[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS595078B2 - Flux for submerged arc welding - Google Patents

Flux for submerged arc welding

Info

Publication number
JPS595078B2
JPS595078B2 JP10310477A JP10310477A JPS595078B2 JP S595078 B2 JPS595078 B2 JP S595078B2 JP 10310477 A JP10310477 A JP 10310477A JP 10310477 A JP10310477 A JP 10310477A JP S595078 B2 JPS595078 B2 JP S595078B2
Authority
JP
Japan
Prior art keywords
flux
welding
amount
blowholes
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10310477A
Other languages
Japanese (ja)
Other versions
JPS5437045A (en
Inventor
直樹 奥田
利明 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10310477A priority Critical patent/JPS595078B2/en
Publication of JPS5437045A publication Critical patent/JPS5437045A/en
Publication of JPS595078B2 publication Critical patent/JPS595078B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】 本発明はサブマージアーク溶接用フラックスに関し、詳
細には、ペイント塗布鋼板をそのまま母材として用いて
溶接する場合でも、溶接金属部にピットやブローホール
等の欠陥を生じないように改良されたサブマーージアー
ク溶接用フラックスに関するものである。
[Detailed Description of the Invention] The present invention relates to a flux for submerged arc welding, and more particularly, even when welding a paint-coated steel plate as it is as a base material, defects such as pits and blowholes do not occur in the weld metal part. The present invention relates to a flux for submerged arc welding that has been improved as described above.

5 ペイント塗布鋼板をそのままの状態で溶接すると、
溶接金属部にピットやブローホール等の欠陥を生じるこ
とが知られている。
5 When welding paint-coated steel plates as they are,
It is known that defects such as pits and blowholes occur in the welded metal parts.

