[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5949301B2 - Ferritic stainless steel with excellent workability - Google Patents

Ferritic stainless steel with excellent workability

Info

Publication number
JPS5949301B2
JPS5949301B2 JP10063075A JP10063075A JPS5949301B2 JP S5949301 B2 JPS5949301 B2 JP S5949301B2 JP 10063075 A JP10063075 A JP 10063075A JP 10063075 A JP10063075 A JP 10063075A JP S5949301 B2 JPS5949301 B2 JP S5949301B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
steel
secondary workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10063075A
Other languages
Japanese (ja)
Other versions
JPS5224913A (en
Inventor
精 沢谷
弘 西村
繁 南野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10063075A priority Critical patent/JPS5949301B2/en
Publication of JPS5224913A publication Critical patent/JPS5224913A/en
Publication of JPS5949301B2 publication Critical patent/JPS5949301B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明は延性、リジング性及びプレス成形後の二次加工
性に優れたフェライト系ステンレス鋼に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ferritic stainless steel that has excellent ductility, ridging properties, and secondary workability after press forming.

ここで言う、二次加工とは、フェライト系ステンレス鋼
板を一次加工として絞り、張出し、曲げ、圧延等の加工
を行った後に、一次加工の主歪方向と異なる方向へ、主
歪を与える二次の加工を行う場合を言う。
The term "secondary processing" used here refers to the secondary processing that applies principal strain in a direction different from the principal strain direction of the primary processing, after the ferritic stainless steel sheet has been subjected to processing such as drawing, stretching, bending, and rolling as primary processing. This refers to cases where processing is performed.

例えば、■ 絞シ加工により縮みフランジ加工を受けた
フランジ部外周を、折曲げ又はカーリングする場合の折
曲げ、カーリング加工。
For example, ■ bending or curling when bending or curling the outer periphery of a flange that has undergone shrinkage flange processing by drawing.

■ 絞シ加工された容器の口部を押拡げ加工する場合の
押拡げ加工。
■ Expanding process when expanding the mouth of a container that has been drawn.

■ 絞シ加工された容器の底部にバーリング加工を行う
ときのバーリング加工である。
■ This is a burring process when burring is performed on the bottom of a container that has been drawn.

フェライト系ステンレス鋼は、オーステナイト系ステン
レス鋼に比べ、安価で、成形精度が良く応力腐食割れが
ない等の理由で広く厨房用品、自動車用部品などに使用
されている。
Ferritic stainless steel is widely used in kitchen utensils, automobile parts, etc. because it is cheaper than austenitic stainless steel, has good forming precision, and is free from stress corrosion cracking.

しかし、オーステナイト系ステンレス鋼や普通鋼に比べ
降伏点が高く伸びが低い。
However, it has a higher yield point and lower elongation than austenitic stainless steel or ordinary steel.

また、リジングが発生しやすく、二次加工性が劣る等の
理由でフェライト系ステンレス鋼が使用できる分野にお
いても高価なオーステナイト系ステンレス鋼が使用され
ている。一方、世界的にNi資源が少ないという問題か
ら、加工性の優れたフェライト系ステンレス鋼の出現が
強く要望されている。
Further, expensive austenitic stainless steel is used even in fields where ferritic stainless steel can be used because it is prone to ridging and has poor secondary workability. On the other hand, due to the problem of limited Ni resources worldwide, there is a strong demand for ferritic stainless steel with excellent workability.

フェライト系ステンレス鋼の延性改善の方法として極低
炭素化やTiのような素窒化物生成元素を添加する等の
方法があるが、前者はりジンク性が著しく劣化するし、
後者は二次加工性が劣化する等の問題が生じる。
There are methods to improve the ductility of ferritic stainless steel, such as making it extremely low in carbon and adding nitride-forming elements such as Ti, but the former significantly deteriorates the zinc properties.
The latter causes problems such as deterioration of secondary workability.

