14の長径部15.16(後端E)の
直後に第一、第二吸入口21.22を設けた場合には作
動室内での吸入作用が開始されると同時に吸入口からの
吸入が開始され、又吸入容積が最大となったときの作動
室に関して、ロータ回転方向先行側のベーンの位置の直
前に吸入口を設けた場合には作動室内での吸入作用が終
了するまでずっと継続して吸入口からの吸入が行なわれ
、さらにこれらの利点を併用したものすなわちロータ1
4が回転されて作動室内に吸入される冷媒の吸入容積が
最大となった状態において、同作動室に関してロータ回
転方向先行側のベーンの位置から数個のロータ長径部ま
でにわたって吸入口が設けられた場合には、ロータ14
が回転されて長径部15,16がベーン24A〜24C
を通過した直後に形成され始める室Ps内に極く初期か
ら冷媒を吸入することができ、又吸入容積が最大になる
までの同吸入口から冷媒は流れ込み容積が最大となった
とき、吸入口がベーンによって遮断される。
By the way, when the first and second suction ports 21.22 are provided immediately after the long diameter portion 15.16 (rear end E) of the rotor 14, the suction action in the working chamber is started and at the same time the suction from the suction ports is Regarding the working chamber when suction starts and the suction volume reaches its maximum, if the suction port is provided just before the position of the vane on the leading side in the rotational direction of the rotor, the suction volume in the working chamber will continue until the suction action in the working chamber ends. Inhalation is performed continuously from the suction port, and the rotor 1 also combines these advantages.
4 is rotated and the suction volume of the refrigerant sucked into the working chamber is maximized, and with respect to the working chamber, a suction port is provided extending from the position of the vane on the leading side in the rotational direction of the rotor to several long diameter parts of the rotor. If the rotor 14
is rotated so that the long diameter portions 15 and 16 become the vanes 24A to 24C.
The refrigerant can be sucked from the very beginning into the chamber Ps that begins to form immediately after passing through the suction port, and the refrigerant flows from the same suction port until the suction volume reaches the maximum. is blocked by the vane.

従って、作動室内に吸入される冷媒の吸入効率を一層高
めることができる。
Therefore, the suction efficiency of the refrigerant sucked into the working chamber can be further improved.

仮に、第一、第二吸入口21,22を作動室内に吸入さ
れる冷媒の吸入容積が最大となった状態において、同作
動室に関してロータ回転方向先行側のベーンの位置と同
側のロータ長径部との間に設けないとすると、室Ps内
には冷媒の吸込みが初期から行なわれなかったり、容積
が最大になる前に吸入口と遮断されたりして同室Psは
大きな負圧となるので、ロータに大きな負荷がかかるが
、前記実施例においてはこの欠陥を解消することができ
る。
If the suction volume of the refrigerant sucked into the working chamber through the first and second suction ports 21 and 22 is at its maximum, the long diameter of the rotor on the same side as the position of the vane on the leading side in the rotor rotational direction with respect to the working chamber. If no refrigerant is installed between the chamber Ps and the chamber Ps, the refrigerant may not be sucked into the chamber Ps from the beginning, or the suction port may be cut off before the volume reaches its maximum, resulting in a large negative pressure in the chamber Ps. , a large load is applied to the rotor, but this defect can be overcome in the embodiment described above.

吸入口は一方の端が長径部で始まり、もしくは第3図に
示すように長径部に円弧状の外周面15a、15aがあ
る場合には長径部の後端Eで始まり、他方の端は吸入容
積が最大となるときの作動室に関して、ロータ回転方向
先行側のベーンの直前の位置にあるようにすれば、吸入
効率を最大とすることができるが、このとき該吸入口は
連続した長穴でも断続した穴でもよい。
One end of the suction port begins at the major diameter section, or if the major diameter section has arcuate outer peripheral surfaces 15a, 15a as shown in FIG. 3, it begins at the rear end E of the major diameter section, and the other end The suction efficiency can be maximized by locating the working chamber at a position immediately in front of the vane on the leading side in the rotational direction of the rotor, when the volume is at its maximum. But it can also be an intermittent hole.

さらに前記実施例においてはベーンの幅よりも吸入口の
位置する幅の方を大きくしたので、吸入口の全てが一度
に塞がれることがなく、従って吸入流れが断続しないた
めスムーズとなる。
Furthermore, in the embodiment described above, the width of the suction port is made larger than the width of the vane, so that all of the suction ports are not blocked at once, and therefore, the suction flow is smooth without being interrupted.

なお、本発明は次のような実施例で具体化することも可
能である。
Note that the present invention can also be embodied in the following embodiments.