これは鋼板表面のペイントに含まれるブチラール樹脂や
エポキシ樹脂等の有機化合物が溶接熱によつて分解し、
Co、10H2、O2、炭化水素等のガスを発生し、こ
れが溶接金属内に混入して気泡や気孔を生じる為と考え
られている。従つてペイント塗布鋼板を溶接する場合は
、従来鋼板上のペイントを予め除去しておく方法が採用
されていたが、溶接部及びその近辺15のペイントをそ
の都度除去する作業は極めて煩雑で時間を要することで
あり、作業者に多大の労力を与えると共に溶接能率も著
しく低下する。この様なところから、ペイント塗布鋼板
をそのまま適用しても前述の如き欠陥を発生しないよう
、サブ20マージアーク溶接用フラックスの組成を改良
する方法が研究されつつある。この種の研究成果の1つ
としてフラックス組成中に含水鉱物を配合する方法が提
案され、溶接金属表面のピットを可及的に減少し得るこ
とが解明された。ところがこの技25術では、溶接金属
表面のピットを減少し得るのみで溶接金属内部に発生す
るブローホールについては満足な抑制効果が得られず、
溶接欠陥を完全に解消することはできなかつた。本発明
者等がこの原因を究明したところ、以下に示す様な事実
が確30認された。即ちフラックス中に含水鉱物を配合
すると、水が溶接熱によつて分解してガス化し溶融プー
ルの攪拌を助長し、ペイント熱分解ガスの逸散を加速す
る結果ピットやブローホールを減少できると考えられて
いる。ところがペイント分解ガ35ス及び水分解ガス中
には多量の水素ガスが含まれており、これは溶融金属に
対しては比較的高い溶解度を有しているから、溶融プー
ルからこの溶存水素を完全に逸散させることはできない
。ところが水素ガスは凝固状態の溶接金属中には殆んど
溶解しないから、溶融金属が凝固する過程で多量の水素
ガスを放出するが、ビード表面は内部より冷却速度が早
いから溶接金属内部の水素ガスは、内部にとじこめられ
ブローホールとなつて現われる。この様な傾向は水素ガ
スに限らず酸素ガスや窒素ガスにもみられ、結局ビード
表面にピツトが殆んどない場合でも溶接金属内部に多量
のブローホールを生じることが確かめられた。本発明者
等は前述の様な知見に基づき、溶融金属に対して溶解度
の小さい分解ガスはもとより、水素、酸素、窒素の如く
溶解度の高いガスをも溶融金属から可及的に逸散させる
ことができれば、溶接金属の表面及び内部に発生するピ
ツトやブローホールを完全に解消できると考え、当該目
的を満足し得る様なフラツクス組成を見出すべく鋭意研
究を重ねてきた。
This is because organic compounds such as butyral resin and epoxy resin contained in the paint on the surface of the steel plate are decomposed by the welding heat.
It is thought that this is because gases such as Co, 10H2, O2, and hydrocarbons are generated, which mix into the weld metal and cause bubbles and pores. Therefore, when welding paint-coated steel plates, conventional methods have been adopted in which the paint on the steel plates is removed in advance, but the work of removing the paint from the welding area and its vicinity 15 each time is extremely complicated and time-consuming. This requires a lot of effort for the operator and significantly reduces welding efficiency. From this point of view, research is being conducted on methods to improve the composition of flux for sub-20 merged arc welding so that the above-mentioned defects will not occur even if paint-coated steel sheets are applied as is. As one of the results of this type of research, a method of incorporating hydrated minerals into the flux composition was proposed, and it was found that it was possible to reduce pits on the surface of weld metal as much as possible. However, this Technique 25 can only reduce pits on the surface of the weld metal, but does not have a satisfactory effect of suppressing blowholes that occur inside the weld metal.
It was not possible to completely eliminate welding defects. When the present inventors investigated the cause of this, the following facts were confirmed. In other words, when water-containing minerals are mixed into the flux, the water decomposes and gasifies due to welding heat, promoting agitation of the molten pool, accelerating the dissipation of paint pyrolysis gas, and reducing pits and blowholes. It is being However, paint decomposition gas and water decomposition gas contain a large amount of hydrogen gas, which has a relatively high solubility in molten metal, so it is impossible to completely remove this dissolved hydrogen from the molten pool. cannot be dissipated. However, since hydrogen gas hardly dissolves in the solidified weld metal, a large amount of hydrogen gas is released during the solidification process of the molten metal, but since the bead surface cools faster than the inside, the hydrogen inside the weld metal Gas is trapped inside and appears as a blowhole. This tendency is observed not only in hydrogen gas but also in oxygen gas and nitrogen gas, and it was confirmed that even when there are almost no pits on the bead surface, a large number of blowholes are generated inside the weld metal. Based on the above-mentioned findings, the inventors of the present invention aimed to dissipate not only decomposed gases with low solubility in the molten metal but also gases with high solubility such as hydrogen, oxygen, and nitrogen from the molten metal as much as possible. We believe that if we can do this, we can completely eliminate the pits and blowholes that occur on the surface and inside of the weld metal, and we have been conducting extensive research to find a flux composition that can satisfy this objective.

その結果、フラツクス組成中に1酸化鉄と脱酸性元素を
配合することにより脱酸反応を活発化して溶融プールの
攪拌を助長し、2結晶水を含有せしめて分解ガスを発生
させることにより溶融プールの攪拌を一段と助長する他
、3炭素を配合することにより、溶融金属中の溶存水素
や溶存酸素を溶解度の乏しいCOやCHに変換して逸散
させる様にすれば、溶接金属の表面は Cもとより内部
にも溶接欠陥の殆んどない健全な継手が得られることを
見出し、舷に本発明を完成した。即ち本発明に係るサブ
マージアーク溶接用フラツクスの構成とは、組成中に重
量%で、酸化鉄: .′10〜20%、酸化チタン:3
0〜55%、脱酸性元素:10〜20%、炭素:0.1
〜0.4%、結晶水:0.1〜0.5%を含有してなる
ことを要旨とするものである。
As a result, by incorporating iron monoxide and deacidifying elements into the flux composition, the deoxidizing reaction is activated and the agitation of the molten pool is facilitated, and by containing dicrystal water and generating decomposition gas, the molten pool In addition to further promoting the stirring of 3 carbons, if dissolved hydrogen and dissolved oxygen in the molten metal are converted into CO and CH with poor solubility and dissipated, the surface of the weld metal will be C. They discovered that it was possible to obtain a sound joint with almost no internal welding defects, and completed the present invention. That is, the composition of the flux for submerged arc welding according to the present invention is as follows: Iron oxide: . '10-20%, titanium oxide: 3
0-55%, deoxidizing element: 10-20%, carbon: 0.1
~0.4%, crystal water: 0.1~0.5%.