またフェライト系ステンレス鋼のりジンク対策として低
温鋳造法、低温熱延法、変態点を利用しての焼鈍・冷延
等多くの方法があるが、いずれも通常の製造工程以外に
何らかの手段を講じるか、製造工程の変更を行なわなけ
ればならず、このため新技術の開発工程上の問題点解決
等の費用が増大し最終的には製品のコストアップとなっ
て現われる。
In addition, there are many methods to counteract zinc in ferritic stainless steel, such as low-temperature casting, low-temperature hot-rolling, annealing and cold-rolling using the transformation point, but all of them require some method other than the normal manufacturing process. , it is necessary to change the manufacturing process, which increases the cost of solving problems in the process of developing new technology, which ultimately results in an increase in the cost of the product.

一方、フェライト系ステンレス鋼板を用いて厨房用品や
自動車用品を加工する場合、プレス成形後に縁を折り曲
げる等の二次加工を行うことが多いが、この二次加工時
にしばしば割れを生じることがある。
On the other hand, when ferritic stainless steel sheets are used to process kitchen items or automotive items, secondary processing such as bending the edges is often performed after press forming, but cracks often occur during this secondary processing.

この二次加工性改善の方法として、介在物や析出物を減
少させる、結晶粒を大きくする、伸びを大きくする等の
方法がある。
As methods for improving this secondary workability, there are methods such as reducing inclusions and precipitates, increasing crystal grain size, and increasing elongation.

たとえばフエライト系ステンレス鋼を極低炭素化すれば
、結晶粒が粗大化し伸びが向上するため二次加工性が非
常に良好となるが、りジンク性が劣化する等他の問題が
生じて、加工用に適した性質を必らずしも満足しなくな
る。
For example, if ferritic stainless steel is made to have extremely low carbon, its crystal grains will become coarser and its elongation will improve, making it very suitable for secondary workability. The characteristics that are suitable for the purpose are not necessarily satisfied.

このような問題を解決するため本発明者らは多くの実験
を試みた。
In order to solve such problems, the present inventors attempted many experiments.

その結果、前述の如き各特性の優れたステンレス鋼を得
るためには合金組成を最適範囲に規制しなければならな
いとの結論に達した。そこで個々の合金元素の及ぼす影
響は勿論のこと複合した場合の相乗効果をも見極め、延
性、りジンク性及びプレス成形後の二次加工性にすぐれ
たフエライト系ステンレス鋼を開発したもので、本発明
の要旨とするところはC:0.03%以上、0.08%
以下、Sl : 0.4%以下、Mn: 0.5%以下
、P:0.03チ以下、s:0.00s%以下、Ni:
0.3%以下、Cr:15〜20チ、At二N含有藪
の2倍以上0.2%以下、N:0.015多未満の成分
範囲からなるプレス成形後の二次加工性に優れたフエラ
イト系ステンレス鋼にある。次に合金成分を限定した理
由を以下に説明する。C量を減少せしめれば、伸び及び
二次加工性は良くなるが、結晶粒の粗大化に伴なって加
工後の肌あれがひどくなる。また、C量が0.03%未
満ではりジンク性が急激に劣化するのでCの下限を0.
03%とした。一方、C量を増大せしめれば、伸びの劣
化、引張強さの増大、二次加工性の劣化、及び硬さが増
大するのでCの上限を0.08%とした。Siは降伏点
、引張強さを著しく増大し、靭性および延性を損うので
低いほうが望ましい。
As a result, it was concluded that in order to obtain stainless steel with excellent properties as described above, the alloy composition must be controlled within an optimal range. Therefore, we investigated not only the influence of individual alloying elements but also the synergistic effect when combined, and developed a ferritic stainless steel with excellent ductility, rezinc resistance, and secondary workability after press forming. The gist of the invention is C: 0.03% or more, 0.08%
Hereinafter, Sl: 0.4% or less, Mn: 0.5% or less, P: 0.03% or less, s: 0.00s% or less, Ni:
Excellent secondary workability after press forming, consisting of an ingredient range of 0.3% or less, Cr: 15-20%, At2N-containing bush, twice or more and 0.2% or less, and N: less than 0.015%. Made of ferritic stainless steel. Next, the reason for limiting the alloy components will be explained below. If the amount of C is reduced, elongation and secondary workability will improve, but as the crystal grains become coarser, roughness will become worse after processing. In addition, if the amount of C is less than 0.03%, the peeling and zinc properties will deteriorate rapidly, so the lower limit of C should be set at 0.03%.
03%. On the other hand, if the amount of C is increased, elongation deteriorates, tensile strength increases, secondary workability deteriorates, and hardness increases, so the upper limit of C was set at 0.08%. Since Si significantly increases the yield point and tensile strength and impairs toughness and ductility, it is desirable to have a low Si content.