(イ)第4図に示すようにロータ14を角がまろやかな
三角筒状に形成して3つの長径部38〜40をシリンダ
室Cの内周面Caに気密的に対応させるとともに、各長
径部38〜40の直後にそれぞれ第一〜第三吸入口41
〜43を設け、一方シリンダ室C内周面Caには90度
ごとに4つのベーン24A〜24Dを設け、各ベーン2
4A〜24Dの直後にそれぞれ吐出口26A〜26Dを
設けること。
(a) As shown in FIG. 4, the rotor 14 is formed into a triangular cylinder shape with rounded corners so that the three major diameter portions 38 to 40 correspond to the inner circumferential surface Ca of the cylinder chamber C in an airtight manner, and each major diameter Immediately after portions 38 to 40 are first to third inlet ports 41, respectively.
43 are provided, and four vanes 24A to 24D are provided at 90 degree intervals on the inner circumferential surface Ca of the cylinder chamber C, and each vane 2
Discharge ports 26A to 26D are provided immediately after ports 4A to 24D, respectively.

又、ロータ14の形状を四角筒状以上の多角筒状に形成
すること。
Further, the shape of the rotor 14 is formed into a polygonal cylinder shape or more than a square cylinder shape.

この場合にも吸入口をロータ長径部と対応して設け、吐
出口及びベーンの個数をロータ長径部の数に1つを加え
た数以上とする。
In this case as well, the suction ports are provided corresponding to the long diameter portions of the rotor, and the number of discharge ports and vanes is set to be equal to or greater than the number of the long diameter portions of the rotor plus one.

(ロ)前記各実施例において、吸入口21,22゜41
〜430個数を増減したり、ロータ14の軸線方向へ等
間隔に適数個配列したり、ロータ14外周面に対する傾
斜角度をロータ14の回転方向後方へ向く斜状に形成し
たりすること。
(b) In each of the above embodiments, the inlet ports 21, 22°41
- 430 The number may be increased or decreased, an appropriate number may be arranged at equal intervals in the axial direction of the rotor 14, or the angle of inclination with respect to the outer peripheral surface of the rotor 14 may be formed in a diagonal shape facing rearward in the rotational direction of the rotor 14.

(ハ)前記実施例では車輌空気調節用の冷媒ガスの圧縮
機として述べたが、これ以外に各種ガス等の気体や油等
の液体を圧縮すること。
(c) In the above embodiment, the compressor was described as a compressor for refrigerant gas for vehicle air conditioning, but it can also compress gases such as various gases and liquids such as oil.

以上詳述したように、本発明は圧縮工程時に被圧縮流体
の一部が吸入室へ逆流するのを防止しかつロータ長径部
におけるシール性を良好にして、従来の圧縮機と比較し
て体積効率を向上することができる効果がある。
As described in detail above, the present invention prevents a part of the fluid to be compressed from flowing back into the suction chamber during the compression process, improves the sealing performance at the long diameter part of the rotor, and improves the volume compared to conventional compressors. This has the effect of improving efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す横断面図、第2図は第
1図のX−X線断面図、第3図はロータの長径部付近の
拡大断面図、第4図はそれぞれ本発明の別の実施例を示
す横断面図、第5図は従来の圧縮機の一例を示す断面図
である。 ハウジング・・・・・・1、側板・・・・・・8,9、
ロータ・・・・・・14、長径部・・・・・・15,1
6.38〜40、第一〜第三吸入口・・・・・・21.
41. 22. 42. 43、ベーン・・・・・・
24A〜24D、室・・・・・・Ps。 d0
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line X-X in FIG. 1, FIG. 3 is an enlarged sectional view of the vicinity of the long diameter portion of the rotor, and FIG. FIG. 5 is a cross-sectional view showing another embodiment of the present invention, and FIG. 5 is a cross-sectional view showing an example of a conventional compressor. Housing...1, Side plate...8,9,
Rotor...14, long diameter part...15,1
6.38-40, 1st-3rd inlet...21.
41. 22. 42. 43, Vane...
24A-24D, rooms...Ps. d0

Claims (1)