以下本発明のフラツクスを構成する各成分の作 .こ用
及び配合量の限定理由を説明する。
The composition of each component constituting the flux of the present invention is as follows. The purpose and reason for limiting the amount to be added will be explained.

(1)酸化鉄及び脱酸性元素 酸化鉄と脱酸性元素とは、次式に示す如く溶接過程で活
発な脱酸反応を起こして溶融プールを攪拌し、ペイント
の熱分解によつて生じるガ 4スの溶融金属外への逸散
を加速する作用がある。
(1) Iron oxide and deacidifying elements Iron oxide and deacidifying elements cause active deoxidizing reactions during the welding process as shown in the following formula, agitating the molten pool, and causing gases produced by thermal decomposition of paint. This has the effect of accelerating the dissipation of gas out of the molten metal.

FeO+Mn:Fe+MnO2Fe2O3+3Si:2
Fe+3Si02Fe203+Mn→2Fe0+MnO
しかしながら酸化鉄の配合量が10%未満では上記脱酸
反応に伴なう攪拌効果が乏しくピツトやブローホールを
防止する効果が満足に発揮されず、一方20重量%を越
えるとスラグの粘性が低下してアークが不安定になり、
ビード形状の不ぞろいやスラグの噛込み等を生じる他、
スラグの剥離性が低下してくるので実用的でない。
FeO+Mn:Fe+MnO2Fe2O3+3Si:2
Fe+3Si02Fe203+Mn→2Fe0+MnO
However, if the amount of iron oxide added is less than 10%, the stirring effect accompanying the deoxidizing reaction described above is poor, and the effect of preventing pits and blowholes will not be satisfactorily exhibited, while if it exceeds 20% by weight, the viscosity of the slag will decrease. and the arc becomes unstable,
In addition to causing irregularities in the bead shape and biting of slag,
This is not practical because the slag removability deteriorates.

しかるに10〜20重量%の範囲の配合量を採用すれば
溶接作業性、ビード形状、スラグの剥離性等が優れると
共に溶接金属表面及び内部のピツトやブローホールを効
果的に抑制できる。尚脱酸性元素は酸化鉄の配合量に応
じてこれとほぼ等量使用するのが最も一般的であるが、
酸化鉄の種類或はペイント中に含まれる酸素量等によつ
ても最適配合量は若干相違する。従つて必ずしも酸化鉄
の配合量との関連において脱酸性元素の配合量を規定す
る訳にはいかないが、本発明者等が実験によつて確認し
たところでは、フラツクス全組成中10〜20重量%配
合するのが最適であつた。前述の様な効果を奏する酸化
鉄とはFeO及びFe2O3であり、一般的には溶接材
料として汎用されるイルミナイト、砂鉄、ミルスケール
、赤鉄鉱等の形態で使用される。
However, if a blending amount in the range of 10 to 20% by weight is adopted, welding workability, bead shape, slag removability, etc. are excellent, and pits and blowholes on the surface and inside of the weld metal can be effectively suppressed. It is most common to use approximately the same amount of deoxidizing elements depending on the amount of iron oxide mixed.
The optimum blending amount differs slightly depending on the type of iron oxide, the amount of oxygen contained in the paint, etc. Therefore, it is not necessarily possible to specify the amount of the deoxidizing element in relation to the amount of iron oxide, but the inventors have confirmed through experiments that it is 10 to 20% by weight of the total composition of the flux. It was optimal to mix them together. Iron oxides that exhibit the above-mentioned effects are FeO and Fe2O3, and are generally used in the form of illuminite, iron sand, mill scale, hematite, etc., which are commonly used as welding materials.

また脱酸性元素としては、酸素との結合力が鉄よりも大
きい元素であればどの様な金属元素でも使用できるが、
最も好ましいのはMn,Si,Al,Ti,Nb等であ
る。).)酸化チタン 本発明において酸化チタンはスラグ形成剤の主体となる
ものであり、スラグに適度の粘性を付与して適正なビー
ドを形成し且つスラグの剥離性を高める効果がある。
Also, as a deoxidizing element, any metallic element can be used as long as it has a stronger bonding force with oxygen than iron.
Most preferred are Mn, Si, Al, Ti, Nb, etc. ). ) Titanium oxide In the present invention, titanium oxide is the main component of the slag forming agent, and has the effect of imparting appropriate viscosity to the slag, forming appropriate beads, and improving the releasability of the slag.