また低Si化は熱延板焼鈍組織の結晶粒を微細化し、製
品のりジンク性を大きく改善させる。また二次加工性エ
リクセン値もSiの低い方がよいのでSiは0.4チ以
下とした。Mnは引張強さの増大、硬さの増大、伸びの
低下および塑性ひずみ比(r値)を低下させるので0.
5チ以下とした。
In addition, the reduction in Si makes the crystal grains of the annealed structure of the hot rolled sheet finer, and greatly improves the adhesive zinc properties of the product. In addition, since it is better for the Erichsen value of secondary workability to be low, the Si content was set to 0.4 inches or less. Mn increases tensile strength, increases hardness, decreases elongation, and decreases plastic strain ratio (r value), so 0.
It was set to be 5 inches or less.

Pは有害元素であり、靭性、熱間加工性を阻害し、また
二次加工性も劣化させるので低い方がよく、0.03多
以下とした。
Since P is a harmful element and inhibits toughness and hot workability, and also deteriorates secondary workability, it is better to have a lower value, and it is set to 0.03 or less.

SぱPと同様有害元素であり、熱間加工性、耐食性を劣
化させる。
Like SP, it is a harmful element and deteriorates hot workability and corrosion resistance.

また、A系介在物を生成しやすく、曲げ性及び二次加工
性を著しく劣化させるので低い方が望ましい。従ってS
は0.008%以下とした。Niは引張強さを増大させ
る。
Further, since A-based inclusions are likely to be generated and the bendability and secondary workability are significantly deteriorated, a lower value is desirable. Therefore, S
was set to 0.008% or less. Ni increases tensile strength.

また熱延板焼鈍組織の結晶粒を阻大化し、製品のりジン
ク性を劣化させるので0.3%以下とした。Crは耐酸
化性及び耐食性にきわめて有効な元素であるが、多量に
添加すると伸び及び衝撃値の劣化が著しいので15〜2
0チとした。
Further, since it enlarges the crystal grains of the annealed structure of the hot rolled sheet and deteriorates the adhesive zinc properties of the product, it is set at 0.3% or less. Cr is an extremely effective element for oxidation resistance and corrosion resistance, but if added in large amounts, the elongation and impact value deteriorate significantly, so it is recommended to add 15 to 2
It was set to 0.

Atは耐酸化性を改善し、焼入硬化性を押える。At improves oxidation resistance and suppresses quench hardenability.

At量をN量の重量化にして2倍以上添加することによ
り、降伏点の減少、伸びの増犬お゛よびr値の向上が計
られ、深絞り性が向上する。またAtは結晶粒の微細化
及び耐銹性に効果があり、りジンク性を向上させる。し
かし、多量に添加すると二次加工性が劣化する。従って
Atの範囲をAt7へとして2以上0.2以下とした。
Nはオーステナイト生成元素であり、Cと同じ作用を有
するので延性向上のためにも低い方が望甘しい。
By adding at least twice the amount of At as the amount of N, the yield point is reduced, the elongation is increased, and the r value is improved, and deep drawability is improved. Furthermore, At is effective in refining crystal grains and rust resistance, and improves zinc resistance. However, when added in large amounts, secondary processability deteriorates. Therefore, the range of At was set to At7, which was 2 or more and 0.2 or less.
Since N is an austenite-forming element and has the same effect as C, a lower content is preferable in order to improve ductility.