【特許請求の範囲】 1 内部に円筒状のシリンダ室を形成したハウジングに
はベーン及び゛吐出口を、同シリンダ室に内装されかつ
同室の内周面と気密的に対応する長径部を有するロータ
内には被圧縮流体の吸入室をそれぞれ設け、前記吐出口
及びベーンは、前記長径部の数に1を加えた個数以上と
し、かつ前記ロータの回転方向から吐出口、ベーンの順
に隣接配置するとともに、前記ロータの長径部をシリン
ダ室内周面の曲率とほぼ同じ曲率の円弧面に形成し、か
つ同ロータが回転して前記長径部のベーン通過後におけ
る該ベーンと長径部の前記円弧面の後端との間に位置す
るロータ部分に吸入口を設けたことを特徴とする圧縮機
。 2 吸入口は長径部のベーン通過後における該ベーンの
位置から数個の前記円弧面の後端までにわたって連続的
もしくは断続的に設けられたものである特許請求の範囲
第1項記載の圧縮機。 3 吸入口はロータの長径部の円弧面後端直後に設けら
れたものである特許請求の範囲第1項記載の圧縮機。 4 ベーンは120度ごとに合計3箇所に設けられ、ロ
ータは楕円筒状に形成され、吸入口は各長径部と対応す
る2箇所に設けられたものである特許請求の範囲第1項
記載の圧縮機。 5 ベーンは90度ごとに合計4箇所に設けられロータ
はほぼ三角筒状に形成され、吸入口は各長径部と対応す
る3箇所に設けられたものである特許請求の範囲第1項
記載の圧縮機。
[Scope of Claims] 1. A housing having a cylindrical cylinder chamber therein is provided with a vane and a discharge port, and a rotor is installed in the cylinder chamber and has a long diameter portion that airtightly corresponds to the inner circumferential surface of the chamber. Suction chambers for the fluid to be compressed are provided inside, and the number of the discharge ports and vanes is greater than or equal to the number of long diameter portions plus 1, and the discharge ports and vanes are arranged adjacent to each other in the order of rotation of the rotor. In addition, the long diameter portion of the rotor is formed into an arcuate surface having approximately the same curvature as the curvature of the circumferential surface of the cylinder chamber, and when the rotor rotates and the vane passes through the long diameter portion, the vane and the arcuate surface of the long diameter portion are A compressor characterized in that a suction port is provided in a rotor portion located between the rear end and the rotor. 2. The compressor according to claim 1, wherein the suction port is provided continuously or intermittently from the vane position after the vane passes through the long diameter portion to the rear end of several of the arcuate surfaces. . 3. The compressor according to claim 1, wherein the suction port is provided immediately after the rear end of the circular arc surface of the long diameter portion of the rotor. 4. The vanes are provided at a total of three locations every 120 degrees, the rotor is formed in an elliptical cylindrical shape, and the suction ports are provided at two locations corresponding to each major diameter portion. compressor. 5. The vanes are provided at a total of four locations every 90 degrees, the rotor is formed into a substantially triangular cylinder shape, and the suction ports are provided at three locations corresponding to each major diameter portion. compressor.
JP3839178A 1978-03-10 1978-04-01 compressor Expired JPS5950879B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3839178A JPS5950879B2 (en) 1978-04-01 1978-04-01 compressor
DE792909157A DE2909157C2 (en) 1978-03-10 1979-03-08 ROTATIONAL COMPRESSORS
US06/247,953 US4345886A (en) 1978-03-10 1981-03-26 Rotary compressor with vanes in the housing and suction through the rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3839178A JPS5950879B2 (en) 1978-04-01 1978-04-01 compressor

Publications (2)

Publication Number Publication Date
JPS54132809A JPS54132809A (en) 1979-10-16
JPS5950879B2 true JPS5950879B2 (en) 1984-12-11

Family

ID=12523974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3839178A Expired JPS5950879B2 (en) 1978-03-10 1978-04-01 compressor

Country Status (1)

Country Link
JP (1) JPS5950879B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179302A (en) * 1981-04-25 1982-11-04 Toyoda Autom Loom Works Ltd Positive displacement type fluid compressor

Also Published As

Publication number Publication date
JPS54132809A (en) 1979-10-16

Similar Documents

Publication Publication Date Title
WO2018126758A1 (en) Rotary compressor, refrigeration system and temperature adjustment apparatus
KR910002406B1 (en) Vane compressor
JPH0666271A (en) Scroll type compressor and discharge diffuser thereof
JP2009287512A (en) Refrigerant compressor and valve unit
AU2017203990B2 (en) Port plate of a flat sided liquid ring pump having a gas scavenge passage therein
CN100343518C (en) Multi-cylinder compressor
KR20130011864A (en) Scroll compressor
US4702684A (en) Slide vane type compressor with increased suction part-cross-sectional area
JPS5950879B2 (en) compressor
JPS61258989A (en) Scroll fluid machine
JPH0312672B2 (en)
JP6257806B2 (en) Multi-cylinder hermetic compressor
CN107100842A (en) The compression mechanism of compressor and the compressor with it
WO2020238825A1 (en) Scroll compressor
GB2425151A (en) Vacuum pump with passage in dividing plate and shaped flutter valve
CN112324512B (en) Symmetrical expansion machine
CN221074628U (en) Rotor type compressor and air conditioning system
JP7417142B2 (en) Rotary compressor and refrigeration equipment
CN112483394B (en) Expander and air conditioner
JPH0821390A (en) Two-air cylinder rotary compressor
JP2746664B2 (en) Rotary compressor
JPS647262Y2 (en)
CN114810590A (en) Rotor refrigeration compressor
JP2599737Y2 (en) Rotary compressor
CN115559910A (en) Pump body structure of single-suction compressor, compressor and air conditioner