その適正配合量はフラツクス全組成中30〜55重量?
となる範囲であり、この範囲外では何れも本発明の目的
を達成できない。即ち酸化チタンが30重量%未満では
スラグの粘性が低下してビード形状が乱れる他スラグの
剥離性が著しく低下する。一方55重量%を越えるとス
ラグの融点及び粘性が過大となつて流動性が乏しくなり
、ビードが拡がり難くなつてアンダーカツトやスラグの
巻込みを生じる傾向があり、更には溶融プールの攪拌効
果も乏しくなつてピツトやブローホールを発生し易くな
る。しかるに30〜55重量%の範囲であれば、スラグ
は適正な粘性、流動性及び剥離性を発揮すると共に、溶
融プールに対して十分な攪拌効果を付与できピツトやブ
ローホールを可及的に防止できる。この様な機能を奏す
る酸化チタンとしては勿論酸化チタン単品であつてもよ
いが、一般的には酸化チタンを多量に含有する鉱物例え
ばイルミナイト、ルチール、チタンスラグ、還元イルミ
ナイト等の形で使用される。(3)結晶水及び炭素 結晶水は先に述べた如く溶接熱によつて分解して水素及
び酸素を生じ、これらガスが溶融プールの攪拌を助長す
る結果、溶接金属部分に生じるピツトやブローホールを
可及的に防止できると考えられている。
Is the appropriate amount to be added in the total flux composition 30 to 55% by weight?
The object of the present invention cannot be achieved outside this range. That is, if the titanium oxide content is less than 30% by weight, the viscosity of the slag decreases, the bead shape becomes disordered, and the releasability of the slag significantly decreases. On the other hand, if it exceeds 55% by weight, the melting point and viscosity of the slag will become excessive, resulting in poor fluidity, making it difficult for the bead to spread, resulting in undercuts and slag entrainment, and furthermore, the stirring effect of the molten pool will be reduced. When it becomes scarce, pits and blowholes are more likely to occur. However, when the content is in the range of 30 to 55% by weight, the slag exhibits appropriate viscosity, fluidity, and peelability, and can provide a sufficient stirring effect to the molten pool to prevent pits and blowholes as much as possible. can. The titanium oxide that performs this function may of course be titanium oxide alone, but it is generally used in the form of minerals containing a large amount of titanium oxide, such as illuminite, rutile, titanium slag, reduced illuminite, etc. be done. (3) As mentioned earlier, crystal water and carbon crystal water are decomposed by welding heat to produce hydrogen and oxygen, and as a result of these gases promoting agitation of the molten pool, pits and blowholes occur in the weld metal part. It is believed that this can be prevented as much as possible.

しかしながら本発明者等がフラツクスに対する水の添加
量とピツト発生個数及びブローホール発生率の関係を実
験によつて確かめたところ第1図の如き結果を得た。即
ち第1図からも明白な様にH2Oを0.3重量%以上添
加するとピツトは殆んど完全に防止されるが、ブローホ
ールはH2Oの添加量を増加すればする程逆に増加して
いる。この理由は先に説明した如く分解ガス中のH2,
O2等が溶融金属に対してよく溶解し凝固した溶接金属
に対して溶解し難いことに起因すると考えられる。とこ
ろがフラツクス中に炭素を配合しておくと、炭素がこの
水素や酸素と反応して溶融金属に溶解し難いCOや炭化
水素に変換され、溶融金属からすみやかに逸散する。こ
れらの関係を初めて明確にした本発明者等の実験結果を
第2図に示す。
However, when the present inventors conducted an experiment to confirm the relationship between the amount of water added to the flux, the number of pits, and the rate of occurrence of blowholes, the results shown in FIG. 1 were obtained. That is, as is clear from Fig. 1, pitting is almost completely prevented when H2O is added in an amount of 0.3% by weight or more, but blowholes increase as the amount of H2O added increases. There is. The reason for this is that H2 in the cracked gas, as explained earlier,
This is thought to be due to the fact that O2 and the like dissolve well in molten metal but are difficult to dissolve in solidified weld metal. However, when carbon is mixed into the flux, the carbon reacts with the hydrogen and oxygen and is converted into CO and hydrocarbons that are difficult to dissolve in the molten metal, and quickly escape from the molten metal. FIG. 2 shows the experimental results of the present inventors who clarified these relationships for the first time.