本発明鋼はAtを添加しているため、アルミ窒化物が析
出し、二次加工性劣化の原因の一つとなるので、低い方
が望ましい。またNは熱延板焼鈍組織の結晶粒を粗大化
するので低い方が製品のりジンク性が向上する。従って
Nは0.015係未満とした。以下に実施例をあげて本
発明を詳細に説明する。
Since the steel of the present invention has At added, aluminum nitride precipitates, which is one of the causes of deterioration in secondary workability, so a lower value is desirable. Further, since N coarsens the crystal grains of the annealed structure of the hot rolled sheet, the lower the N content, the better the product's adhesive zinc resistance. Therefore, N was set to be less than 0.015. The present invention will be explained in detail by giving examples below.

第1表に示す成分のフエライト系ステンレス鋼を溶製し
、公知の熱間圧延、冷間圧延および焼鈍により0.7m
厚の鋼板を製造し、材質特性を測定した。その結果を、
本発明の優れた等性である延性、りジンク性、二次加工
性についてわかり易く記号で表わしたものを同じく第1
表に示す。記号は優劣によシ3つに分類し、その範囲は
多くの研究結果より各特性に応じて第1表のようにしだ
。○印はその特性が優れていることを示す。延性はJI
Sl3号B引張試験片におけるし方向の伸びで表わし、
りジンク性はJISS号引張試験片を20%引張り、表
面に現われるりジンクを粗さ計にて測定した値で表わし
た。また、二次加工性を評価する方法として0.7tr
an厚の製品を圧下率にて30%冷間圧延した後、曲げ
稜線が圧延方向と平行(通常C方向曲げという)になる
ように、密着曲げしたときの割れの全長を稜線の長さに
対する割合で表わした。
Ferritic stainless steel having the components shown in Table 1 is melted, and 0.7 m
A thick steel plate was manufactured and the material properties were measured. The result is
The excellent properties of the present invention, such as ductility, rezinc resistance, and secondary workability, are expressed in easy-to-understand symbols as shown in
Shown in the table. The symbols are classified into three categories, superior or inferior, and the range is determined according to each characteristic based on the results of many studies, as shown in Table 1. The mark ○ indicates that the characteristics are excellent. Ductility is JI
Expressed as the elongation in the direction of the Sl3 B tensile test piece,
The zinc resistance was expressed as the value of a JISS No. tensile test piece, which was pulled by 20%, and the amount of zinc appearing on the surface was measured using a roughness meter. In addition, as a method to evaluate secondary workability, 0.7tr
After cold rolling a product with an thickness of 30% at a rolling reduction rate, the total length of the crack when closely bent so that the bending ridgeline is parallel to the rolling direction (usually referred to as C direction bending) is calculated as the total length of the crack relative to the length of the ridgeline. Expressed as a percentage.

本発明鋼1、2、3及び4は三者の特性がすべて優れて
いることが良くわかる。
It is clearly seen that all three properties of Invention Steels 1, 2, 3, and 4 are excellent.

比較鋼5から11は三者の特性のうち、いずれか1つは
良いが他が劣る。
Comparative steels 5 to 11 are good in one of the three properties but inferior in the others.

又は三者とも劣る等、いずれにしてもすべての特性が優
れているものではない。フエライトステンレス鋼の代表
であるSUS43Oを最下段に示すが、二次加工性は良
いが延性、りジンク性は本発明鋼には及ばない。
In any case, not all characteristics are excellent, such as being inferior to all three. SUS43O, which is a representative ferrite stainless steel, is shown at the bottom, and although it has good secondary workability, its ductility and zinc resistance are not as good as the steel of the present invention.

しかし、通常SUS43OにおいてMn− Sulph
ideやMn− Silicate等の介在物が存在す
るものは二次加工性が劣る。
However, normally in SUS43O, Mn-Sulph
Those containing inclusions such as ide and Mn-Silicate have poor secondary processability.

第1表における化学成分の影響を詳細に説明する。The influence of the chemical components in Table 1 will be explained in detail.

Cの影響としては、比較鋼5のような低C材は延性及び
二次加工性には優れているが、りジンク性が著しく悪い
As for the influence of C, a low C material such as Comparative Steel 5 has excellent ductility and secondary workability, but has extremely poor rezinc resistance.