即ち第2図はフラツクス中の結晶水及び炭素の量とブロ
ーホール発生率の関係を示すグラフであり、図中○印は
ブローホール発生率が10%未満、△印は同発生率が1
0〜15%、X印は同発生率が15%を越えたものを示
している。第2図の結果を解析すると、炭素量が0.1
%未満ではたとえ結晶水の量を増加してもブローホール
発生率を抑制することができず、また炭素量が0.4%
を越えると結晶水の量を如何に増減変更してもブローホ
ールを抑制することはできない。また結晶水が0.1%
未満では炭素量を増減変更してもブローホールを抑制し
難くなる他ピツトの発生が著しくなり、一方結晶水が0
.5%を越えるとピツトは効果的に防止し得るものの、
炭素量を如何に増減変更してもブローホールを抑制でき
なくなる。即ち第2呻結果から明白な様にピツト及びブ
ローホールの及方を効果的に抑制する為には、結晶永の
添加量を0.1〜0.5重量%、炭素の添加量を0.1
〜0.4重量%(特に好ましくは0.2〜0.4重量%
)の範囲内に設定すべきである。又、この範囲内で更に
好適な範囲は、炭素含有量を〔C〕%、結晶水含有量を
〔H2O〕%としたとき、の関係を満たす場合であり、
この条件を満足するときはブローホールをもほぼ完全に
しかも確実に防止できることが確認された。
That is, Figure 2 is a graph showing the relationship between the amount of crystal water and carbon in the flux and the blowhole generation rate.
0 to 15%, and an X indicates the incidence rate exceeds 15%. Analysis of the results in Figure 2 shows that the carbon content is 0.1
If the amount of carbon is less than 0.4%, the blowhole generation rate cannot be suppressed even if the amount of crystallized water is increased.
If it exceeds this amount, blowholes cannot be suppressed no matter how much the amount of crystallization water is increased or decreased. Also, crystal water is 0.1%
If the carbon content is increased or decreased, it will be difficult to suppress blowholes, and the occurrence of pits will become significant.
.. Although pitting can be effectively prevented if it exceeds 5%,
No matter how much the carbon content is increased or decreased, blowholes cannot be suppressed. That is, as is clear from the second result, in order to effectively suppress the extent of pits and blowholes, the amount of crystallization added should be 0.1 to 0.5% by weight, and the amount of carbon added should be 0.1 to 0.5% by weight. 1
~0.4% by weight (particularly preferably 0.2-0.4% by weight)
) should be set within the range. Further, a more preferable range within this range is a case where the following relationship is satisfied when the carbon content is [C]% and the crystal water content is [H2O]%,
It has been confirmed that when this condition is satisfied, blowholes can be almost completely and reliably prevented.

この様な添加効果を発揮する結晶水は、溶接原料として
汎用されている各種含水鉱物例えばタルク(結晶水を約
5%含有)やマイカ(結晶水を約6%含有)等の形で添
加すればよく、また炭素はカーボンブラツクや木炭粉等
の他、MnやSi等結合した炭素を使用してもよい。
Crystallization water that exhibits such an additive effect can be added in the form of various hydrated minerals commonly used as welding raw materials, such as talc (containing about 5% crystallization water) and mica (containing about 6% crystallization water). As the carbon, carbon black, charcoal powder, etc., or carbon bonded with Mn, Si, etc. may be used.