比較鋼6は高C材であり、りジンク性は優れているが二
次加工性は悪い。本発明鋼1、2、3及び4のCは、0
.03〜0.08%の範囲にあり、延性、りジンク性及
び二次加工性のいずれの特性も優れている。Sは二次加
工性に及ぼす影響が大きく、比較鋼9とSUS43Oの
12とはS以外の成分はほぼ同じであるが、比較鋼9は
Sが高いため二次加工性が著しく悪い。
Comparative Steel 6 is a high C material and has excellent zinc resistance but poor secondary workability. C of the invention steels 1, 2, 3 and 4 is 0
.. It is in the range of 0.03 to 0.08%, and has excellent properties in terms of ductility, rezincability, and secondary workability. S has a large effect on secondary workability, and comparative steel 9 and SUS43O 12 are almost the same in components other than S, but comparative steel 9 has a high S content and therefore has extremely poor secondary workability.

本発明鋼のSはいずれも0.00sチ以下であり、二次
加工性が優れている。二次加工性に及ぼすS含有量の影
響についてさらに詳述する。C:0.050%,Si:
0.30z、Mn:0,40%、P:0.025%、N
i:0.10%、Cr:16.50%、Az:0.07
0%、N:0.0080チ、At/N: 8.75の成
分からなるフエライト系ステンレス鋼ヲぺーストシて,
Sf:0.002〜0.015%まで変化させた鋼を真
空溶解し、公知の熱間圧延、冷間圧延および焼鈍により
0.7tran厚の鋼板を製造し、二次加工性を調べた
。その結果第2図に示すように、S含有量が0.00s
%以下では30%圧延加工後のC方向密着曲げの割れが
10係以下であり、S含有量が0.00s%を超えると
割れが急激に増加する。本発明者は、厨房用品や自動車
用部品を加工する場合、プレス成形後の二次加工時に割
れが発生しないためには、この30チ圧延加工後のC方
向密着曲げの割れが10チ以下であることが必要なこと
を明らかにしている。したがって、本発明鋼におけるS
含有量は0.00s%以下であることが必要である。A
tの影響を本発明鋼2と比較鋼10又は従来鋼12と比
較すると本発明鋼は延性、りジンク性共に比較鋼及び従
来鋼よりも優れている。AtはNと結合してA7Nとな
り、そのため鋼中の固溶Nが減少し、延性が向上する。
All of the steels of the present invention have an S value of 0.00 s or less, and have excellent secondary workability. The influence of S content on secondary processability will be explained in more detail. C: 0.050%, Si:
0.30z, Mn: 0.40%, P: 0.025%, N
i: 0.10%, Cr: 16.50%, Az: 0.07
Ferritic stainless steel paste consisting of 0%, N: 0.0080, At/N: 8.75,
Steels with Sf: 0.002 to 0.015% were melted in vacuum, and steel plates with a thickness of 0.7 tran were manufactured by known hot rolling, cold rolling and annealing, and secondary workability was investigated. As a result, as shown in Figure 2, the S content was 0.00s
% or less, the cracking in the C-direction close bending after 30% rolling is a factor of 10 or less, and when the S content exceeds 0.00 s%, the cracking increases rapidly. The present inventor has determined that when processing kitchen utensils or automobile parts, in order to prevent cracks from occurring during secondary processing after press forming, cracks in the C-direction close bending after 30-inch rolling should be 10 inches or less. It makes it clear that something is necessary. Therefore, S in the steel of the present invention
The content needs to be 0.00s% or less. A
Comparing the influence of t on Inventive Steel 2 and Comparative Steel 10 or Conventional Steel 12, Inventive Steel is superior to both Comparative Steel and Conventional Steel in both ductility and zinc resistance. At combines with N to form A7N, which reduces solid solution N in the steel and improves ductility.

また、結晶粒の微細化効果があり、その結果製品のりジ
ンク性が向上する。本発明鋼はいずれもAUNとして2
以上0.2多以下のAtを含有しており、延性及びリヅ
ング性に優れている。
In addition, it has the effect of making crystal grains finer, and as a result, the adhesive and zinc properties of the product are improved. All of the steels of the present invention have an AUN of 2
It contains at least 0.2 At and has excellent ductility and ridging properties.