ところでフラツクスには調合方法によつて溶融型フラツ
クスと焼結型フラツクスに大別されるが、本発明ではフ
ラツクス組成中に規定量の結晶水を含ませるところに一
つの特徴があるから、原料調合過程で結晶水を放出し難
い焼体型フラツクスとして使用するのがよい。本発明の
サブマージアーク溶接用フラツクスは以上の如き組成か
ら構成されているが、要は組成中に適量の酸化鉄及び脱
酸性元素、結晶水、並びに炭素を配合することにより、
ペイント塗布鋼板をそのまま母材として用いた場合でも
溶接金属の表面はもとよりその内部に発生するピツトや
ブローホールをほぼ完全に解消し得ることになり、内外
面共美麗で健全な継手が得られることになつたものであ
る。
Incidentally, fluxes are roughly classified into molten fluxes and sintered fluxes depending on the method of preparation, but one of the characteristics of the present invention is that a specified amount of crystal water is included in the flux composition. It is best to use it as a sintered flux that does not easily release crystal water during the process. The flux for submerged arc welding of the present invention has the above composition, but the key point is that by incorporating appropriate amounts of iron oxide, deoxidizing elements, crystal water, and carbon into the composition,
Even if a paint-coated steel plate is used as the base material, it is possible to almost completely eliminate pits and blowholes that occur not only on the surface of the weld metal but also inside it, resulting in a beautiful and healthy joint on both the inside and outside surfaces. It has become.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例 第1表に示す配合例でサブマージアーク溶接用フラツク
スを調整し(固着剤として乾燥量約3%の水ガラス使用
)、このフラツクスA−Iを用いて溶接試験を行なつた
EXAMPLE A flux for submerged arc welding was prepared according to the formulation example shown in Table 1 (water glass with a dry content of about 3% was used as a fixing agent), and a welding test was conducted using this flux A-I.

但し溶接条件は下記の通りとした。溶接ワイヤ US−
36(高Mnワイヤ)1.61W!φ母材軟鋼(SS4
l)厚さ12顛X幅100×長さ1000ウオツシユプ
ライマ一20μ 全面 塗布 溶接姿勢 水平すみ肉溶接 溶接条件 260A−32V−40cTL/Mm結果を
第2表に一括して示す。
However, the welding conditions were as follows. Welding wire US-
36 (high Mn wire) 1.61W! φ Base material mild steel (SS4
l) Thickness: 12 mm x Width: 100 x Length: 1000 Wash primer - 20μ Full surface coating Welding position Horizontal fillet welding Welding conditions 260A-32V-40cTL/Mm The results are shown in Table 2.

第1表のフラツクス組成及び第2表の溶接結果を総合す
ると下記の如く考察される。
Combining the flux composition in Table 1 and the welding results in Table 2, the following can be considered.

(イ)フラツクスA及びBは炭素の配合量が規定範囲未
満である他はすべて本発明の範囲内とした比較例である
が、ブローホールの発生が著しく継手欠陥を防止できな
い。
(a) Fluxes A and B are comparative examples in which all of the fluxes A and B are within the scope of the present invention except that the amount of carbon blended is less than the specified range, but blowholes occur significantly and joint defects cannot be prevented.

(ロ)フラツクスC,D及びEは炭素、結晶水の配合量
は勿論、すべて本発明の規定範囲に入る実施例であるが
、ピツト、ブローホール共極めて少なく溶接作業性も優
れると共に、ビードも美麗で継手欠陥もみられない。
(b) Fluxes C, D, and E are examples in which the blended amounts of carbon and crystal water are all within the specified range of the present invention, but they have very few pits and blowholes, and have excellent welding workability, and have no beads. It is beautiful and there are no joint defects.

(ハ)フラツクスFは酸化鉄を規定範囲よりも多量配合
した比較例であるが、ビード外観、スラグの剥離性、ア
ンダーカツト等に於て著しく劣り使用に耐えない。
(c) Flux F is a comparative example containing iron oxide in a larger amount than the specified range, but it is significantly inferior in bead appearance, slag removability, undercut, etc., and cannot withstand use.

(ニ)フラツクスG,H及びIは何れも本発明の規定範
囲内で酸化鉄とTiO2の配合比を変えたものであるが
、酸化鉄の配合量でみた場合約13%程度(フラツクス
H)のときに最良の結果が得られた。
(d) Fluxes G, H, and I all have different blending ratios of iron oxide and TiO2 within the specified range of the present invention, but the blended amount of iron oxide is about 13% (Flux H) The best results were obtained when

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフラツクス中の結晶水含有量とピツト発生個数
及びブローホール発生率の関係を示すグラフ、第2図は
フラツクス中の結晶水及び炭素の含有量とプロ・−ホー
ル発生率の関係を示すグラフである。
Figure 1 is a graph showing the relationship between the crystallization water content in the flux, the number of pits, and the blowhole generation rate, and Figure 2 is the graph showing the relationship between the crystallization water and carbon content in the flux and the prohole generation rate. This is a graph showing.