Nの影響を本発明鋼2と比較鋼11で比較すると、りジ
ンク性及び二次加工性共に本発明鋼は優れている。
Comparing the influence of N between Inventive Steel 2 and Comparative Steel 11, the Inventive Steel is superior in both re-zinc resistance and secondary workability.

Nはりジンク性を劣化させ、A7入りのものではAtN
を析出させて二次加工性を劣化させる。
N beams deteriorate the zinc properties, and those with A7 contain AtN.
precipitates and deteriorates secondary workability.

本発明鋼はいずれもN含有量が低く、両特性とも優れて
いる。二次加工性は、C含有量とN含有量の関係におい
て適正範囲があり、第3図斜線の範囲すなわち、C含有
量が0.03%以上0.08%以下、N含有量が0.0
15%未満で、かつC十6.5N≦0.14が適正であ
る。Siの影響については本発明鋼1及び2、比較鋼7
及び8を用いて、3特性とそれ以外の一般的な特性を第
1図に示す。
All of the steels of the present invention have a low N content and are excellent in both properties. There is an appropriate range for secondary workability in terms of the relationship between C content and N content, which is the shaded range in Figure 3, where the C content is 0.03% or more and 0.08% or less, and the N content is 0.03% or more and 0.08% or less. 0
It is appropriate that it is less than 15% and C16.5N≦0.14. Regarding the influence of Si, inventive steels 1 and 2 and comparative steel 7
and 8, the three characteristics and other general characteristics are shown in FIG.

低Si化は降伏点を下げ、引張強さの減少、伸びの増大
、りジンクの改善、二次加工性の向上、降伏点伸びの減
少、エリクセン値の向上、及び硬さの減少等、加工性に
必要な多くの特性を大巾に改善させる。
Low Si lowers the yield point, decreases tensile strength, increases elongation, improves re-zink, improves secondary workability, decreases elongation at yield point, improves Erichsen value, and decreases hardness. Greatly improves many characteristics necessary for sex.

しかし、製品の結晶粒度には影響を及ぼさず、低Si化
した場合、製品の加工後の肌荒れも問題なく好都合であ
る。この様にフエライト系ステンレス鋼の加工特性に及
ぼすSiの影響は大きく、低Si材はその特性を大巾に
改善させる。
However, it does not affect the crystal grain size of the product, and when the Si is reduced, there is no problem with roughening of the product's surface after processing, which is advantageous. As described above, Si has a large influence on the processing characteristics of ferritic stainless steel, and low-Si materials greatly improve these characteristics.

加工性に優れたフエライト系ステンレス鋼の特性値の一
応の目安としては降伏点が低く、28kv/一以下、伸
びは33%以上、r値は高いほどよくりジンクは8μ以
下、30%圧延加工後のC方向密着曲げ割れが10係以
下、エリクセン値は10mm以上等である。
As a rough guide to the properties of ferritic stainless steel, which has excellent workability, the yield point is low, 28kv/1 or less, the elongation is 33% or more, the higher the r value, the better the zinc, 8μ or less, and 30% rolling process. The subsequent C-direction close bending crack is less than a factor of 10, and the Erichsen value is more than 10 mm.

その他としてスプリングバッグ、加工後の肌荒れ等の問
題もあり硬さ及び結晶粒度も考慮すると第1図からSi
量は0.4係以下となる。本発明鋼1、2、3及び4は
Siがいずれも0.4チ以下であり、延性、りジンク性
、二次加工性共に優れている。
There are other problems such as spring bags and rough skin after processing, and considering the hardness and crystal grain size, it is clear from Figure 1 that Si
The amount will be 0.4 factor or less. Inventive steels 1, 2, 3, and 4 all have Si of 0.4 or less, and are excellent in ductility, rezinc resistance, and secondary workability.

二次加工性および伸びに及ぼすSi含有量の影響につい
てさらに詳述する。
The influence of Si content on secondary workability and elongation will be explained in more detail.

C : 0.050%Mn:0.40係、P:0.02
5チ、S:0、007%、Ni:0.10%、Cr:1
6.50%、Az:0.070%N:0.0080%、
A/7′N: 8.75のフエライト系ステンレス鋼を
ベースとしてSiを0.02〜1.01係に変化させた
鋼を真空溶解し、前記と同様にして0.7m厚の鋼板と
し、二次加工性および延びを調べた。その結果、第4図
に示すように、St含有量は0.4%以下にすることが
必要である。Pもまた二次加工性を劣化させる。C:0
.050チ、Si:0.30%、Mn: Q.4Q%、
s : 0.007%,Ni: 0.10%、Cr:
16.50係、Az:0.070チ、N:0.0080
係、At/N:8.75のフエライト系ステンレス鋼を
ベースとして、Pを0.006〜0.049%に変化さ
せた鋼を真空溶解し、前記と同様にして0.7mm厚の
鋼板とし、二次加工性を調べた。その結果第5図に示す
ようにP含有量は0.03%以下にすることが必要であ
る。その他成分の影響として、Niが延性、りジンク性
に、わずかながら影響を及ぼすので本発明鋼はいずれも
0.3%以下である。
C: 0.050% Mn: 0.40, P: 0.02
5chi, S: 0, 007%, Ni: 0.10%, Cr: 1
6.50%, Az: 0.070% N: 0.0080%,
A/7'N: Based on 8.75 ferritic stainless steel, a steel with Si changed to 0.02 to 1.01 was vacuum melted and made into a 0.7 m thick steel plate in the same manner as above. Secondary workability and elongation were investigated. As a result, as shown in FIG. 4, the St content needs to be 0.4% or less. P also deteriorates secondary processability. C:0
.. 050chi, Si: 0.30%, Mn: Q. 4Q%,
s: 0.007%, Ni: 0.10%, Cr:
16.50 section, Az: 0.070 chi, N: 0.0080
Based on ferritic stainless steel with At/N: 8.75, steel with P content varied from 0.006 to 0.049% was vacuum melted and made into a 0.7 mm thick steel plate in the same manner as above. , the secondary processability was investigated. As a result, as shown in FIG. 5, the P content needs to be 0.03% or less. Regarding the influence of other components, Ni has a slight influence on ductility and zinc resistance, so the content of Ni in the steel of the present invention is 0.3% or less in both cases.

以上述べたように本発明は、フエライト系ステンレス鋼
の成分調整により延性、りジンク性、及びプレス成形後
の二次加工性に優れたフエライト系ステンレス鋼を提供
するものである。
As described above, the present invention provides a ferritic stainless steel that has excellent ductility, zinc resistance, and secondary workability after press forming by adjusting the composition of the ferritic stainless steel.

また本発明は溶製時の成分調整のみで他の工程はその1
−1でよい。
In addition, the present invention only adjusts the components during melting, and other steps are only part 1.
-1 is sufficient.

従ってコスト軽減にも寄与するところ大なるものがある
Therefore, it greatly contributes to cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフエライト系ステンレス鋼の各特性に及ぼすS
iの影響を示した図、第2図は二次加工性に及ぼすSの
影響を示した図、第3図は二次加工性の良好なC及びN
の適正範囲を示しだ図、第4図は二次加工性及び伸びに
及ぼすPの影響を示した図、第5図は二次加工性に及ぼ
すPの影響を示した図である。
Figure 1 shows the effect of S on each property of ferritic stainless steel.
Figure 2 shows the influence of S on secondary workability. Figure 3 shows C and N with good secondary workability.
4 is a diagram showing the influence of P on secondary workability and elongation, and FIG. 5 is a diagram showing the influence of P on secondary workability.