Claims (1)

【特許請求の範囲】 1 酸化鉄:10〜20%、酸化チタン:30〜55%
、脱酸性元素:10〜20%、炭素:0.1〜0.4%
、結晶水:0.1〜0.5%を含有してなることを特徴
とするサブマージアーク溶接用フラックス。 2 結晶水はタルク、マイカ等の含水鉱物として配合さ
れるものである特許請求の範囲第1項記載のフラックス
。 3 炭素は0.2%以上である特許請求の範囲第1又は
2項記載のフラックス。 4 炭素含有量を〔C〕%、結晶水含有量を〔H_2O
〕%とした時、−0.5〔H_2O〕+0.3≦〔C〕
≦−0.5〔H_2O〕+0.5なる式を満足するもの
である特許請求の範囲第1、2又は3項記載のフラック
ス。 5 フラックスが焼結型である特許請求の範囲第1〜3
又は4項記載のフラックス。
[Claims] 1. Iron oxide: 10-20%, titanium oxide: 30-55%
, deoxidizing element: 10-20%, carbon: 0.1-0.4%
A flux for submerged arc welding, characterized in that it contains 0.1 to 0.5% of crystallized water. 2. The flux according to claim 1, wherein the crystal water is blended as a hydrous mineral such as talc or mica. 3. The flux according to claim 1 or 2, wherein the carbon content is 0.2% or more. 4 Carbon content is [C]%, crystal water content is [H_2O
]%, -0.5[H_2O]+0.3≦[C]
The flux according to claim 1, 2 or 3, which satisfies the formula: ≦-0.5[H_2O]+0.5. 5 Claims 1 to 3 in which the flux is of a sintered type
Or the flux described in Section 4.
JP10310477A 1977-08-27 1977-08-27 Flux for submerged arc welding Expired JPS595078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10310477A JPS595078B2 (en) 1977-08-27 1977-08-27 Flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10310477A JPS595078B2 (en) 1977-08-27 1977-08-27 Flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPS5437045A JPS5437045A (en) 1979-03-19
JPS595078B2 true JPS595078B2 (en) 1984-02-02

Family

ID=14345306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10310477A Expired JPS595078B2 (en) 1977-08-27 1977-08-27 Flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS595078B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6104146B2 (en) * 2013-12-13 2017-03-29 株式会社神戸製鋼所 Submerged arc welding flux and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5437045A (en) 1979-03-19

Similar Documents

Publication Publication Date Title
JPS5915756B2 (en) Flux-cored wire for gas shield arc welding
US1596888A (en) Process and composition of matter for increasing the fluidity of molten metal
CN109604868B (en) TIG welding method for improving welding penetration and preventing back oxidation
CN113695788B (en) Amorphous state smelting flux and preparation method and application thereof
US1942364A (en) Welding electrode
JP2500020B2 (en) Basic flux-cored wire for gas shield arc welding
WO2023134152A1 (en) Flux-coated welding wire suitable for backing welding of nickel-saving austenitic stainless steel, and preparation method therefor
US3571553A (en) Band electrode submerged arc welding of chromium stainless steel and a material used in said welding
JPS595078B2 (en) Flux for submerged arc welding
JP2006272351A (en) Shielding gas for mag welding of galvanized sheet steel, and welding method using the same
US3184345A (en) Submerged arc welding composition
JP3686545B2 (en) A groove filler for simple single-sided submerged arc welding and a welding method using the same.
JP2011156588A (en) Coated arc-welding electrode for ductile cast iron
JPH0335033B2 (en)
JP3765761B2 (en) Bond flux for submerged arc welding
JP2001205483A (en) Flux-containing wire for gas shield arc welding
US3200016A (en) Submerged-melt welding composition
CN112809244A (en) High-toughness high-efficiency welding rod
JPH03294092A (en) Flux cored wire electrode for gas shielded arc welding
SU1400833A1 (en) Powder wire
JP6152316B2 (en) Flux for single-sided submerged arc welding
JPH11151592A (en) Metal based flux cored wire for gas shielded arc welding and one side welding method
JP3093416B2 (en) Flux-cored wire for high hydrogen fillet welding
JPH02235597A (en) Wire for gas shielded arc welding of galvanized steel sheet
CN118720522A (en) Preparation method and application of flux-cored wire for large heat input thick ship plate steel double-wire electro-gas welding