Claims (1)

【特許請求の範囲】[Claims] 1 C:0.03%以上0.08%以下、Si:0.4
%以下、Mn:0.5%以下、P:0.03%以下、S
:0.008%以下、Ni:0.3%以下、Cr:15
〜20%、Al:N含有量(%)の2倍以上0.2%以
下、N:0.015%未満、残部Feおよび不可避不純
物から成るプレス成形後の二次加工性に優れたフェライ
ト系ステンレス鋼。
1 C: 0.03% or more and 0.08% or less, Si: 0.4
% or less, Mn: 0.5% or less, P: 0.03% or less, S
: 0.008% or less, Ni: 0.3% or less, Cr: 15
~20%, Al: more than twice the N content (%) and less than 0.2%, N: less than 0.015%, balance Fe and unavoidable impurities. Ferritic type with excellent secondary workability after press forming. stainless steel.
JP10063075A 1975-08-21 1975-08-21 Ferritic stainless steel with excellent workability Expired JPS5949301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10063075A JPS5949301B2 (en) 1975-08-21 1975-08-21 Ferritic stainless steel with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10063075A JPS5949301B2 (en) 1975-08-21 1975-08-21 Ferritic stainless steel with excellent workability

Publications (2)

Publication Number Publication Date
JPS5224913A JPS5224913A (en) 1977-02-24
JPS5949301B2 true JPS5949301B2 (en) 1984-12-01

Family

ID=14279146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10063075A Expired JPS5949301B2 (en) 1975-08-21 1975-08-21 Ferritic stainless steel with excellent workability

Country Status (1)

Country Link
JP (1) JPS5949301B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146456A (en) * 1981-03-04 1982-09-09 Kawasaki Steel Corp Production of ferritic stainless steel for cold rolling
JPS57195021A (en) * 1981-05-25 1982-11-30 Shibuya Kogyo Co Ltd Unscrambler
JPS5871356A (en) * 1981-10-23 1983-04-28 Nippon Steel Corp Ferritic stainless steel with superior service performance, mainly corrosion resistance and its manufacture
JPS59123745A (en) * 1982-12-29 1984-07-17 Nisshin Steel Co Ltd Corrosion resistant alloy
JPH0444500Y2 (en) * 1985-10-18 1992-10-20
WO2014045542A1 (en) 2012-09-24 2014-03-27 Jfeスチール株式会社 Easily worked ferrite stainless-steel sheet

Also Published As

Publication number Publication date
JPS5224913A (en) 1977-02-24

Similar Documents

Publication Publication Date Title
WO2010110466A1 (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
EP2811047A1 (en) Hot-dip galvanized steel sheet and production method therefor
KR101614236B1 (en) Ferritic stainless steel sheet
WO1999007909A1 (en) Ferritic stainless steel plate of high deep drawability and ridging resistance and method of manufacturing the same
JPH08325670A (en) Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
JP4414883B2 (en) High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method
JP5094887B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
JP3357226B2 (en) Fe-Cr alloy with excellent ridging resistance and surface properties
JP4284815B2 (en) Steel plate for high-strength can and manufacturing method thereof
JPH03264652A (en) Ferritic stainless steel sheet and production thereof
JPS5949301B2 (en) Ferritic stainless steel with excellent workability
JP3242007B2 (en) Ferritic stainless steel for automotive exhaust system members with excellent resistance to oxidation scale peeling
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JPS58126956A (en) High-strength steel sheet with superior press workability
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JP2636591B2 (en) Austenitic stainless steel with excellent press formability, plastic anisotropy, and anti-cracking resistance
JP3718865B2 (en) Manufacturing method of lightweight can with excellent bottom pressure strength
JP3069495B2 (en) Ferritic stainless steel sheet excellent in workability and method for producing the same
WO2023153184A1 (en) Austenitic stainless steel and method for producing austenitic stainless steel
JP4959061B2 (en) Ferritic stainless steel sheet with excellent overhanging property and method for producing the same
WO2023153185A1 (en) Austenitic stainless steel and method for producing austenitic stainless steel
JP2002003994A (en) High strength steel sheet and high strength galvanized steel sheet
JP4626913B2 (en) Ferritic stainless steel sheet with excellent formability
JP2518795B2 (en) Soft austenitic stainless steel with excellent hot workability
JPH06136450A (en) Production of cold rolled steel sheet for deep drawing excellent in hardenability in coating/baking and corrosion resistance